Efecto de la utilización de extracto de ajo (Allium sativum) como aditivo dietario en juveniles de híbrido de tilapia roja
dc.contributor.advisor | Landines Parra, Miguel Ángel | |
dc.contributor.advisor | Prieto Mojica, Camilo Alberto | |
dc.contributor.author | Espejo Cortés, Melissa | |
dc.contributor.orcid | Espejo Cortés, Melissa [0000000242314281] | spa |
dc.contributor.researchgroup | Fisiología de Peces | spa |
dc.date.accessioned | 2025-03-20T20:50:53Z | |
dc.date.available | 2025-03-20T20:50:53Z | |
dc.date.issued | 2025-03-06 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | El objetivo del trabajo fue evaluar el efecto de diferentes niveles de ajo (Allium sativum) en la dieta de juveniles de tilapia roja, sobre parámetros productivos, fisiológicos y de composición del músculo, bajo condiciones normales de cultivo y estrés térmico. Se realizaron dos experimentos. En el primero, con una duración de 46 días, se utilizaron 81 individuos distribuidos en nueve tanques (9 ind/tanque) con tres repeticiones por tratamiento, bajo un sistema de recirculación de agua. Los juveniles presentaron talla y peso promedio de 14,783 ± 0,725 cm y 63,843 ± 3,067 g. Fueron distribuidos en tres tratamientos: un control (0 g/kg de extracto de ajo) y dos niveles de inclusión de ajo (T1: 1 g/kg y T2: 2 g/kg). Al final del ensayo, fueron muestreados y sacrificados 4 individuos por tanque (12 por tratamiento), para evaluar los parámetros productivos, fisiológicos y de composición corporal. En el segundo experimento, con duración de 11 días, se utilizaron los animales restantes del primer experimento, los cuales tuvieron un peso promedio inicial de 130,878 ± 28,348 g y una longitud total promedio de 18,558 ± 1,242 cm. Se mantuvo la suplementación dietaría ya mencionada, al igual que la distribución de tratamiento y réplicas. El sistema de calefacción fue desconectado lo que generó una variación drástica de la temperatura del agua (20,07 ± 0,67 °C), considerada subóptima para tilapia. En el primer experimento no se observaron diferencias en ninguno de los parámetros evaluados. En el segundo experimento, no hubo diferencias en ganancia de longitud total (GLT), tasa de crecimiento específico (TCE), factor de conversión alimenticia (FCA) y tasa de supervivencia (TS). La ganancia de peso (GP) fue significativamente mayor en T2. La glucosa fue significativamente menor en T1, mientras que los triglicéridos y lípidos totales fueron mayores en T2. El cortisol fue menor en T1 y T2 comparado con el control. Además, hubo diferencias en HSP70, donde T1 mostró un aumento significativo, en comparación con el control, lo que sugiere una mitigación al estrés térmico. Se concluye que la suplementación con ajo no tuvo influencia significativa sobre el desempeño productivo y fisiológico de juveniles de tilapia roja, ni en la composición del producto final. Sin embargo, la suplementación con ajo parece ser una alternativa viable para mitigar el estrés térmico (Texto tomado de la fuente) | spa |
dc.description.abstract | The aim of this study was to evaluate the effect of different levels of garlic (Allium sativum) in the diet of juvenile red tilapia on productive, physiological, and muscle composition parameters under normal rearing conditions and thermal stress. Two experiments were conducted. In the first one, which lasted 46 days, 81 individuals were distributed across nine tanks (9 fish/tank), with three replicates per treatment under a recirculating water system. The juveniles had an average size and weight of 14.783 ± 0.725 cm and 63.843 ± 3.067 g, respectively. The fish were assigned to three treatments: a control (0 g/kg of garlic extract) and two levels of garlic inclusion (T1: 1 g/kg and T2: 2 g/kg). At the end of the trial, four individuals per tank (12 per treatment) were sampled and sacrificed to evaluate productive, physiological, and body composition parameters. In the second experiment, which lasted 11 days, the remaining fish from the first experiment were used. Their initial average weight was 130.878 ± 28.348 g, and their total length was 18.558 ± 1.242 cm. The dietary supplementation, as well as the treatment distribution and replicates, were maintained. The heating system was disconnected, leading to a drastic drop in water temperature (20.07 ± 0.67°C), which is considered suboptimal for tilapia. In the first experiment, no statistically significant differences were observed in any of the evaluated parameters. In the second experiment, no significant differences were found in total length gain (TLG), specific growth rate (SGR), feed conversion ratio (FCR), or survival rate (SR). However, weight gain (WG) was significantly higher in T2. Glucose levels were significantly lower in T1, while triglycerides and total lipids were higher in T2. Cortisol levels were lower in T1 and T2 compared to the control. Additionally, significant differences were observed in HSP70, where T1 showed a significant increase compared to the control, suggesting mitigation of thermal stress. It is concluded that garlic supplementation had no significant influence on the productive and physiological performance of juvenile red tilapia or on the composition of the final product. However, garlic supplementation appears to be a viable alternative for mitigating thermal stress. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Salud Animal o Magíster en Producción Animal | spa |
dc.description.researcharea | Acuicultura | spa |
dc.format.extent | xxi, 85 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87713 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina Veterinaria y de Zootecnia | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animal | spa |
dc.relation.references | Abdelwahab, A. M., El-Bahr, S. M., & Al-Khamees, S. (2020). Influence of Dietary Garlic (Allium sativum) and/or Ascorbic Acid on Performance, Feed Utilization, Body Composition and Hemato-Biochemical Parameters of Juvenile Asian Sea Bass (Lates calcarifer). Animals, 10(12), 2396. https://doi.org/10.3390/ani10122396 | spa |
dc.relation.references | Alem, W. T. (2024). Effect of herbal extracts in animal nutrition as feed additives. Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e24973 | spa |
dc.relation.references | Bañuelos-Vargas, I., Rodríguez-Montes de Oca, G. A., Martínez-Montaño, E., Pérez-Jiménez, A., Mendoza-Gamboa, O. A., Estrada-Godínez, J. A., & Hernández, C. (2021). Antioxidant and immune response of juvenile red tilapia (Oreochromis sp.) cultured at different densities in sea water with biofloc plus probiotics. Aquaculture, 544. https://doi.org/10.1016/j.aquaculture.2021.737112 | spa |
dc.relation.references | Bhadra, S., Krishnani, K. K., Sharma, A., Sahoo, U., & Majeedkutty, B. R. A. (2024). Curcuma longa and Allium sativum as health promoters in genetically improved farmed Tilapia (GIFT)-A green drug approach in hi-tech aquaculture using biofloc. Aquaculture, 582, 740516. https://doi.org/10.1016/j.aquaculture.2023.740516 | spa |
dc.relation.references | Bondad‐Reantaso, M. G., MacKinnon, B., Karunasagar, I., Fridman, S., Alday‐Sanz, V., Brun, E., Le Groumellec, M., Li, A., Surachetpong, W., Karunasagar, I., Hao, B., Dall’Occo, A., Urbani, R., & Caputo, A. (2023). Review of alternatives to antibiotic use in aquaculture. Reviews in Aquaculture, 15(4), 1421-1451. https://doi.org/10.1111/raq.12786 | spa |
dc.relation.references | Carrera-Quintana, S. C., Gentile, P., & Girón-Hernández, J. (2022). An overview on the aquaculture development in Colombia: Status, opportunities and challenges. Aquaculture, 561, 738583. https://doi.org/10.1016/j.aquaculture.2022.738583 | spa |
dc.relation.references | Dadgar, S., Seidgar, M., Nekuiefard, A., Valipour, A. R., Sharifian, M., & Hafezieh, M. (2019). Oral administration of garlic powder (Allium sativum) on growth performance and survival rate of Carassius auratus fingerlings. Iranian Journal of Fisheries Sciences, Online First. https://doi.org/10.22092/ijfs.2018.117478 | spa |
dc.relation.references | Erguig, M., Yahyaoui, A., Fekhaoui, M., & Dakki, M. (2015). The use of garlic in aquaculture. European Journal of Biotechnology and Bioscience, 3(8), 28-33. | spa |
dc.relation.references | FAO. (2024). The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. FAO. https://doi.org/10.4060/cd0683en | spa |
dc.relation.references | Gabriel, N. N., Wilhelm, M. R., Habte-Tsion, H.-M., Chimwamurombe, P., & Omoregie, E. (2019). Dietary garlic (Allium sativum) crude polysaccharides supplementation on growth, haematological parameters, whole body composition and survival at low water pH challenge in African catfish (Clarias gariepinus) juveniles. Scientific African, 5, 1-10. https://doi.org/10.1016/j.sciaf.2019.e00128 | spa |
dc.relation.references | Hamed, H. S., Ismal, S. M., & Faggio, C. (2021). Effect of allicin on antioxidant defense system, and immune response after carbofuran exposure in Nile tilapia, Oreochromis niloticus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 240. https://doi.org/10.1016/j.cbpc.2020.108919 | spa |
dc.relation.references | Irkin, L. C., Yiğit, M., Yilmaz, S., & Maita, M. (2014). Toxicological Evaluation of Dietary Garlic (Allium sativum) Powder in European Sea Bass Dicentrarchus labrax Juveniles. Food and Nutrition Sciences, 05(11), 989-996. https://doi.org/10.4236/fns.2014.511109 | spa |
dc.relation.references | Irkin, L. C., & Yiğit, M. (2016). The use of garlic (Allium sativum) meal as a natural feed supplement in diets for european seabass (Dicentrarchus labrax) juveniles. Journal of Aquaculture Engineering and Fisheries Research, 2(3), 128-141. https://doi.org/10.3153/jaefr16015 | spa |
dc.relation.references | Isroni, W., Bahri, A. S., & Maulida, N. (2021). Increased Immune Response of Carp (Cyprinus carpio L) by Giving Garlic (A. sativum) powder extract. IOP Conference Series: Earth and Environmental Science, 718(1), 0-6. https://doi.org/10.1088/1755-1315/718/1/012032 | spa |
dc.relation.references | Jabbi, A. M., Asiru, R. A., Ayeku, P. O., & Sani, K. A. (2023). Growth Performance of Clarias gariepinus Fingerlings Fed with Allium sativum Extract as Natural Feed Additives. International Journal of Science for Global Sustainability, 8(4), 7. https://doi.org/10.57233/ijsgs.v8i4.367 | spa |
dc.relation.references | Jabbi, A. M., Ayeku, P. O., Asiru, R. A., & Sani, K. A. (2023a). Effects of Garlic (Allium sativum) on Growth and Haematological Parameters in African Catfish (Clarias gariepinus) Juveniles. International Journal of Science for Global Sustainability, 8(4), 9. https://doi.org/10.57233/ijsgs.v8i4.364 | spa |
dc.relation.references | Kaur, H., & Ansal, M. (2020). Efficacy of garlic powder as a growth promoting feed additive for higher growth and improved flesh quality in an Indian Major Carp, Labeo rohita (Ham.) fingerlings. Journal of Entomology and Zoology Studies, 8, 25-29. | spa |
dc.relation.references | Latimer, G. W. & AOAC International (Eds.). (2019). Official methods of analysis of AOAC International. Vol. 3 (21st Edition). AOAC International. | spa |
dc.relation.references | Mahmoud, R., Aziza, A., Marghani, B., & Eltaysh, R. (2019). Influence of Ginger and Garlic Supplementation on Growth Performance, Whole Body Composition and Oxidative Stress in the Muscles of Nile Tilapia (O. Niloticus). Advances in Animal and Veterinary Sciences, 7(5). https://doi.org/10.17582/journal.aavs/2019/7.5.397.404 | spa |
dc.relation.references | Mosbah, A., Guerbej, H., Boussetta, H., Bouraoui, Z., & Banni, M. (2018). Protective Effects of Dietary Garlic Powder Against Cadmium-induced Toxicity in Sea Bass Liver: A Chemical, Biochemical, and Transcriptomic Approach. Biological Trace Element Research, 183(2), 370-378. https://doi.org/10.1007/s12011-017-1146-4 | spa |
dc.relation.references | Muahiddah, N., & Diamahesa, W. A. (2023). The use of garlic (Allium sativum) as an immunostimulant in aquaculture. Journal of Fish Health, 3(1), 11-18. https://doi.org/10.29303/jfh.v3i1.2751 | spa |
dc.relation.references | Naqi, J., Mateen, A., Hussain, D., Tahir, H., Hussain, S., & Tabasum, A. (2019). Effect of Allium sativum Supplemented Diets on Growth and Haematological Responses in Nile Tilapia (Oreochromis niloticus). Pakistan Journal of Zoology, 51. https://doi.org/10.17582/journal.pjz/2019.51.1.257.263 | spa |
dc.relation.references | Onomu, A. J. (2018). Growth and Haematological Response of Clarias gariepinus to Garlic (Allium sativum) Supplemented Diet. Sustainable Agriculture Research, 8(1), 67. https://doi.org/10.5539/sar.v8n1p67 | spa |
dc.relation.references | Öz, M., & Di̇kel, S. (2022). Effect of garlic (Allium sativum)—Supplemented diet on growth performance, body composition and fatty acid profile of rainbow trout (Oncorhynchus mykiss). Cellular and Molecular Biology, 68(1), 217-225. https://doi.org/10.14715/cmb/2022.68.1.26 | spa |
dc.relation.references | Öz, M., Inanan, B. E., Üstüner, E., Karagoz, B., & Dikel, S. (2024). Effects of dietary garlic (Allium sativum) oil on growth performance, haemato‐biochemical and histopathology of cypermethrin‐intoxicated Nile tilapia (Oreochromis niloticus). Veterinary Medicine and Science, 10(3), e1449. https://doi.org/10.1002/vms3.1449 | spa |
dc.relation.references | Pour, F., Maniat, M., Vahedasl, A., & Ghayem, S. (2014). Enhancement of growth performance and body composition in molly fish (Poecilia sphenops) associated with dietary intake of garlic (Allium sativum). International Journal of Biosciences, 5(8), 115-121. https://doi.org/10.12692/ijb/5.8.115-121 | spa |
dc.relation.references | Samson, J. S. (2019). Effect of garlic (Allium sativum) supplemented diets on growth, feed utilization and survival of red tilapia (Oreochromis sp.). International Journal of Agricultural Technology, 15(4), 637-644. | spa |
dc.relation.references | Sayed, A.-F. M. E.-. (2020). Tilapia culture (2nd ed). Academic press. | spa |
dc.relation.references | Thorat, T. N. R., & Rathod, S. H. (2022). Impact of Garlic (Allium sativum) on Glycogen Level of Fresh Water Fish Channa Striatus (Bloch, 1793). International Journal of Scientific Research in Science and Technology, 498-502. https://doi.org/10.32628/IJSRST229172 | spa |
dc.relation.references | Tiamiyu, A. M., Adedeji, O. B., & Olatoye, I. O. (2017). Growth Performance of the African catfish, Clarias gariepinus, Fed Varying Inclusion Levels of Allium sativum as Feed Additives. American Journal of Biotechnology and Bioinformatics, 1(1), 1-7. https://doi.org/10.28933/ajobb-2017-09-2801 | spa |
dc.relation.references | Valenzuela-Gutiérrez, R., Lago-Lestón, A., Vargas-Albores, F., Cicala, F., & Martínez-Porchas, M. (2021). Exploring the garlic (Allium sativum) properties for fish aquaculture. Fish Physiology and Biochemistry, 47(4), 1179-1198. https://doi.org/10.1007/s10695-021-00952-7 | spa |
dc.relation.references | Yones, A.-M. M. (2019). Incorporation of garlic meal (Allium sativum) as natural additive to enhance performance, immunity, gonad and larval survival of Nile tilapia (Oreochromis niloticus) broodstock. African J. Biol. Sci, 15(1), 117-135 | spa |
dc.relation.references | Yousefi, M., Vatnikov, Y. A., Kulikov, E. V., Plushikov, V. G., Drukovsky, S. G., Hoseinifar, S. H., & Van Doan, H. (2020). The protective effects of dietary garlic on common carp (Cyprinus carpio) exposed to ambient ammonia toxicity. Aquaculture, 526(March). https://doi.org/10.1016/j.aquaculture.2020.735400 | spa |
dc.relation.references | Zare, M., Tran, H. Q., Prokešová, M., & Stejskal, V. (2021). Effects of garlic Allium sativum powder on nutrient digestibility, haematology, and immune and stress responses in eurasian perch Perca fluviatilis juveniles. Animals, 11(9). https://doi.org/10.3390/ani11092735 | spa |
dc.relation.references | Zaefarian, A., Yeganeh, S., & Adhami, B. (2017). Dietary effects of garlic powder (Allium sativum) on growth, blood indices, carcass composition, and lysozyme activity in brown trout (Salmo caspius) and resistance against Yersinia ruckeri infection. Aquaculture International, 25(6), 1987-1996. https://doi.org/10.1007/s10499-017-0169-3 | spa |
dc.relation.references | Ahmed, I., & Al-Hamdani, A. (2022). Effect of Garlic on Blood Parameters in Thermal Stressed Common Carp Fish (Cyprinus Carpio L). Egyptian Journal of Veterinary Sciences, 53(4), 573-581. https://doi.org/10.21608/ejvs.2022.149872.1365 | spa |
dc.relation.references | Abdel-Daim, M. M., Abdelkhalek, N. K. M., & Hassan, A. M. (2015). Antagonistic activity of dietary allicin against deltamethrin-induced oxidative damage in freshwater Nile tilapia; Oreochromis niloticus. Ecotoxicology and Environmental Safety, 111, 146-152. https://doi.org/10.1016/j.ecoenv.2014.10.019 | spa |
dc.relation.references | Abdel-Tawwab, M., Khalil, R. H., Diab, A. M., Khallaf, M. A., Abdel-Razek, N., Abdel-Latif, H. M. R., & Khalifa, E. (2021). Dietary garlic and chitosan enhanced the antioxidant capacity, immunity, and modulated the transcription of HSP70 and Cytokine genes in Zearalenone-intoxicated European seabass. Fish and Shellfish Immunology, 113, 35-41. https://doi.org/10.1016/j.fsi.2021.03.012 | spa |
dc.relation.references | Basu, N., Todgham, A. E., Ackerman, P. A., Bibeau, M. R., & Nakano, K. (2002). Heat shock protein genes and their functional significance in fish. GENE International Journal on Genes and Genomes, 295, 173-183. | spa |
dc.relation.references | Chesti, A., Khati, A., Rikhi Chauhan, C. S., & Chauhan, R. S. (2018). Study on haematological parameters of fingerlings of Amur carp (Cyprinus carpio Haematopterus) fed with garlic (Allium sativum) incorporated diets. ~ 1407 ~ Journal of Pharmacognosy and Phytochemistry, 7(3), 1407-1410. | spa |
dc.relation.references | Cho, Y. S., Jeong, T. H., Choi, M.-J., Kim, J.-M., & Lim, H. K. (2021). Heat shock protein 70 gene expression and stress response of red-spotted (Epinephelus akaara) and hybrid (E. akaara female × E. lanceolatus male) groupers to heat and cold shock exposure. Fish Physiology and Biochemistry, 47(6), 2067-2080. https://doi.org/10.1007/s10695-021-00966-1 | spa |
dc.relation.references | Delgado, D. L. C., Caceres, L. L. C., Gómez, S. A. C., & Odio, A. D. (2023). Effect of dietary garlic (Allium sativum) on the zootechnical performance and health indicators of aquatic animals: A mini-review. Veterinary World, 965-976. https://doi.org/10.14202/vetworld.2023.965-976 | spa |
dc.relation.references | Jeyachandran, S., Chellapandian, H., Park, K., & Kwak, I. S. (2023). A Review on the Involvement of Heat Shock Proteins (Extrinsic Chaperones) in Response to Stress Conditions in Aquatic Organisms. Antioxidants, 12(7). https://doi.org/10.3390/antiox12071444 | spa |
dc.relation.references | Nobrega, R. O., Dafre, A. L., Corrêa, C. F., Mattioni, B., Batista, R. O., Pettigrew, J. E., & Fracalossi, D. M. (2022). Oxidative damage in Nile tilapia, Oreochromis niloticus, is mainly induced by water temperature variation rather than Aurantiochytrium sp. Meal dietary supplementation. Fish Physiology and Biochemistry, 48(1), 85-99. https://doi.org/10.1007/s10695-021-01025-5 | spa |
dc.relation.references | Pashaki, A., Ghasemi, M., Zorriehzahra, J., Sharifrohani, M., & Hosseini, S. (2020). Effects of dietary garlic (Allium sativum) extract on survival rate, blood and immune parameters changes and disease resistance of Common carp (Cyprinus carpio carpio Linnaeus, 1758) against Spring Viremia of Carp (SVC). Iranian Journal of Fisheries Sciences. https://doi.org/10.22092/ijfs.2020.120999 | spa |
dc.relation.references | Panase, P., Saenphet, S., & Saenphet, K. (2018). Biochemical and physiological responses of Nile tilapia Oreochromis niloticus Lin subjected to cold shock of water temperature. Aquaculture Reports, 11, 17-23. https://doi.org/10.1016/j.aqrep.2018.05.005 | spa |
dc.relation.references | Sun, Y., Wen, H., Tian, Y., Mao, X., Li, X., Li, J., Hu, Y., Liu, Y., Li, J., & Li, Y. (2021). HSP90 and HSP70 Families in Lateolabrax maculatus: Genome-Wide Identification, Molecular Characterization, and Expression Profiles in Response to Various Environmental Stressors. Frontiers in Physiology, 12, 784803. https://doi.org/10.3389/fphys.2021.784803 | spa |
dc.relation.references | Felicitta, J., Manju, R., Ronald, J., Thuraisami, S., Nagarajan, R., & Chelladurai, G. (2019). Effect of different concentrations of some phytoadditives (Allium sativum and Allium cepa) on growth, survival and hematological parameters in Tilapia (Oreochromis mossambicus) juveniles. The Israeli Journal of Aquaculture - Bamidgeh. | spa |
dc.relation.references | Gutiérrez-Leyva, Ranferi, Carmona-Gasca, Carlos, Ramírez-Ramírez, Jose, Rodríguez-Carpena, Javier, De-La-Cruz-Moreno, Carlos, & Escalera-Valente, Francisco. (2024). Efecto del ajo en polvo (Allium sativum) sobre el rendimiento de crecimiento, composición bioquímica, utilización de nutrientes, y supervivencia de la tilapia del Nilo (Oreochromis niloticus). Abanico Veterinario, 15. https://doi.org/10.21929/abavet2024.13 | spa |
dc.relation.references | Monobind Inc. (2019). Cortisol AccuBind ELISA Test System. Monobind Inc. | spa |
dc.relation.references | Mohammad, M. A. (2023). Effect of adding garlic Allium sativum powder in diet on hematological, biochemical and histopathological criteria of common carp Cyprinus carpio L. Iraqi Journal Of Agricultural Sciences, 54(4), 1040-1049. https://doi.org/10.36103/ijas.v54i4.1793 | spa |
dc.relation.references | Setijaningsih, L., Setiadi, E., Taufik, I., & Mulyasari. (2021). The effect of garlic Allium sativum addition in feed to the growth performance and immune response of tilapia Oreochromis niloticus. IOP Conference Series: Earth and Environmental Science, 744(1). https://doi.org/10.1088/1755-1315/744/1/012072 | spa |
dc.relation.references | Spinreact. (2013). Glucose-TR. Descargado 20 de agosto de 2020. | spa |
dc.relation.references | Spinreact. (2015). LDL Cholesterol D: Quantitative determination of LDL cholesterol BSIS51_LDLc-D_2015. Spinreact. | spa |
dc.relation.references | Spinreact. (2016). Lactato. Descargado 20 de agosto de 2020. | spa |
dc.relation.references | Spinreact. (2018a). HDL Cholesterol c: Quantitative determination of HDL cholesterol BSIS37_HDLc-02-2018. Spinreact. | spa |
dc.relation.references | Spinreact. (2018b). Triglicéridos. Descargado 28 de agosto de 2020. | spa |
dc.relation.references | Spinreact. (2021). Fish Heat shock protein 70 ELISA Kit Cat. No. MBS1603644. MyBioSource. | spa |
dc.relation.references | Abdel-Hakim, N., Lashin, M., Al-Azab, A.-D., & Ashry, A. (2010). Effect of fresh or dried garlic as a natural feed supplement on growth performance and nutrients utilization of the Nile Tilapia (Oreochromis niloticas). Egyptian Journal of Aquatic Biology and Fisheries, 14(2), 19-38. https://doi.org/10.21608/ejabf.2010.2058 | spa |
dc.relation.references | Abou El-Soud, N. (2010). Herbal medicine in ancient Egypt. Journal of Medicinal Plants Research, 4, 82-86. | spa |
dc.relation.references | Alemu, T. T. (2022). Effect of Food Additives on The Food Quality and Safety: A Review. International Journal of Diabetes & Metabolic Disorders, 7(2). https://doi.org/10.33140/IJDMD.07.02.06 | spa |
dc.relation.references | Altinteri̇m, B., & Aksu, Ö. (2020). Effects of Macerate Oil of Garlic (Allium sativum, Limne), Tunceli Garlic (Allium tuncelianum, Kollman) and Oninon (Allium cepa, Limne) on Antioxidant Enzyme Activities of Rainbow Trout (Oncorhynchus mykiss L.). Journal of Anatolian Environmental and Animal Sciences, 5(1), 61-65. https://doi.org/10.35229/jaes.669773 | spa |
dc.relation.references | Aly, S. M., Atti, A., & Fathi, M. (2008). Effect of Garlic on the Survival, Growth, Resistance and Quality of Oreochromis niloticus. International Symposium on Tilapia in Aquaculture, 8, 277.296. | spa |
dc.relation.references | Amani, D. K., Soltani, M., Rajabi Islami, H., & Kamali, A. (2020). The antifungal effects of Allium sativum and Artemisia sieberia extracts on hatching and survival rates of rainbow trout Oncorhynchus mykiss (Walbaum,1972) larvae. IFRO, 19(2), 669-680. | spa |
dc.relation.references | Amin, F., Milad, K., Sudagar, M., Iraei, M., & Morteza, D. (2010). Effect of garlic (Allium sativum) on growth factors, some hematological parameters and body compositions in rainbow trout (Oncorhynchus mykiss ). Aquaculture, Aquarium, Conservation & Legislation, 3(4), 317-323. | spa |
dc.relation.references | Ayoola, S. O., & Uzoamaka, O. O. (2013). Effect of Allium sativum on growth, feed utilization and haematological parameters of Clarias gariepinus juvenile. African Journal of Livestock Extension, 12(1), 1-7. | spa |
dc.relation.references | Azaza, M. S., Peres, H., & Turkmen, S. (2023). Editorial: Nutritional physiology of Aquacultured species. Frontiers in Physiology, 13, 1130143. https://doi.org/10.3389/fphys.2022.1130143 | spa |
dc.relation.references | Bharathi, S., Antony, C., Uma, A., Sudhan, C., Praveenraj, J., & Naduvathu, P. P. (2020). Potential Herbs as Eco-green Drugs for Aquaculture: A Review. Agricultural Reviews, Of. https://doi.org/10.18805/ag.r-2060 | spa |
dc.relation.references | Bhat, R. A. H., Mallik, S. K., Tandel, R. S., & Shahi, N. (2023). An Overview of Cold-Water Fish Diseases and Their Control Measures. En P. K. Pandey, N. Pandey, & Md. S. Akhtar (Eds.), Fisheries and Aquaculture of the Temperate Himalayas (pp. 255-283). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-8303-0_15 | spa |
dc.relation.references | Cain, K. (2022). The many challenges of disease management in aquaculture. Journal of the World Aquaculture Society, 53(6), 1080-1083. https://doi.org/10.1111/jwas.12936 | spa |
dc.relation.references | Caipang, C. M. A. (2020). Phytogenics in Aquaculture: A Short Review of Their Effects on Gut Health and Microflora in Fish. Philippine Journal of Fisheries, 27(2), 246-259. https://doi.org/10.31398/tpjf/27.2.2020-0006 | spa |
dc.relation.references | Chandra Mohana, N., Nethravathi, A. M., Achar, R. R., Anil Kumar, K. M., & Siddesha, J. M. (2023). Preparation of Feed and Characterization of Feed Supplemented with Phytocompounds. En J. Thomas & N. Amaresan (Eds.), Aquaculture Microbiology (pp. 167-179). Springer US. https://doi.org/10.1007/978-1-0716-3032-7_22 | spa |
dc.relation.references | Chbel, A., Elmakssoudi, A., Rey-Méndez, M., Barja, J. L., Soukri, A., & El Khalfi, B. (2022). Analysis of the chemical compositions of six essential oils and evaluation of their antioxidant and antibacterial activities against some drug-resistant bacteria in aquaculture. Journal of Herbmed Pharmacology, 11(3), 401-408. https://doi.org/10.34172/jhp.2022.46 | spa |
dc.relation.references | Diab, A. S., Aly, S. M., John, G., Abde-Hadi, Y., & Mohammed, M. F. (2008). Effect of garlic, black seed and Biogen as immunostimulants on the growth and survival of Nile tilapia, Oreochromis niloticus (Teleostei: Cichlidae), and their response to artificial infection with Pseudomonas fluorescens. African Journal of Aquatic Science, 33(1), 63-68. https://doi.org/10.2989/AJAS.2007.33.1.7.391 | spa |
dc.relation.references | Edeh, I. C., Olise, C. S., Ononye, B. U., Ikechukwu, C. C., Nwankwo, C. G., & Okoli, I. K. (2022). Nutraceutical Role of Honey and Garlic (Allium sativum) on Haematological and Plasma-Antioxidant Profile of African Catfish (Clarias gariepinus). Asian Journal of Biology, 43-52. https://doi.org/10.9734/ajob/2022/v16i3305 | spa |
dc.relation.references | El-Barbary, M. I. (2016). Detoxification and antioxidant effects of garlic and curcumin in Oreochromis niloticus injected with aflatoxin B1 with reference to gene expression of glutathione peroxidase (GPx) by RT-PCR. Fish Physiology and Biochemistry, 42(2), 617-629. https://doi.org/10.1007/s10695-015-0164-4 | spa |
dc.relation.references | Elumalai, P., Kurian, A., Lakshmi, S., Faggio, C., Esteban, M. A., & Ringø, E. (2020). Herbal Immunomodulators in Aquaculture. Reviews in Fisheries Science and Aquaculture, 1-25. https://doi.org/10.1080/23308249.2020.1779651 | spa |
dc.relation.references | Esmaeili, N., Kenari, A. A., & Rombenso, A. (2017). Immunohematological status under acute ammonia stress of juvenile rainbow trout (Oncorhynchus mykiss Walbaum, 1792) fed garlic (Allium sativum) powder-supplemented meat and bone meal-based feeds. Comparative Clinical Pathology, 26(4), 853-866. https://doi.org/10.1007/s00580-017-2457-8 | spa |
dc.relation.references | Etyemez, M., Balcázar, J. L., Demirkale, İ., & Dikel, S. (2018). Effects of garlic-supplemented diet on growth performance and intestinal microbiota of rainbow trout (Oncorhynchus mykiss). Aquaculture, 486, 170-174. https://doi.org/10.1016/j.aquaculture.2017.12.022 | spa |
dc.relation.references | Feng, Y., Xu, B., ElGasim A. Yagoub, A., Ma, H., Sun, Y., Xu, X., Yu, X., & Zhou, C. (2021). Role of drying techniques on physical, rehydration, flavor, bioactive compounds and antioxidant characteristics of garlic. Food Chemistry, 343. https://doi.org/10.1016/j.foodchem.2020.128404 | spa |
dc.relation.references | Gong, H., Wang, T., Hua, Y., Wang, W.-D., Shi, C., Xu, H.-X., Li, L.-L., Zhang, D.-P., Sun, Y.-E., & Yu, N.-N. (2022). Garlic varieties and drying methods affected the physical properties, bioactive compounds and antioxidant capacity of dried garlic powder. CyTA - Journal of Food, 20(1), 111-119. https://doi.org/10.1080/19476337.2022.2093400 | spa |
dc.relation.references | Hardy, R. W., Kaushik, S. J., Mai, K., & Bai, S. C. (2022). Fish nutrition—History and perspectives. En Fish Nutrition (pp. 1-16). Elsevier. https://doi.org/10.1016/B978-0-12-819587-1.00006-9 | spa |
dc.relation.references | Hossain, Md. S., Small, B. C., Kumar, V., & Hardy, R. (2023). Utilization of functional feed additives to produce cost‐effective, ecofriendly aquafeeds high in plant‐based ingredients. Reviews in Aquaculture, 16(1), 121-153. https://doi.org/10.1111/raq.12824 | spa |
dc.relation.references | Huang, X., Chen, F., Guan, J., Xu, C., Li, Y., & Xie, D. (2022). Beneficial effects of re-feeding high α-linolenic acid diets on the muscle quality, cold temperature and disease resistance of tilapia. Fish & Shellfish Immunology, 126, 303-310. https://doi.org/10.1016/j.fsi.2022.05.053 | spa |
dc.relation.references | Huang, Yao, C., Liu, Y., Xu, N., Yin, Z., Xu, W., Miao, Y., Mai, K., & Ai, Q. (2020). Dietary Allicin Improved the Survival and Growth of Large Yellow Croaker (Larimichthys crocea) Larvae via Promoting Intestinal Development, Alleviating Inflammation and Enhancing Appetite. Frontiers in Physiology, 11, 587674. https://doi.org/10.3389/fphys.2020.587674 | spa |
dc.relation.references | Hudecová, P., Koščová, J., & Hajdučková, V. (2023). Phytobiotics and Their Antibacterial Activity Against Major Fish Pathogens. A Review. Folia Veterinaria, 67(2), 51-61. https://doi.org/10.2478/fv-2023-0017 | spa |
dc.relation.references | Jahanbakhshi, A., Pourmozaffar, S., Adeshina, I., Vayghan, A. H., & Reverter, M. (2022). Effect of garlic (Allium sativum) extract on growth, enzymological and biochemical responses and immune‐related gene expressions in giant freshwater prawn (Macrobrachium rosenbergii). Journal of Animal Physiology and Animal Nutrition, 106(4), 947-956. https://doi.org/10.1111/jpn.13718 | spa |
dc.relation.references | Khan, N. A., Ninawe, A. S., Sharma, J. G., & Chakrabarti, R. (2020). Effect of light intensity on survival, growth and physiology of rohu, Labeo rohita (Cyprinidae) fry. International Journal of Radiation Biology, 96(4), 552-559. https://doi.org/10.1080/09553002.2020.1704905 | spa |
dc.relation.references | Kim, S. M., JUN, L.-J., Yeo, I.-K., Jeon, Y.-J., Lee, K.-J., JEONG, H.-D., & JEONG, J.-B. (2014). Effects of Dietary Supplementation with Garlic Extract on Immune Responses and Diseases Resistance of Olive Flounder, Paralichthys olivaceus. Journal of fish pathology, 27(1), 35-45. https://doi.org/10.7847/JFP.2014.27.1.035 | spa |
dc.relation.references | Kuralkar, P., & Kuralkar, S. V. (2021). Role of herbal products in animal production – An updated review. Journal of Ethnopharmacology, 278. https://doi.org/10.1016/j.jep.2021.114246 | spa |
dc.relation.references | Lidiková, J., Čeryová, N., Tóth, T., Musilová, J., Vollmannová, A., Mammadova, K., & Ivanišová, E. (2023). Garlic (Allium sativum L.): Characterization of Bioactive Compounds and Related Health Benefits. En E. Ivanišová (Ed.), Herbs and Spices—New Advances. IntechOpen. https://doi.org/10.5772/intechopen.108844 | spa |
dc.relation.references | Limbu, S. M., Zhou, L., Sun, S.-X., Zhang, M.-L., & Du, Z.-Y. (2018). Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environment International, 115, 205-219. https://doi.org/10.1016/j.envint.2018.03.034 | spa |
dc.relation.references | Lingaraju, N., Malik, M. A., Singh, S. K., & Sukham, M. (2022). Vulnerability and Mitigation Approach to Nutritional Pathology for Sustainable Fish Growth in Changing Climatic Conditions. En A. Sinha, S. Kumar, & K. Kumari (Eds.), Outlook of Climate Change and Fish Nutrition (pp. 233-263). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5500-6_17 | spa |
dc.relation.references | Lu, Y. P., Zheng, P. H., Zhang, Z. L., Li, J. T., Li, J. J., Li, T., Wang, X., Xu, J. R., Wang, D. M., Xian, J. A., & Zhang, X. X. (2023). Effects of dietary Radix bupleuri root extract on the growth, muscle composition, histology, immune responses and microcystin-LR stress resistance of juvenile red claw crayfish (Cherax quadricarinatus). Aquaculture Reports, 33. https://doi.org/10.1016/j.aqrep.2023.101822 | spa |
dc.relation.references | Luis, A. I. S., Campos, E. V. R., De Oliveira, J. L., Guilger-Casagrande, M., De Lima, R., Castanha, R. F., De Castro, V. L. S. S., & Fraceto, L. F. (2020). Zein Nanoparticles Impregnated with Eugenol and Garlic Essential Oils for Treating Fish Pathogens. ACS Omega, 5(25), 15557-15566. https://doi.org/10.1021/acsomega.0c01716 | spa |
dc.relation.references | Lushchak, V. I. (2016). Contaminant-induced oxidative stress in fish: A mechanistic approach. Fish Physiology and Biochemistry, 42(2), 711-747. https://doi.org/10.1007/s10695-015-0171-5 | spa |
dc.relation.references | Mair, G. C., Halwart, M., Derun, Y., & Costa‐Pierce, B. A. (2023). A decadal outlook for global aquaculture. Journal of the World Aquaculture Society, 54(2), 196-205. https://doi.org/10.1111/jwas.12977 | spa |
dc.relation.references | Mazzei, L., Bel蒒 Ruiz-Roso, M., De Las Heras, N., Ballesteros, S., Torrespalazzolo, C., Ferder, L., Beatriz Camargo, A., & Manucha, W. (2020). Allicin neuroprotective effect during oxidative/inflammatory injury involves AT1-Hsp70-iNOS counterbalance axis. BIOCELL, 44(4), 671-681. https://doi.org/10.32604/biocell.2020.014175 | spa |
dc.relation.references | Mohebbi, A., Nematollahi, A., Dorcheh, E. E., & Asad, F. G. (2011). Influence of dietary garlic (Allium sativum) on the antioxidative status of rainbow trout (Oncorhynchus mykiss). Aquaculture Research, 43(8), 1184-1193. https://doi.org/10.1111/j.1365-2109.2011.02922.x | spa |
dc.relation.references | Moreira-de-Sousa, C., De Souza, R. B., & Fontanetti, C. S. (2018). HSP70 as a Biomarker: An Excellent Tool in Environmental Contamination Analysis—a Review. Water, Air, & Soil Pollution, 229(8), 264. https://doi.org/10.1007/s11270-018-3920-0 | spa |
dc.relation.references | Mukherjee, A., Bhowmick, A. R., Mukherjee, J., & Moniruzzaman, M. (2019). Physiological response of fish under variable acidic conditions: A molecular approach through the assessment of an eco-physiological marker in the brain. Environmental Science and Pollution Research, 26(23), 23442-23452. https://doi.org/10.1007/s11356-019-05602-3 | spa |
dc.relation.references | Mwale, M. M. (2023). Health Risk of Food Additives: Recent Developments and Trends in the Food Sector. En Health Risks of Food Additives—Recent Developments and Trends in Food Sector. IntechOpen. https://doi.org/10.5772/intechopen.109484 | spa |
dc.relation.references | Nasir, A., Fatma, G., Neshat, N., & Aftab, M. (2021). Pharmacological and therapeutic attributes of garlic (Allium sativum Linn.) with special reference to Unani medicine-A review. 6-09. | spa |
dc.relation.references | Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., Little, D. C., Lubchenco, J., Shumway, S. E., & Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(7851), 551-563. https://doi.org/10.1038/s41586-021-03308-6 | spa |
dc.relation.references | Nóbrega, V. S. L. D., Rombenso, A. N., Pedrosa, V. F., Romano, L. A., Sampaio, L. A., & Rodrigues, R. V. (2022). Dietary garlic supplementation positively affects the immunological system of juvenile cobia Rachycentron canadum reared in net pens during winter. https://doi.org/10.21203/rs.3.rs-1942686/v1 | spa |
dc.relation.references | Okoro, B. C., Dokunmu, T. M., Okafor, E., Sokoya, I. A., Israel, E. N., Olusegun, D. O., Bella-Omunagbe, M., Ebubechi, U. M., Ugbogu, E. A., & Iweala, E. E. J. (2023). The ethnobotanical, bioactive compounds, pharmacological activities and toxicological evaluation of garlic (Allium sativum): A review. Pharmacological Research - Modern Chinese Medicine, 8, 100273. https://doi.org/10.1016/j.prmcm.2023.100273 | spa |
dc.relation.references | Paul, S., Rahman, M., Salam, M., Surovy, M., & Islam, T. (2022). Dietary Inclusion of Garlic (Allium Sativum) Extract Enhances Growth and Resistance of Rohu (Labeo Rohita) Against Motile Aeromonas Septicaemia. Annals of Bangladesh Agriculture, 25(1), 11-22. https://doi.org/10.3329/aba.v25i1.58151 | spa |
dc.relation.references | Pereira, L. A., Weiss, L. A., Besen, M. A., & Marengoni, N. G. (2016). Use of plant extracts and their prophylactic or therapeutic properties in the fish production. Scientia Agraria Paranaensis, 15(4), 373-380. https://doi.org/10.1818/sap.v15i4.12752 | spa |
dc.relation.references | Phuc Khang, L. T., Vinh, T., Le Tho, L. T., Tong, N. X., & Phuong Dung, T. T. (2022). Use of dietary garlic (Allium sativum L.) and Vietnamese (Elsholtzia ciliata extract for prevention of Bacillary Necrosis in Pangasius (BNP) in striped catfish (Pangasianodon hypophthalmus). Academia Journal of Biology, 44(4), 65-76. https://doi.org/10.15625/2615-9023/17534 | spa |
dc.relation.references | Rachmawati, A., Rosidah, ., Anna, Z., & Lili, W. (2022). Effectiveness of Adding Garlic Extract (Allium sativum) in Commercial Feed to the Resistance of Nilem Fish (Osteochillus hasselti) Infected with Aeromonas hydrophila Bacteria. Asian Journal of Fisheries and Aquatic Research, 37-45. https://doi.org/10.9734/ajfar/2022/v19i130467 | spa |
dc.relation.references | Rahman, Z., Afsheen, Z., Hussain, A., & Khan, M. (2022). Antibacterial and Antifungal Activities of Garlic (Allium sativum) against Common Pathogens. BioScientific Review, 4(2), 30-40. https://doi.org/10.32350/BSR.42.02 | spa |
dc.relation.references | Rigos, G., & Kogiannou, D. (2023). Antimicrobial drugs in aquaculture: Use and abuse. En Present Knowledge in Food Safety (pp. 142-161). Elsevier. https://doi.org/10.1016/B978-0-12-819470-6.00027-5 | spa |
dc.relation.references | Rouf, R., Uddin, S. J., Sarker, D. K., Islam, M. T., Ali, E. S., Shilpi, J. A., Nahar, L., Tiralongo, E., & Sarker, S. D. (2020). Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends in Food Science & Technology, 104, 219-234. https://doi.org/10.1016/j.tifs.2020.08.006 | spa |
dc.relation.references | Shehata, A. M., Abdel-Moneim, A.-M. E., Gewida, A. G. A., Abd El-Hack, M. E., Alagawany, M., & Naiel, M. A. E. (2022). Phytogenic Substances: A Promising Approach Towards Sustainable Aquaculture Industry. En M. E. Abd El-Hack & M. Alagawany (Eds.), Antibiotic Alternatives in Poultry and Fish Feed (pp. 160-193). Bentham Science Publishers. https://doi.org/10.2174/9789815049015122010014 | spa |
dc.relation.references | Simorangkir, R., Sarjito, S., & Haditomo, A. H. C. (2020). Pengaruh ekstrak Wawang Putih (Allium sativum) terhadap tingkat pencegahan infeksi bakteri Vibrio harveyi dan kelulushidupan ikan Nila Salin (Oreochromis niloticus). Sains Akuakultur Tropis, 4(2), 139-147. https://doi.org/10.14710/sat.v4i2.4576 | spa |
dc.relation.references | Souza, C. de F., Baldissera, M. D., Baldisserotto, B., Heinzmann, B. M., Martos-Sitcha, J. A., & Mancera Romero, J. M. (2019). Essential Oils as Stress-Reducing Agents for Fish Aquaculture: A Review. Frontiers in Physiology, 10(785). https://doi.org/10.3389/fphys.2019.00785 | spa |
dc.relation.references | Stephen, J., Mukherjee, S., Lekshmi, M., & Kumar, S. H. (2023). Diseases and Antimicrobial Use in Aquaculture. En M. P. Mothadaka, M. Vaiyapuri, M. Rao Badireddy, C. Nagarajrao Ravishankar, R. Bhatia, & J. Jena (Eds.), Handbook on Antimicrobial Resistance (pp. 1-23). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-9723-4_15-1 | spa |
dc.relation.references | Stevanović, Z. D., Bošnjak-Neumüller, J., Pajić-Lijaković, I., Raj, J., & Vasiljević, M. (2018). Essential Oils as Feed Additives-Future Perspectives. Molecules (Basel, Switzerland), 23(7), 1717. https://doi.org/10.3390/molecules23071717 | spa |
dc.relation.references | Sunanta, P., Kontogiorgos, V., Pankasemsuk, T., Jantanasakulwong, K., Rachtanapun, P., Seesuriyachan, P., & Sommano, S. R. (2023). The nutritional value, bioactive availability and functional properties of garlic and its related products during processing. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1142784 | spa |
dc.relation.references | Sutili, F. J., Gatlin, D. M., Heinzmann, B. M., & Baldisserotto, B. (2017). Plant essential oils as fish diet additives: Benefits on fish health and stability in feed. Reviews in Aquaculture, 3, 1-11. https://doi.org/10.1111/raq.12197 | spa |
dc.relation.references | Szuba-Trznadel, A., & Rząsa, A. (2023). Feed Additives of Bacterial Origin as an Immunoprotective or Immunostimulating Factor – A Review. Annals of Animal Science, 23(4), 1009-1020. https://doi.org/10.2478/aoas-2023-0021 | spa |
dc.relation.references | Tudu, C. K., Dutta, T., Ghorai, M., Biswas, P., Samanta, D., Oleksak, P., Jha, N. K., Kumar, M., Radha, Proćków, J., Pérez De La Lastra, J. M., & Dey, A. (2022). Traditional uses, phytochemistry, pharmacology and toxicology of garlic (Allium sativum), a storehouse of diverse phytochemicals: A review of research from the last decade focusing on health and nutritional implications. Frontiers in Nutrition, 9, 949554. https://doi.org/10.3389/fnut.2022.929554 | spa |
dc.relation.references | Upadhaya, S. D., & Kim, I. H. (2017). Efficacy of Phytogenic Feed Additive on Performance, Production and Health Status of Monogastric Animals – A Review. Annals of Animal Science, 17(4), 929-948. https://doi.org/10.1515/aoas-2016-0079 | spa |
dc.relation.references | U.S. Department of Agriculture Research Service, A. (2018). USDA Food and Nutrient Database for Dietary Studies 2015-2016. Food Surveys Research Group. http://www.ars.usda.gov/nea/bhnrc/fsrg | spa |
dc.relation.references | Verma, T., Aggarwal, A., Dey, P., Chauhan, A. K., Rashid, S., Chen, K.-T., & Sharma, R. (2023). Medicinal and therapeutic properties of garlic, garlic essential oil, and garlic-based snack food: An updated review. Frontiers in Nutrition, 10, 1120377. https://doi.org/10.3389/fnut.2023.1120377 | spa |
dc.relation.references | Ward, K. R., & Matejtschuk, P. (2021). The Principles of Freeze-Drying and Application of Analytical Technologies. En W. F. Wolkers & H. Oldenhof (Eds.), Cryopreservation and Freeze-Drying Protocols (Vol. 2180, pp. 99-127). Springer US. https://doi.org/10.1007/978-1-0716-0783-1_3 | spa |
dc.relation.references | Yang, C., Chowdhury, M. A., Huo, Y., & Gong, J. (2015). Phytogenic Compounds as Alternatives to In-Feed Antibiotics: Potentials and Challenges in Application. Pathogens, 4(1), 137-156. https://doi.org/10.3390/pathogens4010137 | spa |
dc.relation.references | Zhao, K., Zhou, G., Liu, Y., Zhang, J., Chen, Y., Liu, L., & Zhang, G. (2023). HSP70 Family in Cancer: Signaling Mechanisms and Therapeutic Advances. Biomolecules, 13(4), 601. https://doi.org/10.3390/biom13040601 | spa |
dc.relation.references | Zheng, W., Xu, X., Chen, Y., Wang, J., Zhang, T., Zechen, E., Chen, S., & Liu, Y. (2023). Genome-Wide Identification, Molecular Characterization, and Involvement in Response to Abiotic and Biotic Stresses of the HSP70 Gene Family in Turbot (Scophthalmus maximus). International Journal of Molecular Sciences, 24(7). https://doi.org/10.3390/ijms24076025 | spa |
dc.relation.references | Kiron, V. (2012). Fish immune system and its nutritional modulation for preventive health care. Animal Feed Science and Technology, 173(1-2), 111-133. https://doi.org/10.1016/j.anifeedsci.2011.12.015 | spa |
dc.relation.references | Mahmoud, H. K., Reda, F. M., Alagawany, M., Farag, M. R., & El-Naggar, K. (2023). The role of dietary chia seed powder in modulating cold stress-related impacts in Nile tilapia, Oreochromis niloticus. Aquaculture, 567, 739246. https://doi.org/10.1016/j.aquaculture.2023.739246 | spa |
dc.relation.references | Mahmoud, M. A., Kassab, M. S., Zaineldin, A. I., Amer, A. A., Gewaily, M. S., Darwish, S., & Dawood, M. A. O. (2023a). Mitigation of Heat Stress in Striped Catfish (Pangasianodon hypophthalmus) by Dietary Allicin: Exploring the Growth Performance, Stress Biomarkers, Antioxidative, and Immune Responses. Aquaculture Research, 2023, 1-16. https://doi.org/10.1155/2023/8292007 | spa |
dc.relation.references | Maulu, S., Hasimuna, O. J., Haambiya, L. H., Monde, C., Musuka, C. G., Makorwa, T. H., Munganga, B. P., Phiri, K. J., & Nsekanabo, J. D. (2021). Climate Change Effects on Aquaculture Production: Sustainability Implications, Mitigation, and Adaptations. Frontiers in Sustainable Food Systems, 5, 609097. https://doi.org/10.3389/fsufs.2021.609097 | spa |
dc.relation.references | Menon, S. V., Kumar, A., Middha, S. K., Paital, B., Mathur, S., Johnson, R., Kademan, A., Usha, T., Hemavathi, K. N., Dayal, S., Ramalingam, N., Subaramaniyam, U., Sahoo, D. K., & Asthana, M. (2023). Water physicochemical factors and oxidative stress physiology in fish, a review. Frontiers in Environmental Science, 11, 1240813. https://doi.org/10.3389/fenvs.2023.1240813 | spa |
dc.relation.references | Overstreet, R. M. (2021). Parasitic Diseases of Fishes and Their Relationship with Toxicants and Other Environmental Factors. En J. A. Couch & J. W. Fournie (Eds.), PATHOBIOLOGY of MARINE and ESTUARINE ORGANISMS (1.a ed., pp. 111-156). CRC Press. https://doi.org/10.1201/9781003069058-5 | spa |
dc.relation.references | Phrompanya, P., Panase, P., Saenphet, S., & Saenphet, K. (2021). Histopathology and oxidative stress responses of Nile tilapia Oreochromis niloticus exposed to temperature shocks. Fisheries Science, 87(4), 491-502. https://doi.org/10.1007/s12562-021-01511-y | spa |
dc.relation.references | Salomão, R. A., Santos, V., & Mareco, E. (2017). Influence of rearing temperature on muscle growth and adipose tissue in Nile tilapia (Oreochromis niloticus) strains. Acta Scientiarum. Animal Sciences, 40, 35686. https://doi.org/10.4025/actascianimsci.v40i0.35686 | spa |
dc.relation.references | Shi, G. C., Dong, X. H., Chen, G., Tan, B. P., Yang, Q. H., Chi, S. Y., & Liu, H. Y. (2015). Physiological responses and HSP70 mRNA expression of GIFT strain of Nile tilapia (Oreochromis niloticus) under cold stress. Aquaculture Research, 46(3), 658-668. https://doi.org/10.1111/are.12212 | spa |
dc.relation.references | Singh, S. P., Ahmad, T., Sharma, J. G., & Chakrabarti, R. (2021). Effect of temperature on food consumption, immune system, antioxidant enzymes, and heat shock protein 70 of Channa punctata (Bloch, 1793). Fish Physiology and Biochemistry, 47(1), 79-91. https://doi.org/10.1007/s10695-020-00896-4 | spa |
dc.relation.references | Yang, H., Munyaradzia, H. B., Zhu, W., Wang, L., & Dong, Z. (2024). Effects of Cold Stress on Physiological Responses, Histological Morphology, Muscle Compositions and Intestinal Microorganisms of Red Tilapia. https://doi.org/10.2139/ssrn.4777230 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Oreochromis niloticus | spa |
dc.subject.agrovoc | Allium sativum | eng |
dc.subject.agrovoc | Estrés térmico | spa |
dc.subject.agrovoc | heat stress | eng |
dc.subject.agrovoc | Dieta básica | spa |
dc.subject.agrovoc | basic diets | eng |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::636 - Producción animal | spa |
dc.subject.proposal | Allium sativum | spa |
dc.subject.proposal | Tilapia roja | spa |
dc.subject.proposal | Aditivos dietarios | spa |
dc.subject.proposal | Estrés térmico | spa |
dc.subject.proposal | Parámetros productivos | spa |
dc.subject.proposal | Red tilapia | eng |
dc.subject.proposal | Dietary additives | eng |
dc.subject.proposal | Thermal stress | eng |
dc.subject.proposal | Productive parameters | eng |
dc.title | Efecto de la utilización de extracto de ajo (Allium sativum) como aditivo dietario en juveniles de híbrido de tilapia roja | spa |
dc.title.translated | Effect of using garlic extract (Allium sativum) as a dietary additive in juvenile red tilapia hybrids | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
oaire.fundername | Universidad de Ciencias Aplicadas y Ambientales U.D.C.A | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1015427044.2025.pdf
- Tamaño:
- 1.21 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Producción Animal
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: