Influencia de la naturaleza del almidón modificado en su desempeño como emulsificante de sistemas triglicérido caprílico/cáprico – agua

dc.contributor.advisorMora Huertas, Claudia Elizabeth
dc.contributor.advisorPinal, Rodolfo
dc.contributor.authorMora Guerrero, Carolina del Pilar
dc.contributor.researchgroupGrupo de Investigación en Desarrollo y Calidad de Productos Farmacéuticos y Cosméticos - GIDECAspa
dc.date.accessioned2022-08-24T16:21:28Z
dc.date.available2022-08-24T16:21:28Z
dc.date.issued2022
dc.descriptionilustraciones, fotografías, gráficas,spa
dc.description.abstractLa búsqueda de nuevas alternativas de emulsificación es un tema relevante en la investigación farmacéutica dadas las restricciones de seguridad para algunos materiales y el interés por aprovechar los recursos naturales disponibles en países como Colombia. En este sentido, la presente investigación estudia el desempeño como emulsificantes de cinco almidones de maíz céreo modificados con anhídrido octenil succínico (Hi-Cap® 100, Purity Gum® 2000, Capsul®, N-Creamer® 46 y Purity Gum® Ultra), empleando triglicérido caprílico/cáprico y agua como fases oleosa y acuosa, respectivamente. El desarrollo metodológico incluye la caracterización morfológica, fisicoquímica, estructural y reológica de los almidones, la preparación de las emulsiones a diferentes concentraciones de almidón modificado y su caracterización, la realización de estudios de estabilidad y el estudio de la microestructura. El grado de sustitución (DS: 0.017 – 0.032), el grado de ramificación (DB: 2.27 – 2.93 %), la longitud media de las cadenas lineales (H alfa -(1-4): 70.12 – 97.60 %), la masa molecular media en peso (Mw: 0.68 – 157.75 x 105 g/mol), el radio de giro medio (Rz: 41.30 – 78.45 nm) y la densidad molecular dispersa (0.64 – 42.58 g/mol.nm3) de los almidones investigados son los parámetros que más influyen en la estabilidad de las emulsiones. Así, los sistemas preparados con N-Creamer® 46 (1.8 g almidón/g CCT), Purity Gum® Ultra (2.2 g almidón/g CCT) o Purity Gum® 2000 (3.5 g almidón/g CCT), permiten las emulsiones más estables durante 180 d a 20 y 40 °C ± 0.1 °C. Hi-Cap® 100 y Capsul® no favorecen la estabilidad de las emulsiones, probablemente debido a sus menores valores de Mw, Rz y densidad molecular dispersa. De otro lado, el tipo y la concentración de almidón modificado influencian el índice de cremado, el tamaño de gota y el comportamiento reológico de las emulsiones en función del DS, el DB, la Mw, el Rz y la densidad molecular dispersa. El estudio de la microestructura de las emulsiones evidencia la formación de una red tridimensional, sugiriendo que el principal mecanismo de estabilización empleando estos biopolímeros es el efecto estérico, lo que fue corroborado con la evaluación del potencial zeta y el ensayo de agregación inducida por electrolitos. En conjunto, estos resultados proveen información fundamental acerca de la caracterización de los almidones hidrofóbicos, útil para el desarrollo de sistemas emulsificados novedosos en los campos farmacéutico y cosmético.spa
dc.description.abstractTo search for new alternatives for emulsification is a relevant topic of pharmaceutical research because of the safety restrictions of some materials and the interest of taking advantage of natural resources of countries as Colombia. In this sense, this research work studies the performance as emulsifiers of five waxy corn starches modified with octenyl succinic anhydride (Hi-Cap® 100, Purity Gum® 2000, Capsul®, N-Creamer® 46, and Purity Gum® Ultra), employing caprylic/capric triglyceride and water as the oily and aqueous phases, respectively. The methodology of this work includes the morphological, physicochemical, structural, and rheological characterization of the starches, the preparation of the emulsions at different modified starches concentrations and their characterization, stability assessment, and microstructure investigation. The stability of the emulsions strongly depends on the degree of substitution (DS: 0.017 – 0.032), branching degree (DB: 2.27 – 2.93 %), mean length of the linear chains (H alpha-(1-4): 70.12 – 97.60 %), weight-average molecular weight (Mw: 0.68 – 157.75 x 105 g/mol), z-average radius of gyration (Rz: 41.30 – 78.45 nm), and dispersed molecular density (0.64 – 42.58 g/mol.nm3) of the starches. The systems prepared with N-Creamer® 46 (1.8 g starch/g CCT), Purity Gum® Ultra (2.2 g starch/g CCT), or Purity Gum® 2000 (3.5 g starch/g CCT), allow the most stable emulsions during 180 d at 20 and 40 °C ± 0.1 °C. The Hi-Cap® 100 and Capsul® starches do not favor the emulsions´ stability, probably due to their lower values of Mw, Rz, and dispersed molecular density. On the other hand, the type and concentration of modified starch influence the creaming index, droplet size, and rheological behavior of the emulsions as a function of DS, DB, Mw, Rz, and dispersed molecular density. The investigation of the emulsions´ microstructure provides evidence of a three-dimensional starch network, suggesting the steric effect as the primary mechanism of stabilization when these biopolymers are used. This was corroborated by the zeta-potential evaluation and the test of electrolyte-induced aggregation. All these results about the characterization of the hydrophobic starches are helpful and fundamental to developing novel emulsified systems for innovative pharmaceutic and cosmetic products.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Farmacéuticasspa
dc.description.methodsMétodo científico, experimentación en el laboratorio.spa
dc.description.researchareaFarmacotecnia – Desarrollo de formas farmacéuticas y cosméticasspa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.format.extent329 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82069
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Farmaciaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticasspa
dc.relation.referencesAbbas, S., Bashari, M., Akhtar, W., Li, W. W., y Zhang, X. (2014). Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch. Ultrasonics Sonochemistry, 21(4), 1265–1274.spa
dc.relation.referencesAdetola, O. A., Olukunle, O. J., y Adedeji, A. A. (2019). Acid and hydrothermal modification of different types of cassava (Manihot esculenta) starch. ASABE Meeting Presentation, 1–9.spa
dc.relation.referencesAl-Jubory, F. K., Mujtaba, I. M., y Abbas, A. S. (2020). Preparation and characterization of biodegradable crosslinked starch ester as adsorbent. AIP Conference Proceedings, 2213, 020165–1–020165–020169.spa
dc.relation.referencesAnanthapadmanabhan, K. P., Mukherjee, S., y Chandar, P. (2013a). Stratum corneum fatty acids: Their critical role in preserving barrier integrity during cleansing. International Journal of Cosmetic Science, 35(4), 337–345.spa
dc.relation.referencesAnanthapadmanabhan, K. P., Subramanyan, K., y Nole, G. (2013b). A global perspective on caring for healthy stratum corneum by mitigating the effects of daily cleansing: Report from an expert dermatology symposium. British Journal of Dermatology, 168(Suppl. 1), 1–9.spa
dc.relation.referencesAndresen, M., y Stenius, P. (2007). Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. Journal of Dispersion Science and Technology, 28(6), 837–844.spa
dc.relation.referencesAnwar, S. H., Safriani, N., Asmawati, Zainal Abiddin, N. F., y Yusoff, A. (2017). Application of modified breadfruit (Artocarpus altillis) starch by octenyl succinic anhydride (OSA) to stabilize fish and microalgae oil emulsions. International Food Research Journal, 24(6), 2330–2339.spa
dc.relation.referencesAranberri, I., Binks, B. P., Clint, J. H., y Fletcher, P. D. I. (2006). Elaboración y caracterización de emulsiones estabilizadas por polímeros y agentes tensioactivos. Revista Iberoamericana de Polímeros, 7(3), 211–231.spa
dc.relation.referencesBai, Y., Shi, Y.-C., Herrera, A., y Prakash, O. (2011). Study of octenyl succinic anhydride-modified waxy maize starch by nuclear magnetic resonance spectroscopy. Carbohydrate Polymers, 83(2), 407–413.spa
dc.relation.referencesBai, Y., y Shi, Y. C. (2016). Chemical structures in pyrodextrin determined by nuclear magnetic resonance spectroscopy. Carbohydrate Polymers, 151, 426–433.spa
dc.relation.referencesBarnes, H. A. (2000). A handbook of elementary rheology (Vol. 1). Aberystwyth: University of Wales Institute of Non-Newtonian Fluid Mechanics.spa
dc.relation.referencesBasilio-Cortés, U. A., González-Cruz, L., Velazquez, G., Teniente-Martínez, G., Gómez-Aldapa, C. A., Castro-Rosas, J., y Bernardino-Nicanor, A. (2019). Effect of dual modification on the spectroscopic, calorimetric, viscosimetric and morphological characteristics of corn starch. Polymers, 11(2), 1–14.spa
dc.relation.referencesBello-Flores, C. A., Nuñez-Santiago, M. C., San Martín-Gonzalez, M. F., BeMiller, J. N., y Bello-Pérez, L. A. (2014). Preparation and characterization of octenylsuccinylated plantain starch. International Journal of Biological Macromolecules, 70, 334–339.spa
dc.relation.referencesBello-Pérez, L. A., Bello-Flores, C. A., Nuñez-Santiago, M. D. C., Coronel-Aguilera, C. P., y Alvarez-Ramirez, J. (2015). Effect of the degree of substitution of octenyl succinic anhydride-banana starch on emulsion stability. Carbohydrate Polymers, 132, 17–24.spa
dc.relation.referencesBello-Pérez, L. A., Rodriguez-Ambriz, S. L., y Lozano-Grande, M. A. (2017). Molecular characterization of starches by AF4-MALS-RI: An alternative procedure. Journal of Cereal Science, 75, 132–134.spa
dc.relation.referencesBeMiller, J. N. (2019). Corn starch modification. En S. Serna-Saldivar (Ed.), Corn: Chemistry and Technology (pp. 537–549). Duxford: Elsevier Inc.spa
dc.relation.referencesBeMiller, J. N., y Whistler, R. L. (1996). Carbohydrates. En O. R. Fennema (Ed.), Food Chemistry (3rd ed., pp. 191–195). New York: Marcel Dekker, Inc.spa
dc.relation.referencesBenchabane, A., y Bekkour, K. (2008). Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science, 286(10), 1173–1180.spa
dc.relation.referencesBertoft, E. (2013). On the building block and backbone concepts of amylopectin structure. Cereal Chemistry, 90(4), 294–311.spa
dc.relation.referencesBertoft, E. (2017). Understanding starch structure: recent progress. Agronomy, 7(3), 56.spa
dc.relation.referencesBhandari, P. N., Singhal, R. S., y Kale, D. D. (2002). Effect of succinylation on the rheological profile of starch pastes. Carbohydrate Polymers, 47(4), 365–371.spa
dc.relation.referencesBhosale, R., y Singhal, R. (2006). Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches. Carbohydrate Polymers, 66(4), 521–527.spa
dc.relation.referencesBinks, B. P., Desforges, A., y Duff, D. G. (2007a). Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant. Langmuir, 23(3), 1098–1106.spa
dc.relation.referencesBinks, B. P., Fletcher, P. D. I., Thompson, M. A., y Elliott, R. P. (2013). Influence of propylene glycol on aqueous silica dispersions and particle-stabilized emulsions. Langmuir, 29(19), 5723–5733.spa
dc.relation.referencesBinks, B. P., y Lumsdon, S. O. (2000). Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir, 16(23), 8622–8631.spa
dc.relation.referencesBinks, B. P., y Rocher, A. (2009). Effects of temperature on water-in-oil emulsions stabilised solely by wax microparticles. Journal of Colloid and Interface Science, 335(1), 94–104.spa
dc.relation.referencesBinks, B. P., Rodrigues, J. A., y Frith, W. J. (2007b). Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant. Langmuir, 23(7), 3626–3636.spa
dc.relation.referencesBlock, L. H. (2008). Pharmaceutical emulsions and microemulsions. En H. A. Lieberman, M. M. Rieger, & G. S. Banker (Eds.), Pharmaceutical dosage forms. Disperse systems. Vol. 2 (2nd ed., p. 47). New York: Informa Healthcare USA, Inc.spa
dc.relation.referencesBonacucina, G., Martino, P. Di, Piombetti, M., Colombo, A., Roversi, F., y Palmieri, G. F. (2006). Effect of plasticizers on properties of pregelatinised starch acetate (Amprac 01) free films. International Journal of Pharmaceutics, 313(1–2), 72–77.spa
dc.relation.referencesBortnowska, G., Balejko, J., Tokarczyk, G., Romanowska-Osuch, A., y Krzemińska, N. (2014). Effects of pregelatinized waxy maize starch on the physicochemical properties and stability of model low-fat oil-in-water food emulsions. Food Hydrocolloids, 36, 229–237.spa
dc.relation.referencesChanamai, R., y McClements, D. J. (2002). Comparison of Gum Arabic, Modified Starch, and Whey Protein Isolate as Emulsifiers: Influence of pH, CaCl2 and Temperature. Journal of Food Science, 67(1), 120–125.spa
dc.relation.referencesChang, R., Yang, J., Ge, S., Zhao, M., Liang, C., Xiong, L., y Sun, Q. (2017). Synthesis and self-assembly of octenyl succinic anhydride modified short glucan chains based amphiphilic biopolymer: Micelles, ultrasmall micelles, vesicles, and lutein encapsulation/release. Food Hydrocolloids, 67, 14–26.spa
dc.relation.referencesCharoen, R., Jangchud, A., Jangchud, K., Harnsilawat, T., Decker, E. A., y McClements, D. J. (2012). Influence of interfacial composition on oxidative stability of oil-in-water emulsions stabilized by biopolymer emulsifiers. Food Chemistry, 131(4), 1340–1346.spa
dc.relation.referencesCharoen, R., Jangchud, A., Jangchud, K., Harnsilawat, T., Naivikul, O., y McClements, D. J. (2011). Influence of biopolymer emulsifier type on formation and stability of rice bran oil-in-water emulsions: Whey protein, gum arabic, and modified starch. Journal of Food Science, 76(1), E165–E172.spa
dc.relation.referencesChaudhari, A., Pan, Y., y Nitin, N. (2015). Beverage emulsions: Comparison among nanoparticle stabilized emulsion with starch and surfactant stabilized emulsions. Food Research International, 69, 156–163.spa
dc.relation.referencesCheng, F., Ai, Y., y Ghosh, S. (2021). Utilization of octenyl succinic anhydride-modified pea and corn starches for stabilizing oil-in-water emulsions. Food Hydrocolloids, 118, 106773.spa
dc.relation.referencesCheuk, S. Y., Shih, F. F., Champagne, E. T., Daigle, K. W., Patindol, J. A., Mattison, C. P., y Boue, S. M. (2015). Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch. Food Chemistry, 174, 585–590.spa
dc.relation.referencesChevalier, Y., y Bolzinger, M.-A. (2013). Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 23–34.spa
dc.relation.referencesChivero, P., Gohtani, S., Yoshii, H., y Nakamura, A. (2016). Assessment of soy soluble polysaccharide, gum arabic and OSA-Starch as emulsifiers for mayonnaise-like emulsions. LWT - Food Science and Technology, 69, 59–66.spa
dc.relation.referencesChong, W. T., Tan, C. P., Cheah, Y. K., Lajis, A. F. B., Dian, N. L. H. M., Kanagaratnam, S., y Lai, O. M. (2018). Optimization of process parameters in preparation of tocotrienol-rich red palm oil-based nanoemulsion stabilized by Tween 80 - Span 80 using response surface methodology. PLOS ONE, 13(8), 1–22.spa
dc.relation.referencesClaesson, P. M., Blomberg, E., y Poptoshev, E. (2004). Surface forces and emulsion stability. En S. E. Friberg, K. Larsson, & J. Sjöblom (Eds.), Food Emulsions (4th ed., pp. 257–297). New York: Marcel Dekker, Inc.spa
dc.relation.referencesDavarpanah, L., y Vahabzadeh, F. (2012). Formation of oil-in-water (O/W) pickering emulsions via complexation between β-cyclodextrin and selected organic solvents. Starch/Stärke, 64, 898–913.spa
dc.relation.referencesDavies, R., Graham, D. E., y Vincent, B. (1987). Water-cyclohexane-"Span 80"-"Tween 80" systems: Solution properties and water/oil emulsion formation. Journal of Colloid and Interface Science, 116(1), 88–99.spa
dc.relation.referencesde Folter, J. W. J., van Ruijven, M. W. M., y Velikov, K. P. (2012). Oil-in-water pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein. Soft Matter, 8(25), 6807–6815.spa
dc.relation.referencesDesplanques, S., Renou, F., Grisel, M., y Malhiac, C. (2012). Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocolloids, 27(2), 401–410.spa
dc.relation.referencesDickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17(1), 25–39.spa
dc.relation.referencesDickinson, E. (2009a). Hydrocolloids and emulsion stability. En Handbook of Hydrocolloids (2nd ed., pp. 23–49). Sawston: Woodhead Publishing Limited.spa
dc.relation.referencesDickinson, E. (2009b). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 23(6), 1473–1482.spa
dc.relation.referencesDickinson, E. (2017). Hydrocolloids acting as emulsifying agents – How do they do it? Food Hydrocolloids, 78, 2–14.spa
dc.relation.referencesDiftis, N. G., Biliaderis, C. G., y Kiosseoglou, V. D. (2005). Rheological properties and stability of model salad dressing emulsions prepared with a dry-heated soybean protein isolate-dextran mixture. Food Hydrocolloids, 19(6), 1025–1031.spa
dc.relation.referencesDokić, L., Krstonošić, V., y Nikolić, I. (2012). Physicochemical characteristics and stability of oil-in-water emulsions stabilized by OSA starch. Food Hydrocolloids, 29(1), 185–192.spa
dc.relation.referencesDokić, P., Dokić, L., Dapčević, T., y Krstonošić, V. (2008). Colloid characteristics and emulsifying properties of OSA starches. Progress in Colloid and Polymer Science, 135, 48–56.spa
dc.relation.referencesEinarson, M. B., y Berg, J. C. (1993). Electrosteric stabilization of colloidal latex dispersions. Journal of Colloid and Interface Science, 155, 165–172.spa
dc.relation.referencesEskandar, N. G., Simovic, S., y Prestidge, C. A. (2007). Synergistic effect of silica nanoparticles and charged surfactants in the formation and stability of submicron oil-in-water emulsions. Physical Chemistry Chemical Physics, 9(48), 6426–6434.spa
dc.relation.referencesEstrada-Fernández, A. G., Dorantes-Bautista, G., Román-Guerrero, A., Campos-Montiel, R. G., Hernández-Uribe, J. P., y Jiménez-Alvarado, R. (2021). Modification of Oxalis tuberosa starch with OSA, characterization and application in food-grade Pickering emulsions. Journal of Food Science and Technology, 58(8), 2896–2905.spa
dc.relation.referencesFlorian Puello, T. I. (2013). Efecto de la lipofilización en los almidones nativos de ñame espino (Dioscorea rotundata Poir.), plátano topocho (Musa paradisiaca L.), arracacha (Arracacia xanthorrhiza Bancr.), maíz (Zea mays L.) y evaluación de su posible uso como agentes emulsificante. Universidad de Cartagena, Cartagena.spa
dc.relation.referencesFloury, J., Desrumaux, A., Axelos, M. A. V., y Legrand, J. (2003). Effect of high pressure homogenisation on methylcellulose as food emulsifier. Journal of Food Engineering, 58(3), 227–238.spa
dc.relation.referencesFloury, J., Desrumaux, A., y Legrand, J. (2002). Effect of ultra-high-pressure homogenization on structure and on rheological properties of soy protein-stabilized emulsions. JFS: Food Engineering and Physical Properties, 67(9), 3388–3395.spa
dc.relation.referencesFloury, J., Legrand, J., y Desrumaux, A. (2004). Analysis of a new type of high pressure homogeniser. Part B. study of droplet break-up and recoalescence phenomena. Chemical Engineering Science, 59(6), 1285–1294.spa
dc.relation.referencesFonseca-Florido, H. A., Vázquez-García, H. G., Méndez-Montealvo, G., Basilio-Cortés, U. A., Navarro-Cortés, R., Rodríguez-Marín, M. L., … Gómez-Aldapa, C. A. (2018). Effect of acid hydrolysis and OSA esterification of waxy cassava starch on emulsifying properties in pickering-type emulsions. LWT - Food Science and Technology, 91, 258–264.spa
dc.relation.referencesFu, Z. Q., Wang, L. J., Li, D., y Adhikari, B. (2012). Effects of partial gelatinization on structure and thermal properties of corn starch after spray drying. Carbohydrate Polymers, 88(4), 1319–1325.spa
dc.relation.referencesFujii, S., Aichi, A., Muraoka, M., Kishimoto, N., Iwahori, K., Nakamura, Y., y Yamashita, I. (2009). Ferritin as a bionano-particulate emulsifier. Journal of Colloid and Interface Science, 338(1), 222–228.spa
dc.relation.referencesFulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., … Goldberg, K. I. (2010). NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics, 29(9), 2176–2179.spa
dc.relation.referencesFuma, T., y Kawaguchi, M. (2015). Rheological responses of Pickering emulsions prepared using colloidal hydrophilic silica particles in the presence of NaCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 465, 168–174.spa
dc.relation.referencesGamonpilas, C., Pongjaruvat, W., Fuongfuchat, A., Methacanon, P., Seetapan, N., y Thamjedsada, N. (2011). Physicochemical and rheological characteristics of commercial chili sauces as thickened by modified starch or modified starch/xanthan mixture. Journal of Food Engineering, 105(2), 233–240.spa
dc.relation.referencesGarcía-Tejeda, Y. V., Leal-Castañeda, E. J., Espinosa-Solis, V., y Barrera-Figueroa, V. (2018). Synthesis and characterization of rice starch laurate as food-grade emulsifier for canola oil-in-water emulsions. Carbohydrate Polymers, 194, 177–183.spa
dc.relation.referencesGattefossé. (2015). Ficha Técnica del triglicérido caprílico/cáprico. Saint-Priest.spa
dc.relation.referencesGayathri, V. G., Debnath, S., y Babu, M. N. (2013). Chemically modified starches and their applications in pharmacy. International Journal of Research in Pharmaceutical and Nano Sciences, 2(3), 332–344.spa
dc.relation.referencesGazolu-Rusanova, D., Lesov, I., Tcholakova, S., Denkov, N., y Ahtchi, B. (2020). Food grade nanoemulsions preparation by rotor-stator homogenization. Food Hydrocolloids, 102, 1–11.spa
dc.relation.referencesGenest, S., Schwarz, S., Petzold-Welcke, K., Heinze, T., y Voit, B. (2013). Characterization of highly substituted, cationic amphiphilic starch derivatives: Dynamic surface tension and intrinsic viscosity. Starch - StärkeStärke, 65(11–12), 999–1010.spa
dc.relation.referencesGidley, M. J. (1985). Quantification of the structural features of starch polysaccharides by N.M.R. spectroscopy. Carbohydrate Research, 139, 85–93.spa
dc.relation.referencesGonzález-Cardozo, L. M., Mora-Huertas, C. E., y Gutiérrez, L. F. (2021). Production of Sacha Inchi oil emulsions by high-shear and high-intensity ultrasound emulsification: Physical properties and stability. Journal of Food Processing and Preservation, 45(10), 1–15.spa
dc.relation.referencesGuarás, M. P., Ludueña, L. N., y Alvarez, V. A. (2017). Development of biodegradable products from modified starches. En M. A. Villar, S. E. Barbosa, G. M. Alejandra, L. A. Castillo, & O. V López (Eds.), Starch-Based Materials in Food Packaging: Processing, Characterization and Applications (pp. 77–124). Amsterdam: Elsevier Inc.spa
dc.relation.referencesGuo, L., Tao, H., Cui, B., y Janaswamy, S. (2019). The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules. Food Chemistry, 277, 504–514.spa
dc.relation.referencesHan, H., Zhang, H., Li, E., Li, C., y Wu, P. (2019). Structural and functional properties of OSA-starches made with wide-ranging hydrolysis approaches. Food Hydrocolloids, 90, 132–145.spa
dc.relation.referencesHarding, S. E., Adams, G. G., y Gillis, R. B. (2016). Molecular weight analysis of starches: Which technique? Starch - Stärke, 68(9–10), 846–853.spa
dc.relation.referencesHolmes M. J., y Povey, M. J. W. (2017). Ultrasonic particle sizing in emulsions. En M. Villamiel, J. V García-Pérez, A. Montilla, J. A. Cárcel, & J. Benedito (Eds.), Ultrasound in Food Processing: Recent Advances (1st ed., pp. 28–64). Hoboken: John Wiley & Sons Ltd.spa
dc.relation.referencesHong, L.-F., Cheng, L.-H., Gan, C.-Y., Lee, C. Y., y Peh, K. K. (2018). Evaluation of starch propionate as emulsion stabiliser in comparison with octenylsuccinate starch. LWT - Food Science and Technology, 91, 526–531.spa
dc.relation.referencesHug-Iten, S., Escher, F., y Conde-Petit, B. (2003). Staling of bread: Role of amylose and amylopectin and influence of starch-degrading enzymes. Cereal Chemistry, 80(6), 654–661.spa
dc.relation.referencesHui, R., Qi-he, C., Ming-liang, F., Qiong, X., y Guo-qing, H. (2009). Preparation and properties of octenyl succinic anhydride modified potato starch. Food Chemistry, 114(1), 81–86.spa
dc.relation.referencesHunter, T. N., Pugh, R. J., Franks, G. V., y Jameson, G. J. (2008). The role of particles in stabilising foams and emulsions. Advances in Colloid and Interface Science, 137(2), 57–81.spa
dc.relation.referencesICH. (2009). Guidance for industry. Q8(R2) Pharmaceutical development. Rockville: International Conference on Harmonisation.spa
dc.relation.referencesJafari, S. M., Assadpoor, E., He, Y., y Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 22(7), 1191–1202.spa
dc.relation.referencesJafari, S. M., He, Y., y Bhandari, B. (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 82(4), 478–488.spa
dc.relation.referencesJain, D., Athawale, R., Bajaj, A., Shrikhande, S., Goel, P. N., y Gude, R. P. (2013). Studies on stabilization mechanism and stealth effect of poloxamer 188 onto PLGA nanoparticles. Colloids and Surfaces B: Biointerfaces, 109, 59–67.spa
dc.relation.referencesJain, S., Winuprasith, T., y Suphantharika, M. (2019). Design and synthesis of modified and resistant starch-based oil-in-water emulsions. Food Hydrocolloids, 89, 153–162.spa
dc.relation.referencesJane, J., y Chen, J.-F. (1992). Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chemistry, 69(1), 60–65.spa
dc.relation.referencesJin, Q., Cai, Z., Li, X., Yadav, M. P., y Zhang, H. (2017a). Comparative viscoelasticity studies: Corn fiber gum versus commercial polysaccharide emulsifiers in bulk and at air/liquid interfaces. Food Hydrocolloids, 64, 85–98.spa
dc.relation.referencesJin, Q., Li, X., Cai, Z., Zhang, F., Yadav, M. P., y Zhang, H. (2017b). A comparison of corn fiber gum, hydrophobically modified starch, gum arabic and soybean soluble polysaccharide: Interfacial dynamics, viscoelastic response at oil/water interfaces and emulsion stabilization mechanisms. Food Hydrocolloids, 70, 329–344.spa
dc.relation.referencesJutz, G., y Böker, A. (2010). Bio-inorganic microcapsules from templating protein- and bionanoparticle-stabilized pickering emulsions. Journal of Materials Chemistry, 20(21), 4299–4304.spa
dc.relation.referencesKankate, D., Panpalia, S. G., Kumar, K. J., y Kennedy, J. F. (2020). Studies to predict the effect of pregelatinization on excipient property of maize and potato starch blends. International Journal of Biological Macromolecules, 164, 1206–1214.spa
dc.relation.referencesKargar, M., Fayazmanesh, K., Alavi, M., Spyropoulos, F., y Norton, I. T. (2012). Investigation into the potential ability of pickering emulsions (food-grade particles) to enhance the oxidative stability of oil-in-water emulsions. Journal of Colloid and Interface Science, 366(1), 209–215.spa
dc.relation.referencesKim, Y. D., y Morr, C. V. (1996). Microencapsulation properties of gum Arabic and several food proteins: Spray-Dried orange oil emulsion particles. Journal of Agricultural and Food Chemistry, 44(5), 1314–1320.spa
dc.relation.referencesKim, Y. D., Morr, C. V., y Schenz, T. W. (1996). Microencapsulation properties of gum Arabic and several food proteins: Liquid orange oil emulsion particles. Journal of Agricultural and Food Chemistry, 44(5), 1308–1313.spa
dc.relation.referencesKolb, G., Viardot, K., Wagner, G., y Ulrich, J. (2001). Evaluation of a new high-pressure dispersion unit (HPN) for emulsification. Chemical Engineering and Technology, 24(3), 293–296.spa
dc.relation.referencesKorma, S. A., Alahmad, K., Niazi, S., Ammar Al-Farga, Zaaboul, F., y Zhang, T. (2016). Chemically modified starch and utilization in food stuffs. International Journal of Nutrition and Food Sciences, 5(4), 264–272.spa
dc.relation.referencesKrithika, P. L., y Ratnamala, K. V. (2019). Modifiction of starch: A review of various techniques. International Journal of Research and Analytical Reviews, 6(1), 32–45.spa
dc.relation.referencesKrstonosic, V., Dokic, L., Nikolic, I., Dapcevic, T., y Hadnadjev, M. (2012). Influence of sodium dodecyl sulphate (SDS) concentration on disperse and rheological characteristics of oil-in-water emulsions stabilized by octenyl succinic anhydride modifies starch-SDS mixtures. Journal of the Serbian Chemical Society, 77(1), 83–94.spa
dc.relation.referencesKrstonošić, V., Dokić, L., Nikolić, I., y Milanović, M. (2015). Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch. Food Hydrocolloids, 45, 9–17.spa
dc.relation.referencesLeal-Castañeda, E. J., García-Tejeda, Y., Hernández-Sánchez, H., Alamilla-Beltrán, L., Téllez-Medina, D. I., Calderón-Domínguez, G., … Gutiérrez-López, G. F. (2018). Pickering emulsions stabilized with native and lauroylated amaranth starch. Food Hydrocolloids, 80, 177–185.spa
dc.relation.referencesLi, Chao, Fu, X., Luo, F., y Huang, Q. (2013). Effects of maltose on stability and rheological properties of orange oil-in-water emulsion formed by OSA modified starch. Food Hydrocolloids, 32(1), 79–86.spa
dc.relation.referencesLi, Chen, Li, Y., Sun, P., y Yang, C. (2013). Pickering emulsions stabilized by native starch granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 431, 142–149.spa
dc.relation.referencesLi, L., Yuan, T. Z., y Ai, Y. (2020). Development, structure and in vitro digestibility of type 3 resistant starch from acid-thinned and debranched pea and normal maize starches. Food Chemistry, 318, 1–8.spa
dc.relation.referencesLi, W., Yu, Y., Peng, J., Dai, Z., Wu, J., y Wang, Z. (2021). Effects of the degree of substitution of OSA on the properties of starch microparticle-stabilized emulsions. Carbohydrate Polymers, 255, 117546.spa
dc.relation.referencesLi, Z., Hong, Y., Gu, Z., Tian, Y., Li, Z., y Cheng, L. (2014). Emulsification properties of enzymatically treated octenyl-succinic anhydride starch. Starch - Stärke, 66(11–12), 1089–1095.spa
dc.relation.referencesLim, S. S., Baik, M. Y., Decker, E. A., Henson, L., Popplewell, M. L., McClements, D. J., y Choi, S. J. (2011). Stabilization of orange oil-in-water emulsions: A new role for ester gum as an Ostwald ripening inhibitor. Food Chemistry, 128(4), 1023–1028.spa
dc.relation.referencesLin, Q., Liang, R., Zhong, F., Ye, A., y Singh, H. (2018a). Interactions between octenyl-succinic-anhydride-modified starches and calcium in oil-in-water emulsions. Food Hydrocolloids, 77, 30–39.spa
dc.relation.referencesLin, Q., Liang, R., Zhong, F., Ye, A., y Singh, H. (2018b). Physical properties and biological fate of OSA-modified-starch-stabilized emulsions containing β-carotene: Effect of calcium and pH. Food Hydrocolloids, 77, 549–556.spa
dc.relation.referencesLiu, F., y Tang, C.-H. (2013). Soy protein nanoparticle aggregates as Pickering stabilizers for oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 61(37), 8888–8898.spa
dc.relation.referencesLiu, F., y Tang, C.-H. (2015). Soy glycinin as food-grade Pickering stabilizers: Part . I . Structural characteristics, emulsifying properties and adsorption/arrangement at interface. Food hydrocolloids, 30, 1–14.spa
dc.relation.referencesLiu, Z., Li, Y., Cui, F., Ping, L., Song, J., Ravee, Y., … Zheng, Y. (2008). Production of octenyl succinic anhydride-modified waxy corn starch and its characterization. Journal of Agricultural and Food Chemistry, 56(23), 11499–11506.spa
dc.relation.referencesLovera, M., Castro, G. M. C. de, Pires, N. da R., Bastos, M. do S. R., Holanda-Araújo, M. L., Laurentin, A., … Oliveira, H. D. de. (2020). Pyrodextrinization of yam (Dioscorea sp.) starch isolated from tubers grown in Brazil and physicochemical characterization of yellow pyrodextrins. Carbohydrate Polymers, 242, 1–8.spa
dc.relation.referencesLu, G., y Moore, D. J. (2012). Study of surfactant-skin interactions by skin impedance measurements. International Journal of Cosmetic Science, 34(1), 74–80.spa
dc.relation.referencesLupi, F. R., Gabriele, D., De Cindio, B., Sánchez, M. C., y Gallegos, C. (2011). A rheological analysis of structured water-in-olive oil emulsions. Journal of Food Engineering, 107, 296–303.spa
dc.relation.referencesLuzardo Álvarez, A., Otero Espinar, F. J., y Blanco Méndez, J. (2016). Sistemas dispersos heterogéneos: emulsiones y suspensiones. En R. Martínez Pacheco (Ed.), Tratado de Tecnología Farmacéutica. Vol. I: Sistemas farmacéuticos (pp. 227–263). Madrid: Editorial Síntesis, S. A.spa
dc.relation.referencesMa, L., Zou, L., McClements, D. J., y Liu, W. (2020). One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum Arabic. Food Hydrocolloids, 100, 105381.spa
dc.relation.referencesMa, P., Zeng, Q., Tai, K., He, X., Yao, Y., Hong, X., y Yuan, F. (2017). Preparation of curcumin-loaded emulsion using high pressure homogenization: Impact of oil phase and concentration on physicochemical stability. LWT - Food Science and Technology, 84, 34–46.spa
dc.relation.referencesMacosko, C. W. (1994). Rheology: principles, measurements, and applications. Hoboken: John Wiley & Sons, Ltd.spa
dc.relation.referencesMajzoobi, M., Radi, M., Farahnaky, A., Jamalian, J., Tongdang, T., y Mesbahi, G. (2011). Physicochemical properties of pre-gelatinized wheat starch produced by a twin drum drier. Journal of Agricultural Science and Technology, 13(2), 193–202.spa
dc.relation.referencesManoi, K., y Rizvi, S. S. H. (2009). Emulsification mechanisms and characterizations of cold, gel-like emulsions produced from texturized whey protein concentrate. Food Hydrocolloids, 23(7), 1837–1847.spa
dc.relation.referencesMao, L., Xu, D., Yang, J., Yuan, F., Gao, Y., y Zhao, J. (2009). Effects of small and large molecule emulsifiers on the characteristics of β-carotene nanoemulsions prepared by high pressure homogenization. Food Technology and Biotechnology, 47(3), 336–342.spa
dc.relation.referencesMao, Y., y McClements, D. J. (2013). Modification of emulsion properties by heteroaggregation of oppositely charged starch-coated and protein-coated fat droplets. Food Hydrocolloids, 33(2), 320–326.spa
dc.relation.referencesMarefati, A., Wiege, B., Haase, N. U., Matos, M., y Rayner, M. (2017). Pickering emulsifiers based on hydrophobically modified small granular starches – Part I: Manufacturing and physico-chemical characterization. Carbohydrate Polymers, 175, 473–483.spa
dc.relation.referencesMarku, D., Wahlgren, M., Rayner, M., Sjöö, M., y Timgren, A. (2012). Characterization of starch Pickering emulsions for potential applications in topical formulations. International Journal of Pharmaceutics, 428, 1–7.spa
dc.relation.referencesMartinez, M. M., Li, C., Okoniewska, M., Mukherjee, I., Vellucci, D., y Hamaker, B. (2018). Slowly digestible starch in fully gelatinized material is structurally driven by molecular size and A and B1 chain lengths. Carbohydrate Polymers, 197, 531–539.spa
dc.relation.referencesMarto, J., Gouveia, L., Jorge, I. M., Duarte, A., Gonçalves, L. M., Silva, S. M. C., … Ribeiro, H. M. (2015). Starch-based Pickering emulsions for topical drug delivery: A QbD approach. Colloids and Surfaces B: Biointerfaces, 135, 183–192.spa
dc.relation.referencesMatos, M., Laca, A., Rea, F., Iglesias, O., Rayner, M., y Gutiérrez, G. (2018). O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: Stability, rheological behaviour and resveratrol encapsulation. Journal of Food Engineering, 222, 207–217.spa
dc.relation.referencesMatos, María, Marefati, A., Gutiérrez, G., Wahlgren, M., y Rayner, M. (2016). Comparative emulsifying properties of octenyl succinic anhydride (OSA)-modified starch: Granular form vs dissolved state. PLOS ONE, 11(8), 1–16.spa
dc.relation.referencesMatos, María, Timgren, A., Sjöö, M., Dejmek, P., y Rayner, M. (2013). Preparation and encapsulation properties of double Pickering emulsions stabilized by quinoa starch granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 423, 147–153.spa
dc.relation.referencesMcClements, D. J. (2012). Advances in fabrication of emulsions with enhanced functionality using structural design principles. Current Opinion in Colloid and Interface Science, 17(5), 235–245.spa
dc.relation.referencesMcClements, D. J. (2016). Food Emulsions Principles, Practices, and Techniques (3rd ed.). Boca Raton: CRC Press Taylor & Francis Group.spa
dc.relation.referencesMcMinn, W. A. M., y Magee, T. R. A. (1997). Moisture sorption characteristics of starch materials. Drying Technology, 15(5), 1527–1551.spa
dc.relation.referencesMeng, Z., Qi, K., Guo, Y., Wang, Y., y Liu, Y. (2017). Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocolloids, 77, 17–29.spa
dc.relation.referencesMeng, Z., Qi, K., Guo, Y., Wang, Y., y Liu, Y. (2018). Physical properties, microstructure, intermolecular forces, and oxidation stability of soybean oil oleogels structured by different cellulose ethers. European Journal of Lipid Science and Technology, 120(6), 1700287.spa
dc.relation.referencesMiao, M., Li, R., Jiang, B., Cui, S. W., Zhang, T., y Jin, Z. (2014). Structure and physicochemical properties of octenyl succinic esters of sugary maize soluble starch and waxy maize starch. Food Chemistry, 151, 154–160.spa
dc.relation.referencesMikula, R. J., y Munoz, V. A. (2000). Characterization of emulsions and suspensions in the petroleum industry using cryo-SEM and CLSM. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 174(1–2), 23–36.spa
dc.relation.referencesMiñana, M., y Goncalves, E. (2011). Aplicaciones cosméticas y farmacéuticas de los surfactantes. Módulo de enseñanza en fenómenos interfaciales. Mérida: Universidad de Los Andes.spa
dc.relation.referencesMoebus, K., Siepmann, J., y Bodmeier, R. (2009). Alginate-poloxamer microparticles for controlled drug delivery to mucosal tissue. European Journal of Pharmaceutics and Biopharmaceutics, 72(1), 42–53.spa
dc.relation.referencesMoncada, D. C. (2014). Nuevas alternativas tecnológicas para la emulsificación en productos cosméticos. Universidad Nacional de Colombia, Bogotá D.C.spa
dc.relation.referencesMora, C. P., Martinez-Alejo, J. M., Roman, L., Martinez, M. M., Carvajal, T., Pinal, R., y Mora-Huertas, C. E. (2020). Molecular and physical characterization of octenyl succinic anhydride-modified starches with potential applications in pharmaceutics. International Journal of Pharmaceutics, 579, 119163.spa
dc.relation.referencesMorrison, R. T., y Boyd, R. N. (1985). Química orgánica (2a ed). México: Fondo Educativo Interamericano.spa
dc.relation.referencesMoschakis, T., Murray, B. S., y Dickinson, E. (2006). Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide. Langmuir, 22(10), 4710–4719.spa
dc.relation.referencesMoss, G. (2017). Medium-chain triglycerides. En P. J. Sheskey, W. G. Cook, & C. G. Cable (Eds.), Handbook of pharmaceutical excipients (8th ed., pp. 590–593). London and Washington D.C.: Pharmaceutical Press and American Pharmacists Association.spa
dc.relation.referencesNakamura, A., Yoshida, R., Maeda, H., y Corredig, M. (2006). Soy soluble polysaccharide stabilization at oil-water interfaces. Food Hydrocolloids, 20, 277–283.spa
dc.relation.referencesNawaz, H., Waheed, R., Nawaz, M., y Shahwar, D. (2020). Physical and chemical modifications in starch structure and reactivity. En M. Emeje (Ed.), Chemical Properties of Starch (pp. 1–22). Multan: IntechOpen.spa
dc.relation.referencesNiazi, M. B. K., y Broekhuis, A. A. (2012). Production of amorphous starch powders by solution spray drying. Journal of Applied Polymer Science, 126, E143–E153.spa
dc.relation.referencesNilsson, L., y Bergenståhl, B. (2006). Adsorption of hydrophobically modified starch at oil/water interfaces during emulsification. Langmuir, 22(21), 8770–8776.spa
dc.relation.referencesNilsson, L., y Bergenståhl, B. (2007a). Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces. Journal of Colloid and Interface Science, 308(2), 508–513.spa
dc.relation.referencesNilsson, L., y Bergenståhl, B. (2007b). Emulsification and adsorption properties of hydrophobically modified potato and barley starch. Journal of Agricultural and Food Chemistry, 55(4), 1469–1474.spa
dc.relation.referencesNuryawan, A., Ridwansyah, Mulya Alamsyah, E., y Widyorini, R. (2020). Starch based adhesives made from durian seed through dextrinization. IOP Conference Series: Materials Science and Engineering, 801(1), 012088.spa
dc.relation.referencesO’Neil, M. J., Heckelman, P. E., Dobbelaar, P. H., Roman, K. J., Kenny, C. M., y Karaffa, L. S. (2013). The Merck Index, An Encyclopedia of Chemicals, Drugs, and Biologicals (15th ed.). New Jersey: The Royal Society of Chemistry, Merck & Co., Inc.spa
dc.relation.referencesOlagunju, A. I., Omoba, O. S., Enujiugha, V. N., Wiens, R. A., Gough, K. M., y Aluko, R. E. (2020). Influence of acetylation on physicochemical and morphological characteristics of pigeon pea starch. Food Hydrocolloids, 100, 105424.spa
dc.relation.referencesOng, H. J., y Pinal, R. (2018). Drug solubilization by means of a surface-modified edible biopolymer enabled by hot melt extrusion. Journal of Pharmaceutical Sciences, 107(1), 402–411.spa
dc.relation.referencesOrmaza Zapata, A. M., Rodríguez-Barona, S., y Giraldo Gómez, G. I. (2015). Rheological characterization and stability study of an emulsion made with a dairy by-product enriched with omega-3 fatty acids. Brazilian Journal of Food Technology, 18(1), 23–30.spa
dc.relation.referencesOrtega-Ojeda, F. E., Larsson, H., y Eliasson, A. C. (2005). Gel formation in mixtures of hydrophobically modified potato and high amylopectin potato starch. Carbohydrate Polymers, 59(3), 313–327.spa
dc.relation.referencesOsorio, M. del R., Méndez, G. L., y Matiz, G. E. (2013). Lipofilización de almidones nativos como posibles agentes emulsificantes en cosméticos. Revista Arte y Ciencia Cosmética, 25(56), 25–39.spa
dc.relation.referencesOzturk, B., y McClements, D. J. (2016). Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, 7, 1–6.spa
dc.relation.referencesPark, H. R., Kang, J., Rho, S. J., y Kim, Y. R. (2020). Structural and physicochemical properties of enzymatically modified rice starch as influenced by the degree of enzyme treatment. Journal of Carbohydrate Chemistry, 39(5–6), 250–266.spa
dc.relation.referencesPark, M. H., y Kim, M. (2020). Physicochemical properties of hydroxypropylated apios starches. PNF - Preventive Nutrition and Food Science, 25(3), 286–292.spa
dc.relation.referencesPark, S., Chung, M. G., y Yoo, B. (2004). Effect of octenylsuccinylation on rheological properties of corn starch pastes. Starch/Stärke, 56, 399–406.spa
dc.relation.referencesParra, A. P., Martínez Ramírez, J. A., y Mora Huertas, C. E. (2021). Preparation and characterization of native starch-ibuprofen molecular inclusion complexes. Journal of Drug Delivery Science and Technology, 63(October 2020), 102509.spa
dc.relation.referencesPatel, H. R., Patel, R. P., y Patel, M. M. (2009). Poloxamers: A pharmaceutical excipients with therapeutic behaviors. International Journal of PharmTech Research, 1(2), 299–303.spa
dc.relation.referencesPaunov, V. N., Cayre, O. J., Noble, P. F., Stoyanov, S. D., Velikov, K. P., y Golding, M. (2007). Emulsions stabilised by food colloid particles: Role of particle adsorption and wettability at the liquid interface. Journal of Colloid and Interface Science, 312(2), 381–389.spa
dc.relation.referencesPerrier-Cornet, J. M., Marie, P., y Gervais, P. (2005). Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization. Journal of Food Engineering, 66(2), 211–217.spa
dc.relation.referencesPickering, S. U. (1907). Emulsions. Journal of the Chemical Society, 91, 2001–2021.spa
dc.relation.referencesPrasad Niraula, T., Chatterjee, S. K., y Bhattarai, A. (2018). Studies on the behavior of anionic surfactant sodiumdodecyl sulphate (SDS). Nepal: LAP LAMBERT Academic Publishing.spa
dc.relation.referencesPunia, S. (2020). Barley starch modifications: Physical, chemical and enzymatic - A review. International Journal of Biological Macromolecules, 144, 578–585.spa
dc.relation.referencesQian, C., Decker, E. A., Xiao, H., y McClements, D. J. (2011). Comparison of biopolymer emulsifier performance in formation and stabilization of orange oil-in-water emulsions. Journal of the American Oil Chemists’ Society, 88(1), 47–55.spa
dc.relation.referencesQian, S. Y., Tang, M. Q., Gao, Q., Wang, X. W., Zhang, J. W., Tanokura, M., y Xue, Y. L. (2019). Effects of different modification methods on the physicochemical and rheological properties of Chinese yam (Dioscorea opposita Thunb.) starch. LWT - Food Science and Technology, 116, 108513.spa
dc.relation.referencesQuinzio, C., Ayunta, C., López de Mishima, B., y Iturriaga, L. (2018). Stability and rheology properties of oil-in-water emulsions prepared with mucilage extracted from Opuntia ficus-indica (L). Miller. Food Hydrocolloids, 84, 154–165.spa
dc.relation.referencesRamsden, W. (1904). Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). - Preliminary account. Royal Society of London, 72, 156–164. Recuperado de https://doi.org/10.1098/rspl.1903.0034spa
dc.relation.referencesRao, M. A. (2014). Rheology of foods, semisolid, and solid foods. Principles and Aplications. En G. V. Barbosa-Cánovas (Ed.), Food Engineering Series (3a ed.). Washington DC: Springer US.spa
dc.relation.referencesRave, M. C., Echeverri, J. D., y Salamanca, C. H. (2020). Improvement of the physical stability of oil-in-water nanoemulsions elaborated with Sacha inchi oil employing ultra-high-pressure homogenization. Journal of Food Engineering, 273, 109801.spa
dc.relation.referencesRayner, M., Marku, D., Eriksson, M., Sjöö, M., Dejmek, P., y Wahlgren, M. (2014). Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 458, 48–62.spa
dc.relation.referencesRayner, M., Timgren, A., Sjöö, M., y Dejmek, P. (2012). Quinoa starch granules: A candidate for stabilising food-grade Pickering emulsions. Journal of the Science of Food and Agriculture, 92, 1841–1847.spa
dc.relation.referencesRieger, M. M. (2009). Emulsions. En L. Lachman & H. A. Lieberman (Eds.), The theory and practice of industrial pharmacy (Special in, p. 502). New Delhi: CBS Publishers & Distributors Pvt. Ltd.spa
dc.relation.referencesRodrigues dos Santos, T. P., Landi Franco, C. M., y Leonel, M. (2018). Gelatinized sweet potato starches obtained at different preheating temperatures in a spray dryer. International Journal of Biological Macromolecules, 149, 1–8.spa
dc.relation.referencesRojas Gallardo, J. (2012). Reología de una emulsión de aceite en agua. Universidad Nacional Autónoma de México, Ciudad de México.spa
dc.relation.referencesRoss, A. S. (2012). Starch in foods. En R. E. Wrolstad (Ed.), Food Carbohydrate Chemistry (1st ed., pp. 109–113). Oxford: Wiley-Blackwell, IFT Press.spa
dc.relation.referencesRousseau, D., Ghosh, S., y Park, H. (2009). Comparison of the dispersed phase coalescence mechanisms in different tablespreads. Journal of Food Science: Engineering and physical Properties, 74(1), E1–E7.spa
dc.relation.referencesRousseau, Dérick. (2013). Trends in structuring edible emulsions with Pickering fat crystals. Current Opinion in Colloid and Interface Science, 18, 283–291.spa
dc.relation.referencesSaari, H., Fuentes, C., Sjöö, M., Rayner, M., y Wahlgren, M. (2017). Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions. Carbohydrate Polymers, 157, 558–566.spa
dc.relation.referencesSaari, H., Wahlgren, M., Rayner, M., Sjöö, M., y Matos, M. (2019). A comparison of emulsion stability for different OSA-modified waxy maize emulsifiers: Granules, dissolved starch, and non-solvent precipitates. PLOS ONE, 14(2), 0210690.spa
dc.relation.referencesSaha, D., y Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: A critical review. Journal of Food Science and Technology, 47(6), 587–597.spa
dc.relation.referencesSalager, J.-L. (2002). Surfactants types and uses. Teaching aid in surfactants science & engineering. Mérida: Universidad de Los Andes.spa
dc.relation.referencesSandoval, E., Fernandez, A., & A. (2005). Modelos reológicos aplicados a masas de trigo y maíz. Revista de Ingeniería e Investigación, 58(2), 87–93.spa
dc.relation.referencesScheffler, S. L., Wang, X., Huang, L., San-Martin Gonzalez, F., y Yao, Y. (2010). Phytoglycogen octenyl succinate, an amphiphilic carbohydrate nanoparticle, and ε-polylysine to improve lipid oxidative stability of emulsions. Journal of Agricultural and Food Chemistry, 58, 660–667.spa
dc.relation.referencesSchmitt, M., Limage, S., Grigoriev, D. O., Krägel, J., Dutschk, V., Vincent-Bonnieu, S., … Antoni, M. (2014). Transition from spherical to irregular dispersed phase in water/oil emulsions. Langmuir, 30(16), 4599–4604.spa
dc.relation.referencesSchramm, L. L. (2014). Emulsions, foams, suspensions, and aerosols. Microscience and applications (2nd ed.). Weinheim: Wiley-VCH Verlag GmbH & Co.spa
dc.relation.referencesSchubert, H., Ax, K., y Behrend, O. (2003). Product engineering of dispersed systems. Trends in Food Science and Technology, 14, 9–16.spa
dc.relation.referencesSegura-Campos, M., Chel-Guerrero, L., y Betancur-Ancona, D. (2008). Synthesis and partial characterization of octenylsuccinic starch from Phaseolus lunatus. Food Hydrocolloids, 22, 1467–1474.spa
dc.relation.referencesSemenov, A. N., y Shvets, A. A. (2015). Theory of colloid depletion stabilization by unattached and adsorbed polymers. The Royal Society of Chemistry, 11(45), 8863–8878.spa
dc.relation.referencesShanmugam, A., y Ashokkumar, M. (2014). Functional properties of ultrasonically generated flaxseed oil-dairy emulsions. Ultrasonics Sonochemistry, 21, 1649–1657.spa
dc.relation.referencesSharif, H. R., Goff, H. D., Majeed, H., Shamoon, M., Liu, F., Nsor-Atindana, J., … Zhong, F. (2017a). Physicochemical properties of β-carotene and eugenol co-encapsulated flax seed oil powders using OSA starches as wall material. Food Hydrocolloids, 73, 274–283.spa
dc.relation.referencesSharif, H. R., Williams, P. A., Sharif, M. K., Khan, M. A., Majeed, H., Safdar, W., … Zhong, F. (2017b). Influence of OSA-starch on the physico chemical characteristics of flax seed oil-eugenol nanoemulsions. Food Hydrocolloids, 66, 365–377.spa
dc.relation.referencesSharoba, A. M., Senge, B., El-Mansy, H. A., Bahlol, H. E., y Blochwitz, R. (2005). Chemical, sensory and rheological properties of some commercial German and Egyptian tomato ketchups. European Food Research and Technology, 220, 142–151.spa
dc.relation.referencesShen, Y., Zhang, N., Xu, Y., Huang, J., Yuan, M., Wu, D., y Shu, X. (2019). Physicochemical properties of hydroxypropylated and cross-linked rice starches differential in amylose content. International Journal of Biological Macromolecules, 128, 775–781.spa
dc.relation.referencesSheskey, P. J., Cook, W. G., y Cable, C. G. (2017). Handbook of Pharmaceutical Excipients (8th ed.). London and Washington D.C.: Pharmaceutical Press and American Pharmacists Association.spa
dc.relation.referencesShimoni, G., Shani Levi, C., Levi Tal, S., y Lesmes, U. (2013). Emulsions stabilization by lactoferrin nano-particles under invitro digestion conditions. Food Hydrocolloids, 33, 264–272.spa
dc.relation.referencesShogren, R., y Biresaw, G. (2007). Surface properties of water soluble maltodextrin, starch acetates and starch acetates/alkenylsuccinates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298, 170–176.spa
dc.relation.referencesShweta, Kumar, Y., y Saxena, D. C. (2021). Valorization of unpopped Foxnut starch in stabilizing Pickering emulsion using OSA modification. International Journal of Biological Macromolecules, 191, 657–667.spa
dc.relation.referencesSilva, E. K., Gomes, M. T. M. S., Hubinger, M. D., Cunha, R. L., y Meireles, M. A. A. (2015). Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocolloids, 47, 1–13.spa
dc.relation.referencesSilva, E. K., Rodrigues Costa, A. L., Gomes, A., Bargas, M. A., Cunha, R. L., y Meireles, M. A. A. (2018). Coupling of high-intensity ultrasound and mechanical stirring for producing food emulsions at low-energy densities. Ultrasonics Sonochemistry, 47, 114–121.spa
dc.relation.referencesSimsek, S., Ovando-Martinez, M., Marefati, A., Sjӧӧ, M., y Rayner, M. (2015). Chemical composition, digestibility and emulsification properties of octenyl succinic esters of various starches. Food Research International, 75, 41–49.spa
dc.relation.referencesSingh, A. V., Nath, L. K., y Singh, A. (2010). Pharmaceutical, food and non-food applications of modified starches: A critical review. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(7), 1214–1221.spa
dc.relation.referencesSinko, P. J. (2011). Martin´s physical pharmacy and pharmaceutical sciences (6th ed.). Philadelphia: Editorial Lippincott Williams & Wilkins.spa
dc.relation.referencesSjöblom, J. (2006). Emulsions and emulsion stability: Surfactant science series (2nd ed.; A. T. Hubbard, Ed.). Boca Raton: CRC Press Taylor & Francis Group.spa
dc.relation.referencesSong, X., He, G., Ruan, H., y Chen, Q. (2006). Preparation and properties of octenyl succinic anhydride modified early indica rice starch. Starch/Stärke, 58, 109–117.spa
dc.relation.referencesSong, X., Pei, Y., Qiao, M., Ma, F., Ren, H., y Zhao, Q. (2015). Preparation and characterizations of Pickering emulsions stabilized by hydrophobic starch particles. Food Hydrocolloids, 45, 256–263.spa
dc.relation.referencesSong, X., Pei, Y., Zhu, W., Fu, D., y Ren, H. (2014). Particle-stabilizers modified from indica rice starches differing in amylose content. Food Chemistry, 153, 74–80.spa
dc.relation.referencesSong, X., Zhao, Q., Li, Z., Fu, D., y Dong, Z. (2013). Effects of amylose content on the paste properties and emulsification of octenyl succinic starch esters. Starch/Stärke, 65, 112–122.spa
dc.relation.referencesSopade, P. A. (1999). Flow behaviour of yams grown in Papua New Guinea. Journal of Tropical Agriculture and Food Science, 27(2), 219–224.spa
dc.relation.referencesSwaminathan, V., y Kildsig, D. O. (2001). An examination of the moisture sorption characteristics of commercial magnesium stearate. An Official Journal of the American Association of Pharmaceutical Scientists, 2(4), 73–79.spa
dc.relation.referencesSweedman, Michael C., Schäfer, C., y Gilbert, R. G. (2014). Aggregate and emulsion properties of enzymatically-modified octenylsuccinylated waxy starches. Carbohydrate Polymers, 111, 918–927.spa
dc.relation.referencesSweedman, Michael C., Tizzotti, M. J., Schäfer, C., y Gilbert, R. G. (2013). Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers, 92, 905–920.spa
dc.relation.referencesSweedman, Michael Christopher. (2014). Octenylsuccinylated starches: Structure and function. University of Queensland, Queensland.spa
dc.relation.referencesTadros, T. F. (1994). Fundamental principles of emulsion rheology and their applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 91, 39–55.spa
dc.relation.referencesTadros, T. F. (2004). Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Advances in Colloid and Interface Science, 108–109, 227–258.spa
dc.relation.referencesTadros, T. F. (2005). Applied surfactants. Principles and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.spa
dc.relation.referencesTadros, T. F. (2013a). Emulsion formation, stability, and rheology. En T. F. Tadros (Ed.), Emulsion formation and stability (1st ed., pp. 1–76). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.spa
dc.relation.referencesTadros, T. F. (2013b). Emulsion science and technology: A general introduction. En T. F. Tadros (Ed.), Emulsion formation and stability (1st ed., pp. 1–8). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.spa
dc.relation.referencesTaggart, P., y Mitchell, J. R. (2009). Starch. En G. O. Phillips & P. A. Williams (Eds.), Handbook of hydrocolloids (2nd ed., pp. 108–140). Boca Raton: Woodhead Publishing Limited.spa
dc.relation.referencesTaherian, A. R., Fustier, P., y Ramaswamy, H. S. (2006). Effect of added oil and modified starch on rheological properties, droplet size distribution, opacity and stability of beverage cloud emulsions. Journal of Food Engineering, 77, 687–696.spa
dc.relation.referencesTan, Y., Xu, K., Liu, C., Li, Y., Lu, C., y Wang, P. (2012). Fabrication of starch-based nanospheres to stabilize Pickering emulsion. Carbohydrate Polymers, 88, 1358–1363.spa
dc.relation.referencesTan, Y., Xu, K., Niu, C., Liu, C., Li, Y., Wang, P., y Binks, B. P. (2014). Triglyceride-water emulsions stabilised by starch-based nanoparticles. Food Hydrocolloids, 36, 70–75.spa
dc.relation.referencesTaylor, M. S. (2011). Stabilisation of water-in-oil emulsions to improve the emollient properties of lipstick. University of Birmingham, Birmingham.spa
dc.relation.referencesTesch, S., Gerhards, C., y Schubert, H. (2002). Stabilization of emulsions by OSA starches. Journal of Food Engineering, 54, 167–174.spa
dc.relation.referencesThommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., y Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069.spa
dc.relation.referencesTimgren, A., Rayner, M., Dejmek, P., Marku, D., y Sjöö, M. (2013). Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride. Food Science & Nutrition, 1(2), 157–171.spa
dc.relation.referencesTimgren, A., Rayner, M., Sjöö, M., y Dejmek, P. (2011). Starch particles for food based Pickering emulsions. Procedia Food Science, 1, 95–103.spa
dc.relation.referencesTizzotti, M. J., Sweedman, M. C., Schäfer, C., y Gilbert, R. G. (2013). The influence of macromolecular architecture on the critical aggregation concentration of large amphiphilic starch derivatives. Food Hydrocolloids, 31, 365–374.spa
dc.relation.referencesTizzotti, M. J., Sweedman, M. C., Tang, D., Schaefer, C., y Gilbert, R. G. (2011). New 1H NMR procedure for the characterization of native and modified food-grade starches. Journal of Agricultural and Food Chemistry, 59, 6913–6919.spa
dc.relation.referencesTorrenegra Alarcón, M. E., León Méndez, G., Matiz Melo, G. E., y Sastoque Gomez, J. D. (2015). Lipofilización del almidón de Dioscorea rotundata P. y su posible uso como agente emulsificante. Revista Cubana de Farmacia, 49(4), 605–617.spa
dc.relation.referencesTorres, L. G., Iturbe, R., Snowden, M. J., Chowdhry, B. Z., y Leharne, S. A. (2007). Preparation of o/w emulsions stabilized by solid particles and their characterization by oscillatory rheology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, 439–448.spa
dc.relation.referencesTran, H. T. T., Park, J. B., Hong, K. H., Choi, H. G., Han, H. K., Lee, J., … Lee, B. J. (2011). Preparation and characterization of pH-independent sustained release tablet containing solid dispersion granules of a poorly water-soluble drug. International Journal of Pharmaceutics, 415(1–2), 83–88.spa
dc.relation.referencesTrujillo, C. C., y Wright, A. J. (2010). Properties and stability of solid lipid particle dispersions based on canola stearin and poloxamer 188. Journal of the American Oil Chemists’ Society, 87, 715–730.spa
dc.relation.referencesTzoumaki, M. V., Moschakis, T., Kiosseoglou, V., y Biliaderis, C. G. (2011). Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food Hydrocolloids, 25, 1521–1529.spa
dc.relation.referencesTzoumaki, M. V., Moschakis, T., Scholten, E., y Biliaderis, C. G. (2013). In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions. Food & Function, 4, 121–129.spa
dc.relation.referencesUlbrich, M., Daler, J. M., y Flöter, E. (2019). Acid hydrolysis of corn starch genotypes. I. Impact on morphological and molecular properties. Carbohydrate Polymers, 219, 172–180.spa
dc.relation.referencesUlbrich, M., y Flöter, E. (2019). Functional properties of acid-thinned potato starch: Impact of modification, molecular starch characteristics, and solution preparation. Starch/Stärke, 71, 1–11.spa
dc.relation.referencesUSP. (2020). The United States Pharmacopeia and National Formulary USP 43 - NF 38 (43rd ed.). Rockville: The United States Pharmacopeial Convention.spa
dc.relation.referencesVarona, S., Martín, A., y Cocero, M. J. (2009). Formulation of a natural biocide based on lavandin essential oil by emulsification using modified starches. Chemical Engineering and Processing: Process Intensification, 48, 1121–1128.spa
dc.relation.referencesVashisth, C., Whitby, C. P., Fornasiero, D., y Ralston, J. (2010). Interfacial displacement of nanoparticles by surfactant molecules in emulsions. Journal of Colloid and Interface Science, 349(2), 537–543.spa
dc.relation.referencesVerbeken, D., Dierckx, S., y Dewettinck, K. (2003). Exudate gums: Occurrence, production, and applications. Applied Microbiology and Biotechnology, 63(1), 10–21.spa
dc.relation.referencesViswanathan, A. (1999). Effect of degree of substitution of octenyl succinate starch on the emulsification activity on different oil phases. Journal of Enviromental Polymer Degradation, 7, 191–196.spa
dc.relation.referencesWan, J., Ding, Y., Zhou, G., Luo, S., Liu, C., y Liu, F. (2018). Sorption isotherm and state diagram for indica rice starch with and without soluble dietary fiber. Journal of Cereal Science, 80, 44–49.spa
dc.relation.referencesWandrey, C., Bartkowiak, A., y Harding, S. E. (2010). Materials for encapsulation. En N. J. Zuidam & V. A. Nedovic (Eds.), Encapsulation Technologies for Active Food Ingredients and Food Processing (pp. 31–100). New York: Springer.spa
dc.relation.referencesWang, P. P., Luo, Z.-G., Chun-Chen, Xiong-Fu, y Tamer, T. M. (2020). Effects of octenyl succinic anhydride groups distribution on the storage and shear stability of pickering emulsions formulated by modified rice starch. Carbohydrate Polymers, 228, 115389.spa
dc.relation.referencesWang, S., He, Y., y Zou, Y. (2010). Study of Pickering emulsions stabilized by mixed particles of silica and calcite. Particuology, 8, 390–393.spa
dc.relation.referencesWang, Y. J., y Wang, L. (2002). Characterization of acetylated waxy maize starches prepared under catalysis by different alkali and alkaline-earth hydroxides. Starch/Stärke, 54, 25–30.spa
dc.relation.referencesWege, H. A., Kim, S., Paunov, V. N., Zhong, Q., y Velev, O. D. (2008). Long-term stabilization of foams and emulsions with in-situ formed microparticles from hydrophobic cellulose. Langmuir, 24, 9245–9253.spa
dc.relation.referencesWei, Z., Wang, C., Zou, S., Liu, H., y Tong, Z. (2012a). Chitosan nanoparticles as particular emulsifier for preparation of novel pH-responsive Pickering emulsions and PLGA microcapsules. Polymer, 53, 1229–1235.spa
dc.relation.referencesWei, Z., Yang, Y., Yang, R., y Wang, C. (2012b). Alkaline lignin extracted from furfural residues for pH-responsive Pickering emulsions and their recyclable polymerization. Green Chemistry, 14, 3230–3236.spa
dc.relation.referencesWeil, W., Weil, R. C., Keawsompong, S., Sriroth, K., Seib, P. A., y Shi, Y. C. (2020). Pyrodextrin from waxy and normal tapioca starches: Physicochemical properties. Food Hydrocolloids, 104, 105745.spa
dc.relation.referencesWhitby, C. P., Fornasiero, D., y Ralston, J. (2009). Effect of adding anionic surfactant on the stability of Pickering emulsions. Journal of Colloid and Interface Science, 329(1), 173–181.spa
dc.relation.referencesWilliams, P. A., y Phillips, G. O. (2009). Introduction to food hydrocolloids. En Handbook of Hydrocolloids (2nd ed.). Sawston: Woodhead Publishing Limited.spa
dc.relation.referencesWinuprasith, T., y Suphantharika, M. (2013). Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocolloids, 32, 383–394.spa
dc.relation.referencesWinuprasith, T., y Suphantharika, M. (2015). Food hydrocolloids properties and stability of oil-in-water emulsions stabilized by microfibrillated cellulose from mangosteen rind. Food hydrocolloids, 43, 690–699.spa
dc.relation.referencesXie, Y. L., Zhou, H.-M., Liang, X.-H., He, B. S., y Han, X.-X. (2010). Study on the morphology, particle size and thermal properties of Vitamin A microencapsulated by starch octenylsucciniate. Agricultural Sciences in China, 9(7), 1058–1064.spa
dc.relation.referencesXu, Y., Wang, C., Fu, X., Huang, Q., y Zhang, B. (2018). Effect of pH and ionic strength on the emulsifying properties of two Octenylsuccinate starches in comparison with gum Arabic. Food Hydrocolloids, 76, 96–102.spa
dc.relation.referencesYan, F., Zhang, C., Zheng, Y., Mei, L., Tang, L., Song, C., … Huang, L. (2010). The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(1), 170–178.spa
dc.relation.referencesYanai, R., y Kawaguchi, M. (2017). Effect of hydrophobic modification of hydroxypropyl methylcellulose on silicone oil emulsions. Journal of Dispersion Science and Technology, 38(1), 40–45.spa
dc.relation.referencesYe, F., Miao, M., Jiang, B., Hamaker, B. R., Jin, Z., y Zhang, T. (2017). Characterizations of oil-in-water emulsion stabilized by different hydrophobic maize starches. Carbohydrate Polymers, 166, 195–201.spa
dc.relation.referencesYoo, S. H., y Jane, J. L. (2002). Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors. Carbohydrate Polymers, 49, 307–314.spa
dc.relation.referencesYusoff, A., y Murray, B. S. (2011). Modified starch granules as particle-stabilizers of oil-in-water emulsions. Food Hydrocolloids, 25, 42–55.spa
dc.relation.referencesZhang, H., Schäfer, C., Wu, P., Deng, B., Yang, G., Li, E., … Li, C. (2018). Mechanistic understanding of the relationships between molecular structure and emulsification properties of octenyl succinic anhydride (OSA) modified starches. Food Hydrocolloids, 74, 168–175.spa
dc.relation.referencesZhang, J., Bing, L., y Reineccius, G. A. (2016). Comparison of modified starch and Quillaja saponins in the formation and stabilization of flavor nanoemulsions. Food Chemistry, 192, 53–59.spa
dc.relation.referencesZhang, J., Peppard, T. L., y Reineccius, G. A. (2015). Preparation and characterization of nanoemulsions stabilized by food biopolymers using microfluidization. Flavour and Fragrance Journal, 30, 288–294.spa
dc.relation.referencesZhang, J., y Reineccius, G. A. (2016). Factors controlling the turbidity of submicron emulsions stabilized by food biopolymers and natural surfactant. LWT - Food Science and Technology, 71, 162–168.spa
dc.relation.referencesZhang, P., He, Z., Chen, D., Zhang, Y., Larroque, O. R., y Xia, X. (2007). Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread. Journal of Cereal Science, 46(1), 1–10.spa
dc.relation.referencesZhang, Y., Dai, Y., Hou, H., Li, X., Dong, H., Wang, W., y Zhang, H. (2020). Ultrasound-assisted preparation of octenyl succinic anhydride modified starch and its influence mechanism on the quality. Food Chemistry, 5, 100077.spa
dc.relation.referencesZhao, Y., Khalid, N., Shu, G., Neves, M. A., Kobayashi, I., y Nakajima, M. (2017). Formulation and characterization of O/W emulsions stabilized using octenyl succinic anhydride modified kudzu starch. Carbohydrate Polymers, 176, 91–98.spa
dc.relation.referencesZhou, J., Tong, J., Su, X., y Ren, L. (2016). Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid. International Journal of Biological Macromolecules, 91, 1186–1193.spa
dc.relation.referencesZhu, W., Zheng, F., Song, X., Ren, H., y Gong, H. (2020). Influence of formulation parameters on lipid oxidative stability of Pickering emulsion stabilized by hydrophobically modified starch particles. Carbohydrate Polymers, 246, 116649.spa
dc.relation.referencesZoppe, J. O., Venditti, R. A., y Rojas, O. J. (2012). Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. Journal of Colloid and Interface Science, 369(1), 202–209.spa
dc.relation.referencesZúñiga, R. N., Skurtys, O., Osorio, F., Aguilera, J. M., y Pedreschi, F. (2012). Physical properties of emulsion-based hydroxypropyl methylcellulose films: Effect of their microstructure. Carbohydrate Polymers, 90(2), 1147–1158.spa
dc.rightsDerechos reservados al autor, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocAlmidones modificadosspa
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industrialesspa
dc.subject.proposalAlmidón modificadospa
dc.subject.proposalAnhídrido octenil succínicospa
dc.subject.proposalEmulsionesspa
dc.subject.proposalEstructuraspa
dc.subject.proposalPropiedades fisicoquímicasspa
dc.subject.proposalComportamiento reológicospa
dc.subject.proposalCaracterizaciónspa
dc.subject.proposalEstabilidadspa
dc.subject.proposalModified starcheng
dc.subject.proposalOctenyl succinic anhydrideeng
dc.subject.proposalEmulsionseng
dc.subject.proposalStructureeng
dc.subject.proposalPhysicochemical propertieseng
dc.subject.proposalRheological behavioreng
dc.subject.proposalCharacterizationeng
dc.subject.proposalStabilityeng
dc.subject.spinesEmulsionesspa
dc.subject.spinesQuímica farmacéuticaspa
dc.subject.spinesEstabilizantes (agentes)spa
dc.titleInfluencia de la naturaleza del almidón modificado en su desempeño como emulsificante de sistemas triglicérido caprílico/cáprico – aguaspa
dc.title.translatedInfluence of the modified starch nature on its performance as an emulsifier of caprylic/capric triglyceride–water systemseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleInvestigaciones sobre alternativas novedosas para el aprovechamiento de recursos naturales y el desarrollo de transportadores de activos de interés para el diseño de productos cosméticos y de medicamentos de aplicación tópica. Código Hermes 36019. Convocatoria del Programa Nacional de proyectos para el fortalecimiento de la investigación, la creación y la innovación de la Universidad Nacional de Colombia 2016 - 2018.spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
27277771.2022.pdf
Tamaño:
7.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: