Technical feasibility of recovering degraded GTD 111 blades in service through heat treatment and additive manufacturing

dc.contributor.advisorToro Betancur, Alejandro
dc.contributor.advisorGiraldo Barrada, Jorge Enrique
dc.contributor.authorLeón-Henao, Henry
dc.contributor.googlescholarHenry León-Henaospa
dc.contributor.orcidLeón Henao, Henry [0000-0002-1582-9386]spa
dc.contributor.orcidGiraldo Barrada, Jorge Enrique [0000-0001-6614-0661]spa
dc.contributor.researchgroupGrupo de Soldaduraspa
dc.contributor.researchgroupGrupo de Investigación en Corrosión, Tribologia y Energíaspa
dc.date.accessioned2022-11-09T17:04:23Z
dc.date.available2022-11-09T17:04:23Z
dc.date.issued2022-08-08
dc.descriptionilustraciones, diagramasspa
dc.description.abstractRepair components of the hot gas path is crucial for economic reasons in gas turbine engines. In this work, a characterization of deposits applied by Laser Powder Bed Fusion (LPBF) and Laser Powder Directed Energized Deposition (LP-DED) on a 1st stage blade made of GTD 111 DS superalloy were carried out. The 1st stage blades are damaged in operation due to collision of external objects, development of thermal fatigue cracks and hightemperature erosion, which drastically reduces their lifetime. The process parameters for LDED and L-PBF were established as a function of the integrity and geometry of the deposits. René 65 powder was used for both processes without preheating. Visual inspection and macro etching were used to evaluate the weld metal deposits soundness. Optical microscopy and scanning electron microscopy were used to examine the microstructure of the deposited layers in the cross-section and EBSD allowed studying the crystallographic texture. Compared to conventional processes, L-PBF and LP-DED provide crack-free deposits and better control of shape and dimensions, reducing machining time. In particular, the L-PBF process has greater precision, which makes it ideal for replicating the blade’s cooling holes. The study demonstrates the feasibility to restore dimensions of a tip blades and illustrates the significant potential of Additive Manufacturing (AM) utilizing powders of high γ' avoiding hot cracking.eng
dc.description.abstractLa reparación de los componentes de la ruta del gas caliente es crucial por razones económicas en las turbinas a gas. En este trabajo se realizó una caracterización de los depósitos aplicados por Laser Powder Bed Fusion (L-PBF) y Laser Powder Directed Energized Deposition (LP-DED) sobre un álabe de primera etapa fabricado con la superaleación GTD 111 DS. Al deteriorarse en funcionamiento debido a la colisión de objetos externos, el crecimiento de grietas por fatiga térmica y la erosión por alta temperatura, se reduce drásticamente su vida útil. Los parámetros del proceso para L-DED y L-PBF se establecieron en función de la integridad y la geometría de los depósitos. Para ambos procesos se utilizó polvo René 65 sin precalentamiento. Se utilizó inspección visual y análisis metalográfico para evaluar la solidez de los depósitos de manufactura aditiva. Se usó microscopía óptica y microscopía electrónica de barrido para examinar la microestructura de las capas depositadas en la sección transversal y el análisis de EBSD permitió estudiar la textura cristalográfica. En comparación con los procesos convencionales, L-PBF y LP-DED proporcionan depósitos sin grietas y un mejor control de la forma y las dimensiones, lo que reduce el tiempo de mecanizado. En particular, el proceso L-PBF tiene una mayor precisión, lo que lo hace ideal para replicar los orificios de enfriamiento de la hoja. El estudio demuestra la viabilidad de restaurar las dimensiones de los álabes en el borde chirriante e ilustra el importante potencial de la fabricación aditiva (FA) que utiliza polvos de alto contenido de γ' evitando el agrietamiento en caliente. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Ingeniería Mecánicaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.researchareaSoldadura. Manufactura aditivaspa
dc.format.extent152 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps:/repositorio.una.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82672
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesA. Lou, C. Grosvenor, Selective laser sintering, birth of an industry, http://www.me.utexas.edu/news/news/selective-laser-sintering-birth-of-an-industry. Accessed 12//2021., (2012).spa
dc.relation.referencesAmerican Society for Testing and Materials, “Standard Guide for Directed Energy Deposition of Metals, ASTM F3187,” 2016.spa
dc.relation.referencesAmerican Society for Testing and Materials, “Standard Terminology for Nondestructive Examinations, ASTM E1316,” vol. 02, no. June 2014. p. 39, 2019.spa
dc.relation.referencesAmerican Welding Society. (2010). AWS A3. 0M/A3. 0: 2010: standard welding terms and definition and thermo-mechanical fatigue of CM247LC-DS. Warrendale, PA, USA: TMS, 1996. p.319. Astm, I. (2015).spa
dc.relation.referencesASTM 52900-15 standard terminology for additive manufacturing—general principles—terminology. ASTM International, West Conshohocken, PA, 3(4), 5.spa
dc.relation.referencesAthiroj, A., Wangyao, P., Hartung, F., & Lothongkum, G. (2018). Low heat input welding of nickel superalloy GTD-111 with Inconel 625 filler metal. Materials Testing, 60(1), 22-30.spa
dc.relation.referencesA. Willis and D. McCartney, “A Comparative Study of Solidification Features in Nickel-Base Superalloy: Microstructural Evolution and Microsegregation, Mat. Sci. & Eng, Vol. A 145, No.2, pp. 223-232, (1991).spa
dc.relation.referencesBalikci, E., Raman, A., & Mirshams, R. A. (1997). Influence of various heat treatments on the microstructure of polycrystalline IN738LC. Metallurgical and Materials Transactions A, 28(10), 1993-2003.spa
dc.relation.referencesBasak, A., (2017). Advanced Powder Bed Fusion-Based Additive manufacturing with Turbine Engine Hot-Section Alloys through Scanning Laser Epitaxy. Dissertation.spa
dc.relation.referencesBerahmand, M., & Sajjadi, S. A. (2012). An investigation on the coarsening behavior of γ′ precipitate in GTD-111 Ni-base superalloy. Phase Transitions, 85(1-2), 1-12.spa
dc.relation.referencesBerahmand, M., & Sajjadi, S. A. (2013). Morphology evolution of γ′ precipitates in GTD-111 Ni-based superalloy with heat treatment parameters. International journal of materials research, 104(3), 275-280.spa
dc.relation.referencesBeretta, S., & Romano, S. (2017). A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. International Journal of Fatigue, 94, 178-191.spa
dc.relation.referencesBiondo, C., Page, J., Samuelson, J., Fuchs, G., Stannley, T., Wlodek, R. (2016) US 2010/0080729 A1. Kansas City: U.S. Patent and Trademark Office.spa
dc.relation.referencesBor HY, Chao CC, Ma CY. The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa. Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science) 2000;31:1365.spa
dc.relation.referencesBrooks, R.B. 1982, Heat treatment, structure and properties of nonferrous alloys. ASM International, materials Park, OH, p. 145.spa
dc.relation.referencesC. Deckard, J. Beaman, J. Darrah, Method for selective laser sintering with layerwise cross-scanning, in, 1986.spa
dc.relation.referencesC. Deckard, Method and apparatus for producing parts by selective sintering, in, 1986. 204.spa
dc.relation.referencesC. Yan, L. Hao, A. Hussein, D. Raymont, Evaluations of cellular lattice structures manufactured using selective laser melting, International Journal of Machine Tools and Manufacture, 62 (2012) 32-38.spa
dc.relation.referencesCaiazzo, F., Alfieri, V., Cardaropoli, F., & Sergi, V. (2017). Investigation on edge joints of Inconel 625 sheets processed with laser welding. Optics & Laser Technology, 93, 180-186.spa
dc.relation.referencesCarlota, V. Optomec Customers Have Repaired More than 10 Million Turbine Blades- Optomec. Available online: https://www.3dnatives.com/en/optomec-customer-surpass-10-million-turbine-blade-repairs-260820204/#! (accessed on 6 February 2022).spa
dc.relation.referencesCharalampous, P., Kostavelis, I., & Tzovaras, D. (2020). Non-destructive quality control methods in additive manufacturing: a survey. Rapid Prototyping Journal.spa
dc.relation.referencesChen, C., Wu, H. C., & Chiang, M. F. (2008). Laser cladding in repair of IN738 turbine blades. International Heat Treatment and Surface Engineering, 2(3-4), 140-146.spa
dc.relation.referencesChoi, B. G., Kim, I. S., Kim, D. H., & Jo, C. Y. (2008). Temperature dependence of MC decomposition behavior in Ni-base superalloy GTD 111. Materials Science and Engineering: A, 478(1-2), 329-335.spa
dc.relation.referencesDaleo, J. A., & Wilson, J. R. (1996, June). GTD111 Alloy Material Study. In Turbo Expo: Power for Land, Sea, and Air (Vol. 78767, p. V005T12A017). American Society of Mechanical Engineers.spa
dc.relation.referencesDaleo, J.A. and Wilson, J.R., 1998, “GTD111 alloy material study,” Journal of Engineering for Gas Turbines and Power, Transactions of the ASME, 120(2), pp. 375-382.spa
dc.relation.referencesDass, A., & Moridi, A. (2019). State of the art in directed energy deposition: From additive manufacturing to materials design. Coatings, 9(7), 418.spa
dc.relation.referencesDebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., ... & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in Materials Science, 92, 112-224.spa
dc.relation.referencesDeng, D. (2018). Additively Manufactured Inconel 718: Microstructures and Mechanical Properties (Vol. 1798). Linköping University Electronic Press.spa
dc.relation.referencesDonachie MJ, Donachie SJ. Superalloys: A Technical Guide. Ohio: ASM International, 2002.spa
dc.relation.referencesDuPont , J. N. , Robino , C. V. , Marder , A. R. , Notis , M. R. , and Michael , J. R. 1988. Solidification of Nb - Bearing Superalloys: Part I. Reaction Sequences , Metallurgical and Material Transactions A , 29A : 2785 – 2796.spa
dc.relation.referencesDutta, B., Babu, S., & Jared, B. H. (2019). Science, technology and applications of metals in additive manufacturing. Elsevier.spa
dc.relation.referencesEisenbarth, D. (2020). Buildup strategies for additive manufacturing by direct metal deposition (Doctoral dissertation, ETH Zurich).spa
dc.relation.referencesF. J. Fela, “Influence of Chemical Composition Variations on the Elemental Solidification Segregation Segregation in Nickel-Base Single Crystal Superalloy”, Maser’s The University of Florida, May 2000.spa
dc.relation.referencesGandini, E., Agnesone, F., Taricco, F., & Arrighi, L. (1997, June). Advances in gas turbine blade repair by laser welding. In Turbo Expo: Power for Land, Sea, and Air (Vol. 78712, p. V004T12A011). American Society of Mechanical Engineers.spa
dc.relation.referencesGroh, J., Gabb, T., Helmink, R., & Wusatowska-Sarnek, A. (2014, December). René 65 billet material for forged turbine components. In Proc. 8th Int. Symp. Superalloy 718 Deriv (p. 107). John Wiley & Sons.spa
dc.relation.referencesGu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164.spa
dc.relation.referencesHale, J. M. (1994). IGTI, vol. 9. ASME.spa
dc.relation.referencesHardy, M. C., Detrois, M., McDevitt, E. T., Argyrakis, C., Saraf, V., Jablonski, P. D., ... & Tin, S. (2020). Solving recent challenges for wrought Ni-base superalloys. Metallurgical and Materials Transactions A, 51(6), 2626-2650.spa
dc.relation.referencesHeaney, J.A.; Lasonde, M.L.; Powell, A.M.; Bond, B.J.; O’Brien, C.M. Development of a New Cast and Wrought Alloy (Rene 65) for High Temperature Disk Applications. In Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives, Pittsburgh, PA, USA, 28 September–1 October 2014.spa
dc.relation.referenceshttps://www.3dsystems.com/our-story. Accesed 12/2/2021spa
dc.relation.referenceshttps://www.eos.info/about_eos/history. Accesed 12/2/2021spa
dc.relation.referencesHuarte-Mendicoa, L., Penaranda, X., Lamikiz, A., & Moralejo, S. (2019). Experimental Microstructure Evaluation of Rene 80 in Laser Cladding. Lasers in Manufacturing and Materials Processing, 6(3), 317-331.spa
dc.relation.referencesIan Gibson, I. G. (2015). Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing.spa
dc.relation.referencesIon, J. C. (2005). Laser processing of engineering materials. principles, procedure and industrial application. Chapter 12–Cladding.spa
dc.relation.referencesISO/ASTM52900-15 (2015) Standard terminology for additive manufacturing—general principles—terminology. ASTM International, West Conshohocken.spa
dc.relation.referencesJ. Johnson and M. J. Donachie, Microstructure of Precipitation Strengthened Nickel-Base Superalloys, in National Metal Congress, Chicago, 1966.spa
dc.relation.referencesJ. Kranz, D. Herzog, Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4, Journal of Laser Applications, 27 (2015).spa
dc.relation.referencesJ.K. Tien, Superalloys, Supercomposites and Superceramics, Elsevier, 2012.spa
dc.relation.referencesJ.R. Davis, ASM Specialty Handbook: Heat-Resistant Materials, ASM International, Ohio, 1997spa
dc.relation.referencesJena, A., Atabay, S. E., Gontcharov, A., Lowden, P., & Brochu, M. (2021). Laser powder bed fusion of a new high gamma prime Ni-based superalloy with improved weldability. Materials & Design, 208, 109895.spa
dc.relation.referencesJones, J. B., McNutt, P., Tosi, R., Perry, C., & Wimpenny, D. I. (2012). Remanufacture of turbine blades by laser cladding, machining and in-process scanning in a single machine.spa
dc.relation.referencesJovanović, M. T., Mišković, Z., & Lukić, B. (1998). Microstructure and stress-rupture life of polycrystal, directionally solidified, and single crystal castings of nickel-based IN 939 superalloy. Materials characterization, 40(4-5), 261-268.spa
dc.relation.referencesKaplanskii, Y. Y., Levashov, E. A., Korotitskiy, A. V., Loginov, P. A., Sentyurina, Z. A., & Mazalov, A. B. (2020). Influence of aging and HIP treatment on the structure and properties of NiAl-based turbine blades manufactured by laser powder bed fusion. Additive Manufacturing, 31, 100999.spa
dc.relation.referencesKeicher, D. M., Smugeresky, J. E., Romero, J. A., Gri_th, M. L., Harwell, L. D. (1997). Using the laser engineered net shaping (lens) process to produce complex components from a cad solid model. Photonics West. SPIE Vol. 2993, pp. 91-97.spa
dc.relation.referencesKeshavarz, M. K., Gontcharov, A., Lowden, P., Chan, A., Kulkarni, D., & Brochu, M. (2021). Turbine Blade Tip Repair by Laser Directed Energy Deposition Additive Manufacturing Using a Rene 142–MERL 72 Powder Blend. Journal of Manufacturing and Materials Processing, 5(1), 21.spa
dc.relation.referencesKountras, A. (2004). Metallographic study of gamma-gamma prime structure in the Ni-based superalloy GTD111 (Doctoral dissertation, Massachusetts Institute of Technology).spa
dc.relation.referencesLawrence, J. R. (Ed.). (2017). Advances in laser materials processing: technology, research and applications. Woodhead Publishing.spa
dc.relation.referencesLewandowski, J. J., & Seifi, M. (2016). Metal additive manufacturing: a review of mechanical properties. Annual review of materials research, 46, 151-186.spa
dc.relation.referencesLewis, G., Nemec, R., Milewski, J., Thoma, D., Cremers, D., Barbe, M. (1994). Directed light fabrication. Applications of Lasers and Electro-Optics.spa
dc.relation.referencesLi, L., 2006, “Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping,” Journal of Materials Science, 41(23), pp. 7886-7893.spa
dc.relation.referencesLi, L., Deceuster, A., & Zhang, C. (2012). Effect of process parameters on pulsed-laser repair of a directionally solidified superalloy. Metallography, Microstructure, and Analysis, 1(2), 92-98.spa
dc.relation.referencesLi, X. W., Wang, L., Dong, J. S., & Lou, L. H. (2014). Effect of solidification condition and carbon content on the morphology of MC carbide in directionally solidified nickel-base superalloys. Journal of Materials Science & Technology, 30(12), 1296-1300.spa
dc.relation.referencesLifshitz, I. M. and Sloyozov, V.V. 1961. The kinetics of precipitation from supersaturated solid solutions, Journal of Physical Chemistry of Solids, 19 (1 – 2 ): 35 – 50.spa
dc.relation.referencesLippold, J. C. (2014). Welding metallurgy and weldability. John Wiley & Sons.spa
dc.relation.referencesLiu, Y., Li, Y., & Peng, H. (2010, March). Laser net shape manufacturing of Rene80. In Pacific International Conference on Applications of Lasers and Optics (Vol. 2010, No. 1, p. 609). Laser Institute of America.spa
dc.relation.referencesLiu, Z. Y., Li, C., Fang, X. Y., & Guo, Y. B. (2018). Energy consumption in additive manufacturing of metal parts. Procedia Manufacturing, 26, 834-845.spa
dc.relation.referencesM. Seifi, A. Salem, J. Beuth, O. Harrysson, J. Lewandowski, Overview of materials characterization needs for metal additive manufacturing, Journal of Materials, 68 (2016) 747-764.spa
dc.relation.referencesM. Durand-Charee, “The Microstructure of Superalloys”, Gordon and Breach Science Publishers, Toronto, Canada, p. 60-69, (1997).spa
dc.relation.referencesM. Gell, D.N. Duhl, K. Gupta, and K Sheffler, “Advanced Superalloys Airfoils”, Journal of Metals, Vol. 39, No. 7, pp.11-15, (1987).spa
dc.relation.referencesMazumder, J., Choi, J., Nagarathnam, K., Koch, J., Hetzner, D. (1997). The direct metal deposition of h13 tool steel for 3-d components. JOM 49 (5), pp. 55-60.spa
dc.relation.referencesMelia, M. A., Whetten, S. R., Puckett, R., Jones, M., Heiden, M. J., Argibay, N., & Kustas, A. B. (2020). High-throughput additive manufacturing and characterization of refractory high entropy alloys. Applied Materials Today, 19, 100560.spa
dc.relation.referencesOlufayo, O. A., Che, H., Songmene, V., Katsari, C., & Yue, S. (2019). Machinability of Rene 65 superalloy. Materials, 12(12), 2034.spa
dc.relation.referencesPauzi, A. A., Berahim, N., & Husin, S. (2016). Degradation of Gas Turbine Blades for a Thermal Power Plant. In MATEC Web of Conferences (Vol. 54, p. 03002). EDP Sciences.spa
dc.relation.referencesPopovich, V. A., Borisov, E. V., Popovich, A. A., Sufiiarov, V. S., Masaylo, D. V., & Alzina, L. (2017). Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Materials & Design, 114, 441-449.spa
dc.relation.referencesQi, H., Azer, M., & Singh, P. (2010). Adaptive toolpath deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. The International Journal of Advanced Manufacturing Technology, 48(1), 121-131.spa
dc.relation.referencesR. Baker, Method of making decorative articles, in, Westinghouse Electric & Mfg Co, 1920.spa
dc.relation.referencesRehme, O., & Emmelmann, C. (2005, June). Reproducibility for properties of selective laser melting products. In Proceedings of the Third International WLT-Conference on Lasers in Manufacturing (pp. 227-232). Proc. Third Int. WLT-Conference Lasers Manuf. Munich.spa
dc.relation.referencesRittinghaus, S. K., Schmelzer, J., Rackel, M. W., Hemes, S., Vogelpoth, A., Hecht, U., & Weisheit, A. (2020). Direct energy deposition of TiAl for hybrid manufacturing and repair of turbine blades. Materials, 13(19), 4392.spa
dc.relation.referencesRolls-Royce plc, The Jet Engine, 4th edn (Derby, UK: The Technical Publications Department, Rolls-Royce plc, 1992).spa
dc.relation.referencesSajjadi, S. A., and Nategh, S., 2001, “A High Temperature Deformation Mechanism Map for the High Performance Ni-Base Superalloy GTD-111,” Materials Science and Engineering A, 307(1-2), pp. 158-164.spa
dc.relation.referencesSajjadi, S. A., Nategh, S., & Guthrie, R. I. (2002). Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111. Materials Science and Engineering: A, 325(1-2), 484-489.spa
dc.relation.referencesSajjadi, S. A., Zebarjad, S. M., Guthrie, R. I. L., & Isac, M. (2006). Microstructure evolution of high-performance Ni-base superalloy GTD-111 with heat treatment parameters. Journal of materials processing technology, 175(1-3), 376-381.spa
dc.relation.referencesScheibel, J. R., Aluru, R., & Van Esch, H. (2018, June). Mechanical Properties in GTD-111 Alloy in Heavy Frame Gas Turbines. In Turbo Expo: Power for Land, Sea, and Air (Vol. 51128, p. V006T24A009). American Society of Mechanical Engineers.spa
dc.relation.referencesSchilke, P. W., Foster, A.D., Pepe, J. J., and Beltran, A. M., 1992, “Advanced Materials Propel Progress in LAND-BASED GAS TURBINES,” Advanced Materials and Processes, 141(4), pp. 22-30.spa
dc.relation.referencesSchilke, P.W., 2004, “Advanced Gas Turbine Materials and Coatings,” GE ENERGY, Schenectady, NY.spa
dc.relation.referencesSims CT. Contemporary view of nickel-base superalloys. Journal of Metals 1966;18:1119.spa
dc.relation.referencesSmallman, R. E. and Bishop, R. J., 1999, Modern physical metallurgy and materials engineering: science, process, applications, Butterworth-Heinemann, pg 46-47.spa
dc.relation.referencesSosa, J. M., Huber, D. E., Welk, B. A., & Fraser, H. L. (2017). MIPAR™: 2D and 3D Image Analysis Software Designed by Materials Scientists, for All Scientists. Microscopy and Microanalysis, 23(S1), 230-231.spa
dc.relation.referencesStandard, A. S. T. M. (2012). Standard terminology for additive manufacturing technologies. ASTM International F2792-12a.spa
dc.relation.referencesStewart, C. (2009). Tertiary creep damage modeling of a transversely isotropic Ni-based superalloy.spa
dc.relation.referencesSun, W. R., Lee, J. H., Seo, S. M., Choe, S. J., & Hu, Z. Q. (1999). The eutectic characteristic of MC-type carbide precipitation in a DS nickel-base superalloy. Materials Science and Engineering: A, 271(1-2), 143-149.spa
dc.relation.referencesT. Wohlers, T. Gornet, History of additive manufacturing, Wohlers Report 2014, (2014).spa
dc.relation.referencesT.M. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties, Journal of propulsion and power, 22 (2006) 361-374.spa
dc.relation.referencesThiesen Junior, A. (2021). Selection of processing parameters for the laser directed energy deposition process applied to additive manufacturing: a methodological proposal.spa
dc.relation.referencesThornton, P. H. Davies , P. H. , and Johnston , T. L. 1970 . Temperature dependence of the fl ow stress of the gamma prime phase based upon Ni 3 Al , Metallurgical Transactions A , 1 ( 1 ): 207 – 218.)spa
dc.relation.referencesToyserkani, E., Khajepour, A., & Corbin, S. F. (2004). Laser cladding. CRC press.spa
dc.relation.referencesTurazi, A., de Oliveira, C. A. S., Bohórquez, C. E. N., & Comeli, F. W. (2015). Study of GTD-111 superalloy microstructural evolution during high-temperature aging and after rejuvenation treatments. Metallography, Microstructure, and Analysis, 4(1), 3-12.spa
dc.relation.referencesÜnal-Saewe, T., Gahn, L., Kittel, J., Gasser, A., & Schleifenbaum, J. H. (2020). Process development for tip repair of complex shaped turbine blades with IN718. Procedia Manufacturing, 47, 1050-1057.spa
dc.relation.referencesVillada, J. A., Bayro-Lazcano, R. G., Martinez-Franco, E., Espinosa-Arbelaez, D. G., Gonzalez-Hernandez, J., & Alvarado-Orozco, J. M. (2019). Relationship between γ′ phase degradation and in-Service GTD-111 first-stage blade local temperature. Journal of Materials Engineering and Performance, 28(4), 1950-1957.spa
dc.relation.referencesViswanathan, R., and Scheirer, S. T., 1998, “Materials Advances in Land-Based Gas Turbines,” POWER-GEN 1998 Conference, Orlando, FL.spa
dc.relation.referencesWangyao, P., Krongtong, V., Tuengsook, P., Hormkrajai, W., & Panich, N. (2006). The relationship between reheat-treatment and hardness behaviour of cast nickel superalloy, GTD-111. Journal of Metals, Materials and Minerals, 16(1).spa
dc.relation.referencesWangyao, P., Phansri, L., Hirisatja, P., Saelor, K., Zrník, J., & Novy, Z. (2015). Effect of Precipitation Aging Conditions on Microstructural Refurbishment in Cast Nickel Base Superalloy GTD-111. In Advanced Materials Research (Vol. 1127, pp. 79-84). Trans Tech Publications Ltd.spa
dc.relation.referencesWangyao, P., Polsilapa, S., Chaishom, P., Zrnik, J., Homkrajai, W., & Panich, N. (2008). Gamma prime particle coarsening behavior at elevated temperatures in cast nickel-based superalloy, GTD-111 EA. High Temperature Materials and Processes, 27(1), 41-50.spa
dc.relation.referencesWangyao, P., Suvanchai, P., Chuankrerkkul, N., Krongtong, V., Thueploy, A., & Homkrajai, W. (2010). Microstructural analysis after reheat treatments and long-term heating in cast nickel base superalloy, GTD-111. High Temperature Materials and Processes, 29(4), 277-286.spa
dc.relation.referencesWessman A, Laurence A, Cormier J, Villechaise P, Billot T, Franchet J-M (2016) Thermal stability of cast and wrought alloy Rene 65. Proceedings of the International Symposium on Superalloys.spa
dc.relation.referencesWessman, A., Cormier, J., Hamon, F., Rainey, K., Tin, S., Tiparti, D., & Dial, L. (2020). Microstructure and Mechanical Properties of Additively Manufactured Rene 65. In Superalloys 2020 (pp. 961-971). Springer, Cham.spa
dc.relation.referencesWilson, J. M., Piya, C., Shin, Y. C., Zhao, F., & Ramani, K. (2014). Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. Journal of Cleaner Production, 80, 170-178.spa
dc.relation.referencesWohlers, T., Campbell, I., Diegel, O., Kowen, J., Fidan, I., Bourell, D. (2018). Wohlers Report 2018. Wohlers Associates, Fort Collins.spa
dc.relation.referencesXue, L., Chen, J. Y., Islam, M. U., Pritchard, J., Manente, D., & Rush, S. (2000, October). Laser consolidation of Ni-base IN-738 superalloy for repairing gas turbine blades. In International Congress on Applications of Lasers & Electro-Optics (Vol. 2000, No. 1, pp. D30-D39). Laser Institute of America.spa
dc.relation.referencesYilmaz, O., Gindy, N., & Gao, J. (2010). A repair and overhaul methodology for aeroengine components. Robotics and Computer-Integrated Manufacturing, 26(2), 190-201.spa
dc.relation.referencesZhang, X., Chai, Z., Chen, H., Xu, J., Xu, L., Lu, H., & Chen, X. (2021). A novel method to prevent cracking in directed energy deposition of Inconel 738 by in-situ doping Inconel 718. Materials & Design, 197, 109214.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembLevasspa
dc.subject.lembCamseng
dc.subject.lembTurbinas de gasspa
dc.subject.proposalManufactura aditiva metalesspa
dc.subject.proposalÁlabe GTD 111spa
dc.subject.proposalL-PBFeng
dc.subject.proposalL-DEDeng
dc.subject.proposalAdditive Manufacturingeng
dc.subject.proposalGas turbineeng
dc.titleTechnical feasibility of recovering degraded GTD 111 blades in service through heat treatment and additive manufacturingeng
dc.title.translatedFactibilidad técnica de la recuperación de álabes de GTD 111 degradados en servicio mediante tratamiento térmico y manufactura aditivaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería Mecánica_Henry Leon Henao 1088291511.2022.pdf
Tamaño:
14.16 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: