Efecto de la utilización de extracto de ajo (Allium sativum) como aditivo dietario en juveniles de híbrido de tilapia roja

dc.contributor.advisorLandines Parra, Miguel Ángel
dc.contributor.advisorPrieto Mojica, Camilo Alberto
dc.contributor.authorEspejo Cortés, Melissa
dc.contributor.orcidEspejo Cortés, Melissa [0000000242314281]spa
dc.contributor.researchgroupFisiología de Pecesspa
dc.date.accessioned2025-03-20T20:50:53Z
dc.date.available2025-03-20T20:50:53Z
dc.date.issued2025-03-06
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl objetivo del trabajo fue evaluar el efecto de diferentes niveles de ajo (Allium sativum) en la dieta de juveniles de tilapia roja, sobre parámetros productivos, fisiológicos y de composición del músculo, bajo condiciones normales de cultivo y estrés térmico. Se realizaron dos experimentos. En el primero, con una duración de 46 días, se utilizaron 81 individuos distribuidos en nueve tanques (9 ind/tanque) con tres repeticiones por tratamiento, bajo un sistema de recirculación de agua. Los juveniles presentaron talla y peso promedio de 14,783 ± 0,725 cm y 63,843 ± 3,067 g. Fueron distribuidos en tres tratamientos: un control (0 g/kg de extracto de ajo) y dos niveles de inclusión de ajo (T1: 1 g/kg y T2: 2 g/kg). Al final del ensayo, fueron muestreados y sacrificados 4 individuos por tanque (12 por tratamiento), para evaluar los parámetros productivos, fisiológicos y de composición corporal. En el segundo experimento, con duración de 11 días, se utilizaron los animales restantes del primer experimento, los cuales tuvieron un peso promedio inicial de 130,878 ± 28,348 g y una longitud total promedio de 18,558 ± 1,242 cm. Se mantuvo la suplementación dietaría ya mencionada, al igual que la distribución de tratamiento y réplicas. El sistema de calefacción fue desconectado lo que generó una variación drástica de la temperatura del agua (20,07 ± 0,67 °C), considerada subóptima para tilapia. En el primer experimento no se observaron diferencias en ninguno de los parámetros evaluados. En el segundo experimento, no hubo diferencias en ganancia de longitud total (GLT), tasa de crecimiento específico (TCE), factor de conversión alimenticia (FCA) y tasa de supervivencia (TS). La ganancia de peso (GP) fue significativamente mayor en T2. La glucosa fue significativamente menor en T1, mientras que los triglicéridos y lípidos totales fueron mayores en T2. El cortisol fue menor en T1 y T2 comparado con el control. Además, hubo diferencias en HSP70, donde T1 mostró un aumento significativo, en comparación con el control, lo que sugiere una mitigación al estrés térmico. Se concluye que la suplementación con ajo no tuvo influencia significativa sobre el desempeño productivo y fisiológico de juveniles de tilapia roja, ni en la composición del producto final. Sin embargo, la suplementación con ajo parece ser una alternativa viable para mitigar el estrés térmico (Texto tomado de la fuente)spa
dc.description.abstractThe aim of this study was to evaluate the effect of different levels of garlic (Allium sativum) in the diet of juvenile red tilapia on productive, physiological, and muscle composition parameters under normal rearing conditions and thermal stress. Two experiments were conducted. In the first one, which lasted 46 days, 81 individuals were distributed across nine tanks (9 fish/tank), with three replicates per treatment under a recirculating water system. The juveniles had an average size and weight of 14.783 ± 0.725 cm and 63.843 ± 3.067 g, respectively. The fish were assigned to three treatments: a control (0 g/kg of garlic extract) and two levels of garlic inclusion (T1: 1 g/kg and T2: 2 g/kg). At the end of the trial, four individuals per tank (12 per treatment) were sampled and sacrificed to evaluate productive, physiological, and body composition parameters. In the second experiment, which lasted 11 days, the remaining fish from the first experiment were used. Their initial average weight was 130.878 ± 28.348 g, and their total length was 18.558 ± 1.242 cm. The dietary supplementation, as well as the treatment distribution and replicates, were maintained. The heating system was disconnected, leading to a drastic drop in water temperature (20.07 ± 0.67°C), which is considered suboptimal for tilapia. In the first experiment, no statistically significant differences were observed in any of the evaluated parameters. In the second experiment, no significant differences were found in total length gain (TLG), specific growth rate (SGR), feed conversion ratio (FCR), or survival rate (SR). However, weight gain (WG) was significantly higher in T2. Glucose levels were significantly lower in T1, while triglycerides and total lipids were higher in T2. Cortisol levels were lower in T1 and T2 compared to the control. Additionally, significant differences were observed in HSP70, where T1 showed a significant increase compared to the control, suggesting mitigation of thermal stress. It is concluded that garlic supplementation had no significant influence on the productive and physiological performance of juvenile red tilapia or on the composition of the final product. However, garlic supplementation appears to be a viable alternative for mitigating thermal stress.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Salud Animal o Magíster en Producción Animalspa
dc.description.researchareaAcuiculturaspa
dc.format.extentxxi, 85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87713
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animalspa
dc.relation.referencesAbdelwahab, A. M., El-Bahr, S. M., & Al-Khamees, S. (2020). Influence of Dietary Garlic (Allium sativum) and/or Ascorbic Acid on Performance, Feed Utilization, Body Composition and Hemato-Biochemical Parameters of Juvenile Asian Sea Bass (Lates calcarifer). Animals, 10(12), 2396. https://doi.org/10.3390/ani10122396spa
dc.relation.referencesAlem, W. T. (2024). Effect of herbal extracts in animal nutrition as feed additives. Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e24973spa
dc.relation.referencesBañuelos-Vargas, I., Rodríguez-Montes de Oca, G. A., Martínez-Montaño, E., Pérez-Jiménez, A., Mendoza-Gamboa, O. A., Estrada-Godínez, J. A., & Hernández, C. (2021). Antioxidant and immune response of juvenile red tilapia (Oreochromis sp.) cultured at different densities in sea water with biofloc plus probiotics. Aquaculture, 544. https://doi.org/10.1016/j.aquaculture.2021.737112spa
dc.relation.referencesBhadra, S., Krishnani, K. K., Sharma, A., Sahoo, U., & Majeedkutty, B. R. A. (2024). Curcuma longa and Allium sativum as health promoters in genetically improved farmed Tilapia (GIFT)-A green drug approach in hi-tech aquaculture using biofloc. Aquaculture, 582, 740516. https://doi.org/10.1016/j.aquaculture.2023.740516spa
dc.relation.referencesBondad‐Reantaso, M. G., MacKinnon, B., Karunasagar, I., Fridman, S., Alday‐Sanz, V., Brun, E., Le Groumellec, M., Li, A., Surachetpong, W., Karunasagar, I., Hao, B., Dall’Occo, A., Urbani, R., & Caputo, A. (2023). Review of alternatives to antibiotic use in aquaculture. Reviews in Aquaculture, 15(4), 1421-1451. https://doi.org/10.1111/raq.12786spa
dc.relation.referencesCarrera-Quintana, S. C., Gentile, P., & Girón-Hernández, J. (2022). An overview on the aquaculture development in Colombia: Status, opportunities and challenges. Aquaculture, 561, 738583. https://doi.org/10.1016/j.aquaculture.2022.738583spa
dc.relation.referencesDadgar, S., Seidgar, M., Nekuiefard, A., Valipour, A. R., Sharifian, M., & Hafezieh, M. (2019). Oral administration of garlic powder (Allium sativum) on growth performance and survival rate of Carassius auratus fingerlings. Iranian Journal of Fisheries Sciences, Online First. https://doi.org/10.22092/ijfs.2018.117478spa
dc.relation.referencesErguig, M., Yahyaoui, A., Fekhaoui, M., & Dakki, M. (2015). The use of garlic in aquaculture. European Journal of Biotechnology and Bioscience, 3(8), 28-33.spa
dc.relation.referencesFAO. (2024). The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. FAO. https://doi.org/10.4060/cd0683enspa
dc.relation.referencesGabriel, N. N., Wilhelm, M. R., Habte-Tsion, H.-M., Chimwamurombe, P., & Omoregie, E. (2019). Dietary garlic (Allium sativum) crude polysaccharides supplementation on growth, haematological parameters, whole body composition and survival at low water pH challenge in African catfish (Clarias gariepinus) juveniles. Scientific African, 5, 1-10. https://doi.org/10.1016/j.sciaf.2019.e00128spa
dc.relation.referencesHamed, H. S., Ismal, S. M., & Faggio, C. (2021). Effect of allicin on antioxidant defense system, and immune response after carbofuran exposure in Nile tilapia, Oreochromis niloticus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 240. https://doi.org/10.1016/j.cbpc.2020.108919spa
dc.relation.referencesIrkin, L. C., Yiğit, M., Yilmaz, S., & Maita, M. (2014). Toxicological Evaluation of Dietary Garlic (Allium sativum) Powder in European Sea Bass Dicentrarchus labrax Juveniles. Food and Nutrition Sciences, 05(11), 989-996. https://doi.org/10.4236/fns.2014.511109spa
dc.relation.referencesIrkin, L. C., & Yiğit, M. (2016). The use of garlic (Allium sativum) meal as a natural feed supplement in diets for european seabass (Dicentrarchus labrax) juveniles. Journal of Aquaculture Engineering and Fisheries Research, 2(3), 128-141. https://doi.org/10.3153/jaefr16015spa
dc.relation.referencesIsroni, W., Bahri, A. S., & Maulida, N. (2021). Increased Immune Response of Carp (Cyprinus carpio L) by Giving Garlic (A. sativum) powder extract. IOP Conference Series: Earth and Environmental Science, 718(1), 0-6. https://doi.org/10.1088/1755-1315/718/1/012032spa
dc.relation.referencesJabbi, A. M., Asiru, R. A., Ayeku, P. O., & Sani, K. A. (2023). Growth Performance of Clarias gariepinus Fingerlings Fed with Allium sativum Extract as Natural Feed Additives. International Journal of Science for Global Sustainability, 8(4), 7. https://doi.org/10.57233/ijsgs.v8i4.367spa
dc.relation.referencesJabbi, A. M., Ayeku, P. O., Asiru, R. A., & Sani, K. A. (2023a). Effects of Garlic (Allium sativum) on Growth and Haematological Parameters in African Catfish (Clarias gariepinus) Juveniles. International Journal of Science for Global Sustainability, 8(4), 9. https://doi.org/10.57233/ijsgs.v8i4.364spa
dc.relation.referencesKaur, H., & Ansal, M. (2020). Efficacy of garlic powder as a growth promoting feed additive for higher growth and improved flesh quality in an Indian Major Carp, Labeo rohita (Ham.) fingerlings. Journal of Entomology and Zoology Studies, 8, 25-29.spa
dc.relation.referencesLatimer, G. W. & AOAC International (Eds.). (2019). Official methods of analysis of AOAC International. Vol. 3 (21st Edition). AOAC International.spa
dc.relation.referencesMahmoud, R., Aziza, A., Marghani, B., & Eltaysh, R. (2019). Influence of Ginger and Garlic Supplementation on Growth Performance, Whole Body Composition and Oxidative Stress in the Muscles of Nile Tilapia (O. Niloticus). Advances in Animal and Veterinary Sciences, 7(5). https://doi.org/10.17582/journal.aavs/2019/7.5.397.404spa
dc.relation.referencesMosbah, A., Guerbej, H., Boussetta, H., Bouraoui, Z., & Banni, M. (2018). Protective Effects of Dietary Garlic Powder Against Cadmium-induced Toxicity in Sea Bass Liver: A Chemical, Biochemical, and Transcriptomic Approach. Biological Trace Element Research, 183(2), 370-378. https://doi.org/10.1007/s12011-017-1146-4spa
dc.relation.referencesMuahiddah, N., & Diamahesa, W. A. (2023). The use of garlic (Allium sativum) as an immunostimulant in aquaculture. Journal of Fish Health, 3(1), 11-18. https://doi.org/10.29303/jfh.v3i1.2751spa
dc.relation.referencesNaqi, J., Mateen, A., Hussain, D., Tahir, H., Hussain, S., & Tabasum, A. (2019). Effect of Allium sativum Supplemented Diets on Growth and Haematological Responses in Nile Tilapia (Oreochromis niloticus). Pakistan Journal of Zoology, 51. https://doi.org/10.17582/journal.pjz/2019.51.1.257.263spa
dc.relation.referencesOnomu, A. J. (2018). Growth and Haematological Response of Clarias gariepinus to Garlic (Allium sativum) Supplemented Diet. Sustainable Agriculture Research, 8(1), 67. https://doi.org/10.5539/sar.v8n1p67spa
dc.relation.referencesÖz, M., & Di̇kel, S. (2022). Effect of garlic (Allium sativum)—Supplemented diet on growth performance, body composition and fatty acid profile of rainbow trout (Oncorhynchus mykiss). Cellular and Molecular Biology, 68(1), 217-225. https://doi.org/10.14715/cmb/2022.68.1.26spa
dc.relation.referencesÖz, M., Inanan, B. E., Üstüner, E., Karagoz, B., & Dikel, S. (2024). Effects of dietary garlic (Allium sativum) oil on growth performance, haemato‐biochemical and histopathology of cypermethrin‐intoxicated Nile tilapia (Oreochromis niloticus). Veterinary Medicine and Science, 10(3), e1449. https://doi.org/10.1002/vms3.1449spa
dc.relation.referencesPour, F., Maniat, M., Vahedasl, A., & Ghayem, S. (2014). Enhancement of growth performance and body composition in molly fish (Poecilia sphenops) associated with dietary intake of garlic (Allium sativum). International Journal of Biosciences, 5(8), 115-121. https://doi.org/10.12692/ijb/5.8.115-121spa
dc.relation.referencesSamson, J. S. (2019). Effect of garlic (Allium sativum) supplemented diets on growth, feed utilization and survival of red tilapia (Oreochromis sp.). International Journal of Agricultural Technology, 15(4), 637-644.spa
dc.relation.referencesSayed, A.-F. M. E.-. (2020). Tilapia culture (2nd ed). Academic press.spa
dc.relation.referencesThorat, T. N. R., & Rathod, S. H. (2022). Impact of Garlic (Allium sativum) on Glycogen Level of Fresh Water Fish Channa Striatus (Bloch, 1793). International Journal of Scientific Research in Science and Technology, 498-502. https://doi.org/10.32628/IJSRST229172spa
dc.relation.referencesTiamiyu, A. M., Adedeji, O. B., & Olatoye, I. O. (2017). Growth Performance of the African catfish, Clarias gariepinus, Fed Varying Inclusion Levels of Allium sativum as Feed Additives. American Journal of Biotechnology and Bioinformatics, 1(1), 1-7. https://doi.org/10.28933/ajobb-2017-09-2801spa
dc.relation.referencesValenzuela-Gutiérrez, R., Lago-Lestón, A., Vargas-Albores, F., Cicala, F., & Martínez-Porchas, M. (2021). Exploring the garlic (Allium sativum) properties for fish aquaculture. Fish Physiology and Biochemistry, 47(4), 1179-1198. https://doi.org/10.1007/s10695-021-00952-7spa
dc.relation.referencesYones, A.-M. M. (2019). Incorporation of garlic meal (Allium sativum) as natural additive to enhance performance, immunity, gonad and larval survival of Nile tilapia (Oreochromis niloticus) broodstock. African J. Biol. Sci, 15(1), 117-135spa
dc.relation.referencesYousefi, M., Vatnikov, Y. A., Kulikov, E. V., Plushikov, V. G., Drukovsky, S. G., Hoseinifar, S. H., & Van Doan, H. (2020). The protective effects of dietary garlic on common carp (Cyprinus carpio) exposed to ambient ammonia toxicity. Aquaculture, 526(March). https://doi.org/10.1016/j.aquaculture.2020.735400spa
dc.relation.referencesZare, M., Tran, H. Q., Prokešová, M., & Stejskal, V. (2021). Effects of garlic Allium sativum powder on nutrient digestibility, haematology, and immune and stress responses in eurasian perch Perca fluviatilis juveniles. Animals, 11(9). https://doi.org/10.3390/ani11092735spa
dc.relation.referencesZaefarian, A., Yeganeh, S., & Adhami, B. (2017). Dietary effects of garlic powder (Allium sativum) on growth, blood indices, carcass composition, and lysozyme activity in brown trout (Salmo caspius) and resistance against Yersinia ruckeri infection. Aquaculture International, 25(6), 1987-1996. https://doi.org/10.1007/s10499-017-0169-3spa
dc.relation.referencesAhmed, I., & Al-Hamdani, A. (2022). Effect of Garlic on Blood Parameters in Thermal Stressed Common Carp Fish (Cyprinus Carpio L). Egyptian Journal of Veterinary Sciences, 53(4), 573-581. https://doi.org/10.21608/ejvs.2022.149872.1365spa
dc.relation.referencesAbdel-Daim, M. M., Abdelkhalek, N. K. M., & Hassan, A. M. (2015). Antagonistic activity of dietary allicin against deltamethrin-induced oxidative damage in freshwater Nile tilapia; Oreochromis niloticus. Ecotoxicology and Environmental Safety, 111, 146-152. https://doi.org/10.1016/j.ecoenv.2014.10.019spa
dc.relation.referencesAbdel-Tawwab, M., Khalil, R. H., Diab, A. M., Khallaf, M. A., Abdel-Razek, N., Abdel-Latif, H. M. R., & Khalifa, E. (2021). Dietary garlic and chitosan enhanced the antioxidant capacity, immunity, and modulated the transcription of HSP70 and Cytokine genes in Zearalenone-intoxicated European seabass. Fish and Shellfish Immunology, 113, 35-41. https://doi.org/10.1016/j.fsi.2021.03.012spa
dc.relation.referencesBasu, N., Todgham, A. E., Ackerman, P. A., Bibeau, M. R., & Nakano, K. (2002). Heat shock protein genes and their functional significance in fish. GENE International Journal on Genes and Genomes, 295, 173-183.spa
dc.relation.referencesChesti, A., Khati, A., Rikhi Chauhan, C. S., & Chauhan, R. S. (2018). Study on haematological parameters of fingerlings of Amur carp (Cyprinus carpio Haematopterus) fed with garlic (Allium sativum) incorporated diets. ~ 1407 ~ Journal of Pharmacognosy and Phytochemistry, 7(3), 1407-1410.spa
dc.relation.referencesCho, Y. S., Jeong, T. H., Choi, M.-J., Kim, J.-M., & Lim, H. K. (2021). Heat shock protein 70 gene expression and stress response of red-spotted (Epinephelus akaara) and hybrid (E. akaara female × E. lanceolatus male) groupers to heat and cold shock exposure. Fish Physiology and Biochemistry, 47(6), 2067-2080. https://doi.org/10.1007/s10695-021-00966-1spa
dc.relation.referencesDelgado, D. L. C., Caceres, L. L. C., Gómez, S. A. C., & Odio, A. D. (2023). Effect of dietary garlic (Allium sativum) on the zootechnical performance and health indicators of aquatic animals: A mini-review. Veterinary World, 965-976. https://doi.org/10.14202/vetworld.2023.965-976spa
dc.relation.referencesJeyachandran, S., Chellapandian, H., Park, K., & Kwak, I. S. (2023). A Review on the Involvement of Heat Shock Proteins (Extrinsic Chaperones) in Response to Stress Conditions in Aquatic Organisms. Antioxidants, 12(7). https://doi.org/10.3390/antiox12071444spa
dc.relation.referencesNobrega, R. O., Dafre, A. L., Corrêa, C. F., Mattioni, B., Batista, R. O., Pettigrew, J. E., & Fracalossi, D. M. (2022). Oxidative damage in Nile tilapia, Oreochromis niloticus, is mainly induced by water temperature variation rather than Aurantiochytrium sp. Meal dietary supplementation. Fish Physiology and Biochemistry, 48(1), 85-99. https://doi.org/10.1007/s10695-021-01025-5spa
dc.relation.referencesPashaki, A., Ghasemi, M., Zorriehzahra, J., Sharifrohani, M., & Hosseini, S. (2020). Effects of dietary garlic (Allium sativum) extract on survival rate, blood and immune parameters changes and disease resistance of Common carp (Cyprinus carpio carpio Linnaeus, 1758) against Spring Viremia of Carp (SVC). Iranian Journal of Fisheries Sciences. https://doi.org/10.22092/ijfs.2020.120999spa
dc.relation.referencesPanase, P., Saenphet, S., & Saenphet, K. (2018). Biochemical and physiological responses of Nile tilapia Oreochromis niloticus Lin subjected to cold shock of water temperature. Aquaculture Reports, 11, 17-23. https://doi.org/10.1016/j.aqrep.2018.05.005spa
dc.relation.referencesSun, Y., Wen, H., Tian, Y., Mao, X., Li, X., Li, J., Hu, Y., Liu, Y., Li, J., & Li, Y. (2021). HSP90 and HSP70 Families in Lateolabrax maculatus: Genome-Wide Identification, Molecular Characterization, and Expression Profiles in Response to Various Environmental Stressors. Frontiers in Physiology, 12, 784803. https://doi.org/10.3389/fphys.2021.784803spa
dc.relation.referencesFelicitta, J., Manju, R., Ronald, J., Thuraisami, S., Nagarajan, R., & Chelladurai, G. (2019). Effect of different concentrations of some phytoadditives (Allium sativum and Allium cepa) on growth, survival and hematological parameters in Tilapia (Oreochromis mossambicus) juveniles. The Israeli Journal of Aquaculture - Bamidgeh.spa
dc.relation.referencesGutiérrez-Leyva, Ranferi, Carmona-Gasca, Carlos, Ramírez-Ramírez, Jose, Rodríguez-Carpena, Javier, De-La-Cruz-Moreno, Carlos, & Escalera-Valente, Francisco. (2024). Efecto del ajo en polvo (Allium sativum) sobre el rendimiento de crecimiento, composición bioquímica, utilización de nutrientes, y supervivencia de la tilapia del Nilo (Oreochromis niloticus). Abanico Veterinario, 15. https://doi.org/10.21929/abavet2024.13spa
dc.relation.referencesMonobind Inc. (2019). Cortisol AccuBind ELISA Test System. Monobind Inc.spa
dc.relation.referencesMohammad, M. A. (2023). Effect of adding garlic Allium sativum powder in diet on hematological, biochemical and histopathological criteria of common carp Cyprinus carpio L. Iraqi Journal Of Agricultural Sciences, 54(4), 1040-1049. https://doi.org/10.36103/ijas.v54i4.1793spa
dc.relation.referencesSetijaningsih, L., Setiadi, E., Taufik, I., & Mulyasari. (2021). The effect of garlic Allium sativum addition in feed to the growth performance and immune response of tilapia Oreochromis niloticus. IOP Conference Series: Earth and Environmental Science, 744(1). https://doi.org/10.1088/1755-1315/744/1/012072spa
dc.relation.referencesSpinreact. (2013). Glucose-TR. Descargado 20 de agosto de 2020.spa
dc.relation.referencesSpinreact. (2015). LDL Cholesterol D: Quantitative determination of LDL cholesterol BSIS51_LDLc-D_2015. Spinreact.spa
dc.relation.referencesSpinreact. (2016). Lactato. Descargado 20 de agosto de 2020.spa
dc.relation.referencesSpinreact. (2018a). HDL Cholesterol c: Quantitative determination of HDL cholesterol BSIS37_HDLc-02-2018. Spinreact.spa
dc.relation.referencesSpinreact. (2018b). Triglicéridos. Descargado 28 de agosto de 2020.spa
dc.relation.referencesSpinreact. (2021). Fish Heat shock protein 70 ELISA Kit Cat. No. MBS1603644. MyBioSource.spa
dc.relation.referencesAbdel-Hakim, N., Lashin, M., Al-Azab, A.-D., & Ashry, A. (2010). Effect of fresh or dried garlic as a natural feed supplement on growth performance and nutrients utilization of the Nile Tilapia (Oreochromis niloticas). Egyptian Journal of Aquatic Biology and Fisheries, 14(2), 19-38. https://doi.org/10.21608/ejabf.2010.2058spa
dc.relation.referencesAbou El-Soud, N. (2010). Herbal medicine in ancient Egypt. Journal of Medicinal Plants Research, 4, 82-86.spa
dc.relation.referencesAlemu, T. T. (2022). Effect of Food Additives on The Food Quality and Safety: A Review. International Journal of Diabetes & Metabolic Disorders, 7(2). https://doi.org/10.33140/IJDMD.07.02.06spa
dc.relation.referencesAltinteri̇m, B., & Aksu, Ö. (2020). Effects of Macerate Oil of Garlic (Allium sativum, Limne), Tunceli Garlic (Allium tuncelianum, Kollman) and Oninon (Allium cepa, Limne) on Antioxidant Enzyme Activities of Rainbow Trout (Oncorhynchus mykiss L.). Journal of Anatolian Environmental and Animal Sciences, 5(1), 61-65. https://doi.org/10.35229/jaes.669773spa
dc.relation.referencesAly, S. M., Atti, A., & Fathi, M. (2008). Effect of Garlic on the Survival, Growth, Resistance and Quality of Oreochromis niloticus. International Symposium on Tilapia in Aquaculture, 8, 277.296.spa
dc.relation.referencesAmani, D. K., Soltani, M., Rajabi Islami, H., & Kamali, A. (2020). The antifungal effects of Allium sativum and Artemisia sieberia extracts on hatching and survival rates of rainbow trout Oncorhynchus mykiss (Walbaum,1972) larvae. IFRO, 19(2), 669-680.spa
dc.relation.referencesAmin, F., Milad, K., Sudagar, M., Iraei, M., & Morteza, D. (2010). Effect of garlic (Allium sativum) on growth factors, some hematological parameters and body compositions in rainbow trout (Oncorhynchus mykiss ). Aquaculture, Aquarium, Conservation & Legislation, 3(4), 317-323.spa
dc.relation.referencesAyoola, S. O., & Uzoamaka, O. O. (2013). Effect of Allium sativum on growth, feed utilization and haematological parameters of Clarias gariepinus juvenile. African Journal of Livestock Extension, 12(1), 1-7.spa
dc.relation.referencesAzaza, M. S., Peres, H., & Turkmen, S. (2023). Editorial: Nutritional physiology of Aquacultured species. Frontiers in Physiology, 13, 1130143. https://doi.org/10.3389/fphys.2022.1130143spa
dc.relation.referencesBharathi, S., Antony, C., Uma, A., Sudhan, C., Praveenraj, J., & Naduvathu, P. P. (2020). Potential Herbs as Eco-green Drugs for Aquaculture: A Review. Agricultural Reviews, Of. https://doi.org/10.18805/ag.r-2060spa
dc.relation.referencesBhat, R. A. H., Mallik, S. K., Tandel, R. S., & Shahi, N. (2023). An Overview of Cold-Water Fish Diseases and Their Control Measures. En P. K. Pandey, N. Pandey, & Md. S. Akhtar (Eds.), Fisheries and Aquaculture of the Temperate Himalayas (pp. 255-283). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-8303-0_15spa
dc.relation.referencesCain, K. (2022). The many challenges of disease management in aquaculture. Journal of the World Aquaculture Society, 53(6), 1080-1083. https://doi.org/10.1111/jwas.12936spa
dc.relation.referencesCaipang, C. M. A. (2020). Phytogenics in Aquaculture: A Short Review of Their Effects on Gut Health and Microflora in Fish. Philippine Journal of Fisheries, 27(2), 246-259. https://doi.org/10.31398/tpjf/27.2.2020-0006spa
dc.relation.referencesChandra Mohana, N., Nethravathi, A. M., Achar, R. R., Anil Kumar, K. M., & Siddesha, J. M. (2023). Preparation of Feed and Characterization of Feed Supplemented with Phytocompounds. En J. Thomas & N. Amaresan (Eds.), Aquaculture Microbiology (pp. 167-179). Springer US. https://doi.org/10.1007/978-1-0716-3032-7_22spa
dc.relation.referencesChbel, A., Elmakssoudi, A., Rey-Méndez, M., Barja, J. L., Soukri, A., & El Khalfi, B. (2022). Analysis of the chemical compositions of six essential oils and evaluation of their antioxidant and antibacterial activities against some drug-resistant bacteria in aquaculture. Journal of Herbmed Pharmacology, 11(3), 401-408. https://doi.org/10.34172/jhp.2022.46spa
dc.relation.referencesDiab, A. S., Aly, S. M., John, G., Abde-Hadi, Y., & Mohammed, M. F. (2008). Effect of garlic, black seed and Biogen as immunostimulants on the growth and survival of Nile tilapia, Oreochromis niloticus (Teleostei: Cichlidae), and their response to artificial infection with Pseudomonas fluorescens. African Journal of Aquatic Science, 33(1), 63-68. https://doi.org/10.2989/AJAS.2007.33.1.7.391spa
dc.relation.referencesEdeh, I. C., Olise, C. S., Ononye, B. U., Ikechukwu, C. C., Nwankwo, C. G., & Okoli, I. K. (2022). Nutraceutical Role of Honey and Garlic (Allium sativum) on Haematological and Plasma-Antioxidant Profile of African Catfish (Clarias gariepinus). Asian Journal of Biology, 43-52. https://doi.org/10.9734/ajob/2022/v16i3305spa
dc.relation.referencesEl-Barbary, M. I. (2016). Detoxification and antioxidant effects of garlic and curcumin in Oreochromis niloticus injected with aflatoxin B1 with reference to gene expression of glutathione peroxidase (GPx) by RT-PCR. Fish Physiology and Biochemistry, 42(2), 617-629. https://doi.org/10.1007/s10695-015-0164-4spa
dc.relation.referencesElumalai, P., Kurian, A., Lakshmi, S., Faggio, C., Esteban, M. A., & Ringø, E. (2020). Herbal Immunomodulators in Aquaculture. Reviews in Fisheries Science and Aquaculture, 1-25. https://doi.org/10.1080/23308249.2020.1779651spa
dc.relation.referencesEsmaeili, N., Kenari, A. A., & Rombenso, A. (2017). Immunohematological status under acute ammonia stress of juvenile rainbow trout (Oncorhynchus mykiss Walbaum, 1792) fed garlic (Allium sativum) powder-supplemented meat and bone meal-based feeds. Comparative Clinical Pathology, 26(4), 853-866. https://doi.org/10.1007/s00580-017-2457-8spa
dc.relation.referencesEtyemez, M., Balcázar, J. L., Demirkale, İ., & Dikel, S. (2018). Effects of garlic-supplemented diet on growth performance and intestinal microbiota of rainbow trout (Oncorhynchus mykiss). Aquaculture, 486, 170-174. https://doi.org/10.1016/j.aquaculture.2017.12.022spa
dc.relation.referencesFeng, Y., Xu, B., ElGasim A. Yagoub, A., Ma, H., Sun, Y., Xu, X., Yu, X., & Zhou, C. (2021). Role of drying techniques on physical, rehydration, flavor, bioactive compounds and antioxidant characteristics of garlic. Food Chemistry, 343. https://doi.org/10.1016/j.foodchem.2020.128404spa
dc.relation.referencesGong, H., Wang, T., Hua, Y., Wang, W.-D., Shi, C., Xu, H.-X., Li, L.-L., Zhang, D.-P., Sun, Y.-E., & Yu, N.-N. (2022). Garlic varieties and drying methods affected the physical properties, bioactive compounds and antioxidant capacity of dried garlic powder. CyTA - Journal of Food, 20(1), 111-119. https://doi.org/10.1080/19476337.2022.2093400spa
dc.relation.referencesHardy, R. W., Kaushik, S. J., Mai, K., & Bai, S. C. (2022). Fish nutrition—History and perspectives. En Fish Nutrition (pp. 1-16). Elsevier. https://doi.org/10.1016/B978-0-12-819587-1.00006-9spa
dc.relation.referencesHossain, Md. S., Small, B. C., Kumar, V., & Hardy, R. (2023). Utilization of functional feed additives to produce cost‐effective, ecofriendly aquafeeds high in plant‐based ingredients. Reviews in Aquaculture, 16(1), 121-153. https://doi.org/10.1111/raq.12824spa
dc.relation.referencesHuang, X., Chen, F., Guan, J., Xu, C., Li, Y., & Xie, D. (2022). Beneficial effects of re-feeding high α-linolenic acid diets on the muscle quality, cold temperature and disease resistance of tilapia. Fish & Shellfish Immunology, 126, 303-310. https://doi.org/10.1016/j.fsi.2022.05.053spa
dc.relation.referencesHuang, Yao, C., Liu, Y., Xu, N., Yin, Z., Xu, W., Miao, Y., Mai, K., & Ai, Q. (2020). Dietary Allicin Improved the Survival and Growth of Large Yellow Croaker (Larimichthys crocea) Larvae via Promoting Intestinal Development, Alleviating Inflammation and Enhancing Appetite. Frontiers in Physiology, 11, 587674. https://doi.org/10.3389/fphys.2020.587674spa
dc.relation.referencesHudecová, P., Koščová, J., & Hajdučková, V. (2023). Phytobiotics and Their Antibacterial Activity Against Major Fish Pathogens. A Review. Folia Veterinaria, 67(2), 51-61. https://doi.org/10.2478/fv-2023-0017spa
dc.relation.referencesJahanbakhshi, A., Pourmozaffar, S., Adeshina, I., Vayghan, A. H., & Reverter, M. (2022). Effect of garlic (Allium sativum) extract on growth, enzymological and biochemical responses and immune‐related gene expressions in giant freshwater prawn (Macrobrachium rosenbergii). Journal of Animal Physiology and Animal Nutrition, 106(4), 947-956. https://doi.org/10.1111/jpn.13718spa
dc.relation.referencesKhan, N. A., Ninawe, A. S., Sharma, J. G., & Chakrabarti, R. (2020). Effect of light intensity on survival, growth and physiology of rohu, Labeo rohita (Cyprinidae) fry. International Journal of Radiation Biology, 96(4), 552-559. https://doi.org/10.1080/09553002.2020.1704905spa
dc.relation.referencesKim, S. M., JUN, L.-J., Yeo, I.-K., Jeon, Y.-J., Lee, K.-J., JEONG, H.-D., & JEONG, J.-B. (2014). Effects of Dietary Supplementation with Garlic Extract on Immune Responses and Diseases Resistance of Olive Flounder, Paralichthys olivaceus. Journal of fish pathology, 27(1), 35-45. https://doi.org/10.7847/JFP.2014.27.1.035spa
dc.relation.referencesKuralkar, P., & Kuralkar, S. V. (2021). Role of herbal products in animal production – An updated review. Journal of Ethnopharmacology, 278. https://doi.org/10.1016/j.jep.2021.114246spa
dc.relation.referencesLidiková, J., Čeryová, N., Tóth, T., Musilová, J., Vollmannová, A., Mammadova, K., & Ivanišová, E. (2023). Garlic (Allium sativum L.): Characterization of Bioactive Compounds and Related Health Benefits. En E. Ivanišová (Ed.), Herbs and Spices—New Advances. IntechOpen. https://doi.org/10.5772/intechopen.108844spa
dc.relation.referencesLimbu, S. M., Zhou, L., Sun, S.-X., Zhang, M.-L., & Du, Z.-Y. (2018). Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environment International, 115, 205-219. https://doi.org/10.1016/j.envint.2018.03.034spa
dc.relation.referencesLingaraju, N., Malik, M. A., Singh, S. K., & Sukham, M. (2022). Vulnerability and Mitigation Approach to Nutritional Pathology for Sustainable Fish Growth in Changing Climatic Conditions. En A. Sinha, S. Kumar, & K. Kumari (Eds.), Outlook of Climate Change and Fish Nutrition (pp. 233-263). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5500-6_17spa
dc.relation.referencesLu, Y. P., Zheng, P. H., Zhang, Z. L., Li, J. T., Li, J. J., Li, T., Wang, X., Xu, J. R., Wang, D. M., Xian, J. A., & Zhang, X. X. (2023). Effects of dietary Radix bupleuri root extract on the growth, muscle composition, histology, immune responses and microcystin-LR stress resistance of juvenile red claw crayfish (Cherax quadricarinatus). Aquaculture Reports, 33. https://doi.org/10.1016/j.aqrep.2023.101822spa
dc.relation.referencesLuis, A. I. S., Campos, E. V. R., De Oliveira, J. L., Guilger-Casagrande, M., De Lima, R., Castanha, R. F., De Castro, V. L. S. S., & Fraceto, L. F. (2020). Zein Nanoparticles Impregnated with Eugenol and Garlic Essential Oils for Treating Fish Pathogens. ACS Omega, 5(25), 15557-15566. https://doi.org/10.1021/acsomega.0c01716spa
dc.relation.referencesLushchak, V. I. (2016). Contaminant-induced oxidative stress in fish: A mechanistic approach. Fish Physiology and Biochemistry, 42(2), 711-747. https://doi.org/10.1007/s10695-015-0171-5spa
dc.relation.referencesMair, G. C., Halwart, M., Derun, Y., & Costa‐Pierce, B. A. (2023). A decadal outlook for global aquaculture. Journal of the World Aquaculture Society, 54(2), 196-205. https://doi.org/10.1111/jwas.12977spa
dc.relation.referencesMazzei, L., Bel蒒 Ruiz-Roso, M., De Las Heras, N., Ballesteros, S., Torrespalazzolo, C., Ferder, L., Beatriz Camargo, A., & Manucha, W. (2020). Allicin neuroprotective effect during oxidative/inflammatory injury involves AT1-Hsp70-iNOS counterbalance axis. BIOCELL, 44(4), 671-681. https://doi.org/10.32604/biocell.2020.014175spa
dc.relation.referencesMohebbi, A., Nematollahi, A., Dorcheh, E. E., & Asad, F. G. (2011). Influence of dietary garlic (Allium sativum) on the antioxidative status of rainbow trout (Oncorhynchus mykiss). Aquaculture Research, 43(8), 1184-1193. https://doi.org/10.1111/j.1365-2109.2011.02922.xspa
dc.relation.referencesMoreira-de-Sousa, C., De Souza, R. B., & Fontanetti, C. S. (2018). HSP70 as a Biomarker: An Excellent Tool in Environmental Contamination Analysis—a Review. Water, Air, & Soil Pollution, 229(8), 264. https://doi.org/10.1007/s11270-018-3920-0spa
dc.relation.referencesMukherjee, A., Bhowmick, A. R., Mukherjee, J., & Moniruzzaman, M. (2019). Physiological response of fish under variable acidic conditions: A molecular approach through the assessment of an eco-physiological marker in the brain. Environmental Science and Pollution Research, 26(23), 23442-23452. https://doi.org/10.1007/s11356-019-05602-3spa
dc.relation.referencesMwale, M. M. (2023). Health Risk of Food Additives: Recent Developments and Trends in the Food Sector. En Health Risks of Food Additives—Recent Developments and Trends in Food Sector. IntechOpen. https://doi.org/10.5772/intechopen.109484spa
dc.relation.referencesNasir, A., Fatma, G., Neshat, N., & Aftab, M. (2021). Pharmacological and therapeutic attributes of garlic (Allium sativum Linn.) with special reference to Unani medicine-A review. 6-09.spa
dc.relation.referencesNaylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., Little, D. C., Lubchenco, J., Shumway, S. E., & Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(7851), 551-563. https://doi.org/10.1038/s41586-021-03308-6spa
dc.relation.referencesNóbrega, V. S. L. D., Rombenso, A. N., Pedrosa, V. F., Romano, L. A., Sampaio, L. A., & Rodrigues, R. V. (2022). Dietary garlic supplementation positively affects the immunological system of juvenile cobia Rachycentron canadum reared in net pens during winter. https://doi.org/10.21203/rs.3.rs-1942686/v1spa
dc.relation.referencesOkoro, B. C., Dokunmu, T. M., Okafor, E., Sokoya, I. A., Israel, E. N., Olusegun, D. O., Bella-Omunagbe, M., Ebubechi, U. M., Ugbogu, E. A., & Iweala, E. E. J. (2023). The ethnobotanical, bioactive compounds, pharmacological activities and toxicological evaluation of garlic (Allium sativum): A review. Pharmacological Research - Modern Chinese Medicine, 8, 100273. https://doi.org/10.1016/j.prmcm.2023.100273spa
dc.relation.referencesPaul, S., Rahman, M., Salam, M., Surovy, M., & Islam, T. (2022). Dietary Inclusion of Garlic (Allium Sativum) Extract Enhances Growth and Resistance of Rohu (Labeo Rohita) Against Motile Aeromonas Septicaemia. Annals of Bangladesh Agriculture, 25(1), 11-22. https://doi.org/10.3329/aba.v25i1.58151spa
dc.relation.referencesPereira, L. A., Weiss, L. A., Besen, M. A., & Marengoni, N. G. (2016). Use of plant extracts and their prophylactic or therapeutic properties in the fish production. Scientia Agraria Paranaensis, 15(4), 373-380. https://doi.org/10.1818/sap.v15i4.12752spa
dc.relation.referencesPhuc Khang, L. T., Vinh, T., Le Tho, L. T., Tong, N. X., & Phuong Dung, T. T. (2022). Use of dietary garlic (Allium sativum L.) and Vietnamese (Elsholtzia ciliata extract for prevention of Bacillary Necrosis in Pangasius (BNP) in striped catfish (Pangasianodon hypophthalmus). Academia Journal of Biology, 44(4), 65-76. https://doi.org/10.15625/2615-9023/17534spa
dc.relation.referencesRachmawati, A., Rosidah, ., Anna, Z., & Lili, W. (2022). Effectiveness of Adding Garlic Extract (Allium sativum) in Commercial Feed to the Resistance of Nilem Fish (Osteochillus hasselti) Infected with Aeromonas hydrophila Bacteria. Asian Journal of Fisheries and Aquatic Research, 37-45. https://doi.org/10.9734/ajfar/2022/v19i130467spa
dc.relation.referencesRahman, Z., Afsheen, Z., Hussain, A., & Khan, M. (2022). Antibacterial and Antifungal Activities of Garlic (Allium sativum) against Common Pathogens. BioScientific Review, 4(2), 30-40. https://doi.org/10.32350/BSR.42.02spa
dc.relation.referencesRigos, G., & Kogiannou, D. (2023). Antimicrobial drugs in aquaculture: Use and abuse. En Present Knowledge in Food Safety (pp. 142-161). Elsevier. https://doi.org/10.1016/B978-0-12-819470-6.00027-5spa
dc.relation.referencesRouf, R., Uddin, S. J., Sarker, D. K., Islam, M. T., Ali, E. S., Shilpi, J. A., Nahar, L., Tiralongo, E., & Sarker, S. D. (2020). Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends in Food Science & Technology, 104, 219-234. https://doi.org/10.1016/j.tifs.2020.08.006spa
dc.relation.referencesShehata, A. M., Abdel-Moneim, A.-M. E., Gewida, A. G. A., Abd El-Hack, M. E., Alagawany, M., & Naiel, M. A. E. (2022). Phytogenic Substances: A Promising Approach Towards Sustainable Aquaculture Industry. En M. E. Abd El-Hack & M. Alagawany (Eds.), Antibiotic Alternatives in Poultry and Fish Feed (pp. 160-193). Bentham Science Publishers. https://doi.org/10.2174/9789815049015122010014spa
dc.relation.referencesSimorangkir, R., Sarjito, S., & Haditomo, A. H. C. (2020). Pengaruh ekstrak Wawang Putih (Allium sativum) terhadap tingkat pencegahan infeksi bakteri Vibrio harveyi dan kelulushidupan ikan Nila Salin (Oreochromis niloticus). Sains Akuakultur Tropis, 4(2), 139-147. https://doi.org/10.14710/sat.v4i2.4576spa
dc.relation.referencesSouza, C. de F., Baldissera, M. D., Baldisserotto, B., Heinzmann, B. M., Martos-Sitcha, J. A., & Mancera Romero, J. M. (2019). Essential Oils as Stress-Reducing Agents for Fish Aquaculture: A Review. Frontiers in Physiology, 10(785). https://doi.org/10.3389/fphys.2019.00785spa
dc.relation.referencesStephen, J., Mukherjee, S., Lekshmi, M., & Kumar, S. H. (2023). Diseases and Antimicrobial Use in Aquaculture. En M. P. Mothadaka, M. Vaiyapuri, M. Rao Badireddy, C. Nagarajrao Ravishankar, R. Bhatia, & J. Jena (Eds.), Handbook on Antimicrobial Resistance (pp. 1-23). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-9723-4_15-1spa
dc.relation.referencesStevanović, Z. D., Bošnjak-Neumüller, J., Pajić-Lijaković, I., Raj, J., & Vasiljević, M. (2018). Essential Oils as Feed Additives-Future Perspectives. Molecules (Basel, Switzerland), 23(7), 1717. https://doi.org/10.3390/molecules23071717spa
dc.relation.referencesSunanta, P., Kontogiorgos, V., Pankasemsuk, T., Jantanasakulwong, K., Rachtanapun, P., Seesuriyachan, P., & Sommano, S. R. (2023). The nutritional value, bioactive availability and functional properties of garlic and its related products during processing. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1142784spa
dc.relation.referencesSutili, F. J., Gatlin, D. M., Heinzmann, B. M., & Baldisserotto, B. (2017). Plant essential oils as fish diet additives: Benefits on fish health and stability in feed. Reviews in Aquaculture, 3, 1-11. https://doi.org/10.1111/raq.12197spa
dc.relation.referencesSzuba-Trznadel, A., & Rząsa, A. (2023). Feed Additives of Bacterial Origin as an Immunoprotective or Immunostimulating Factor – A Review. Annals of Animal Science, 23(4), 1009-1020. https://doi.org/10.2478/aoas-2023-0021spa
dc.relation.referencesTudu, C. K., Dutta, T., Ghorai, M., Biswas, P., Samanta, D., Oleksak, P., Jha, N. K., Kumar, M., Radha, Proćków, J., Pérez De La Lastra, J. M., & Dey, A. (2022). Traditional uses, phytochemistry, pharmacology and toxicology of garlic (Allium sativum), a storehouse of diverse phytochemicals: A review of research from the last decade focusing on health and nutritional implications. Frontiers in Nutrition, 9, 949554. https://doi.org/10.3389/fnut.2022.929554spa
dc.relation.referencesUpadhaya, S. D., & Kim, I. H. (2017). Efficacy of Phytogenic Feed Additive on Performance, Production and Health Status of Monogastric Animals – A Review. Annals of Animal Science, 17(4), 929-948. https://doi.org/10.1515/aoas-2016-0079spa
dc.relation.referencesU.S. Department of Agriculture Research Service, A. (2018). USDA Food and Nutrient Database for Dietary Studies 2015-2016. Food Surveys Research Group. http://www.ars.usda.gov/nea/bhnrc/fsrgspa
dc.relation.referencesVerma, T., Aggarwal, A., Dey, P., Chauhan, A. K., Rashid, S., Chen, K.-T., & Sharma, R. (2023). Medicinal and therapeutic properties of garlic, garlic essential oil, and garlic-based snack food: An updated review. Frontiers in Nutrition, 10, 1120377. https://doi.org/10.3389/fnut.2023.1120377spa
dc.relation.referencesWard, K. R., & Matejtschuk, P. (2021). The Principles of Freeze-Drying and Application of Analytical Technologies. En W. F. Wolkers & H. Oldenhof (Eds.), Cryopreservation and Freeze-Drying Protocols (Vol. 2180, pp. 99-127). Springer US. https://doi.org/10.1007/978-1-0716-0783-1_3spa
dc.relation.referencesYang, C., Chowdhury, M. A., Huo, Y., & Gong, J. (2015). Phytogenic Compounds as Alternatives to In-Feed Antibiotics: Potentials and Challenges in Application. Pathogens, 4(1), 137-156. https://doi.org/10.3390/pathogens4010137spa
dc.relation.referencesZhao, K., Zhou, G., Liu, Y., Zhang, J., Chen, Y., Liu, L., & Zhang, G. (2023). HSP70 Family in Cancer: Signaling Mechanisms and Therapeutic Advances. Biomolecules, 13(4), 601. https://doi.org/10.3390/biom13040601spa
dc.relation.referencesZheng, W., Xu, X., Chen, Y., Wang, J., Zhang, T., Zechen, E., Chen, S., & Liu, Y. (2023). Genome-Wide Identification, Molecular Characterization, and Involvement in Response to Abiotic and Biotic Stresses of the HSP70 Gene Family in Turbot (Scophthalmus maximus). International Journal of Molecular Sciences, 24(7). https://doi.org/10.3390/ijms24076025spa
dc.relation.referencesKiron, V. (2012). Fish immune system and its nutritional modulation for preventive health care. Animal Feed Science and Technology, 173(1-2), 111-133. https://doi.org/10.1016/j.anifeedsci.2011.12.015spa
dc.relation.referencesMahmoud, H. K., Reda, F. M., Alagawany, M., Farag, M. R., & El-Naggar, K. (2023). The role of dietary chia seed powder in modulating cold stress-related impacts in Nile tilapia, Oreochromis niloticus. Aquaculture, 567, 739246. https://doi.org/10.1016/j.aquaculture.2023.739246spa
dc.relation.referencesMahmoud, M. A., Kassab, M. S., Zaineldin, A. I., Amer, A. A., Gewaily, M. S., Darwish, S., & Dawood, M. A. O. (2023a). Mitigation of Heat Stress in Striped Catfish (Pangasianodon hypophthalmus) by Dietary Allicin: Exploring the Growth Performance, Stress Biomarkers, Antioxidative, and Immune Responses. Aquaculture Research, 2023, 1-16. https://doi.org/10.1155/2023/8292007spa
dc.relation.referencesMaulu, S., Hasimuna, O. J., Haambiya, L. H., Monde, C., Musuka, C. G., Makorwa, T. H., Munganga, B. P., Phiri, K. J., & Nsekanabo, J. D. (2021). Climate Change Effects on Aquaculture Production: Sustainability Implications, Mitigation, and Adaptations. Frontiers in Sustainable Food Systems, 5, 609097. https://doi.org/10.3389/fsufs.2021.609097spa
dc.relation.referencesMenon, S. V., Kumar, A., Middha, S. K., Paital, B., Mathur, S., Johnson, R., Kademan, A., Usha, T., Hemavathi, K. N., Dayal, S., Ramalingam, N., Subaramaniyam, U., Sahoo, D. K., & Asthana, M. (2023). Water physicochemical factors and oxidative stress physiology in fish, a review. Frontiers in Environmental Science, 11, 1240813. https://doi.org/10.3389/fenvs.2023.1240813spa
dc.relation.referencesOverstreet, R. M. (2021). Parasitic Diseases of Fishes and Their Relationship with Toxicants and Other Environmental Factors. En J. A. Couch & J. W. Fournie (Eds.), PATHOBIOLOGY of MARINE and ESTUARINE ORGANISMS (1.a ed., pp. 111-156). CRC Press. https://doi.org/10.1201/9781003069058-5spa
dc.relation.referencesPhrompanya, P., Panase, P., Saenphet, S., & Saenphet, K. (2021). Histopathology and oxidative stress responses of Nile tilapia Oreochromis niloticus exposed to temperature shocks. Fisheries Science, 87(4), 491-502. https://doi.org/10.1007/s12562-021-01511-yspa
dc.relation.referencesSalomão, R. A., Santos, V., & Mareco, E. (2017). Influence of rearing temperature on muscle growth and adipose tissue in Nile tilapia (Oreochromis niloticus) strains. Acta Scientiarum. Animal Sciences, 40, 35686. https://doi.org/10.4025/actascianimsci.v40i0.35686spa
dc.relation.referencesShi, G. C., Dong, X. H., Chen, G., Tan, B. P., Yang, Q. H., Chi, S. Y., & Liu, H. Y. (2015). Physiological responses and HSP70 mRNA expression of GIFT strain of Nile tilapia (Oreochromis niloticus) under cold stress. Aquaculture Research, 46(3), 658-668. https://doi.org/10.1111/are.12212spa
dc.relation.referencesSingh, S. P., Ahmad, T., Sharma, J. G., & Chakrabarti, R. (2021). Effect of temperature on food consumption, immune system, antioxidant enzymes, and heat shock protein 70 of Channa punctata (Bloch, 1793). Fish Physiology and Biochemistry, 47(1), 79-91. https://doi.org/10.1007/s10695-020-00896-4spa
dc.relation.referencesYang, H., Munyaradzia, H. B., Zhu, W., Wang, L., & Dong, Z. (2024). Effects of Cold Stress on Physiological Responses, Histological Morphology, Muscle Compositions and Intestinal Microorganisms of Red Tilapia. https://doi.org/10.2139/ssrn.4777230spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocOreochromis niloticusspa
dc.subject.agrovocAllium sativumeng
dc.subject.agrovocEstrés térmicospa
dc.subject.agrovocheat stresseng
dc.subject.agrovocDieta básicaspa
dc.subject.agrovocbasic dietseng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.proposalAllium sativumspa
dc.subject.proposalTilapia rojaspa
dc.subject.proposalAditivos dietariosspa
dc.subject.proposalEstrés térmicospa
dc.subject.proposalParámetros productivosspa
dc.subject.proposalRed tilapiaeng
dc.subject.proposalDietary additiveseng
dc.subject.proposalThermal stresseng
dc.subject.proposalProductive parameterseng
dc.titleEfecto de la utilización de extracto de ajo (Allium sativum) como aditivo dietario en juveniles de híbrido de tilapia rojaspa
dc.title.translatedEffect of using garlic extract (Allium sativum) as a dietary additive in juvenile red tilapia hybridseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameUniversidad de Ciencias Aplicadas y Ambientales U.D.C.Aspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015427044.2025.pdf
Tamaño:
1.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Producción Animal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: