Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum

dc.contributor.advisorGonzález Almario, Adrianaspa
dc.contributor.advisorDuarte Ruiz, Álvarospa
dc.contributor.authorGarcía Suárez, Angélica Tatianaspa
dc.contributor.researchgroupNuevos Materiales Nano y Supramolecularesspa
dc.date.accessioned2024-01-30T16:44:43Z
dc.date.available2024-01-30T16:44:43Z
dc.date.issued2023-11-17
dc.descriptionilustraciones (algunas a color), diagramas, fotografíasspa
dc.description.abstractRalstonia solanacearum es una bacteria fitopatógena que afecta a un amplio rango de hospedantes de importancia agronómica entre los que se encuentra el plátano (Musa x paradisiaca), causando la enfermedad denominada Moko o Maduraviche que afecta un amplio rango de musáceas a nivel mundial, siendo este un producto hortícola de importancia en la alimentación humana y en la economía colombiana. Para el control de esta enfermedad se han utilizado diferentes pesticidas y antibióticos, pero la aplicación de estos productos no muestra resultados satisfactorios. En este estudio se sintetizaron dos tamaños diferentes de nanopartículas de plata [1-AgNPs] y [2-AgNPs] mediante reducción química empleando nitrato de plata, borohidruro de sodio y citrato de sodio, y para la síntesis de nanopartículas de cobre [1-CuNPs] y [2-CuNPs], cloruro de cobre y ácido L-ascórbico. Para la caracterización se emplearon técnicas como: Dispersión Dinámica de Luz (DLS), Espectroscopia Ultravioleta Visible (Uv-Vis), Espectroscopia Infrarroja (IR), Espectroscopia Raman, Difracción de Rayos X (DRX), Absorción Atómica de Llama (FAAS), Microscopia Electrónica de Barrido (SEM) y Microscopia Electrónica de Transmisión del Alta Resolución (HRTEM), con el fin de identificar la composición, distribución de tamaño y morfología. Posteriormente, a partir de un pseudotallo de plátano proveniente de un cultivo de Norte de Santander - Colombia, que presentaba síntomas de necrosis de haces vasculares y exudado bacteriano, se aisló e identificó R. solanacearum y se evaluó in vitro la actividad antibacteriana de las nanopartículas contra este fitopatógeno por el método de difusión en pozo y se determinó la concentración mínima inhibitoria (CMI). Como resultado se evidenció una mayor actividad antibacteriana para las nanopartículas de cobre demostrando su potencial para abordar los desafíos en el tratamiento de esta enfermedad. (Texto tomado de la fuente)spa
dc.description.abstractRalstonia solanacearum is a phytopathogenic bacterium that affects a wide range of hosts of agronomic importance, among which is the plantain (Musa x paradisiaca), causing the disease called Moko or Maduraviche that affects a wide range of musaceae worldwide, this being an important horticultural product in human nutrition and in the Colombian economy. For the control of this disease, different pesticides and antibiotics have been used, but the application of these products not show satisfactory results. Therefore, in this study, two different sizes of silver nanoparticles [1-AgNPs] and [2-AgNPs] were synthesized by chemical reduction using silver nitrate, sodium borohydride and sodium citrate, and for the synthesis of copper nanoparticles [1- CuNPs] and [2-CuNPs], copper chloride and L-ascorbic acid. For the characterization, techniques such as: Dynamic Light Scattering (DLS), Ultraviolet Visible Spectroscopy (Uv-Vis), Infrared Spectroscopy (IR), Raman Spectroscopy, X-ray Diffraction (XRD), Flame Atomic Absorption (FAAS), were used. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), in order to identify the composition, size distribution and morphology. Subsequently, from a plantain pseudostem from a crop in Norte de Santander - Colombia, which presented symptoms of necrosis of vascular bundles and bacterial exudate, R. solanacearum was isolated and identified and evaluated in vitro the antibacterial activity of the nanoparticles against this phytopathogen by the well diffusion method and the minimum inhibitory concentration (MIC) was determined. As a result, a greater antibacterial activity was evidenced for copper nanoparticles, demonstrating their potential to address the challenges in the treatment of this disease.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias- Químicaspa
dc.format.extentxviii, 133 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85527
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesPaudel, S.; Dobhal, S.; Alvarez, A. M.; Arif, M. Taxonomy and Phylogenetic Research on Ralstonia Solanacearum Species Complex: A Complex Pathogen with Extraordinary Economic Consequences. Pathogens 2020, 9, 1–26. https://doi.org/10.3390/pathogens9110886spa
dc.relation.referencesSingh, B. Nanotechnology in Agri-Food Production. Nanotechnol. Sci. Appl. 2014, 7, 31–53.spa
dc.relation.referencesNion, Y.; Toyota, K. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia Solanacearum. Microbes Environ. 2015, 30 (1), 1–11. https://doi.org/10.1264/jsme2.ME14144spa
dc.relation.referencesRupa, V.; Dutta, A.; Kumar, A.; Maurya, S. Effectiveness of Combination of Antibiotics on Different Isolates of ‘Ralstonia Solanacearum’—A Dreaded Soil Born Phytopathogen and A Causative Agent of Bacterial Wil; India, 2017. https://doi.org/10.1007/978-981-10-5538-6spa
dc.relation.referencesDatta, T.; Singh, M.; Thapa, M.; Dutta, M. Size-Dependent Antibacterial Activity of Copper Nanoparticles against Xanthomonas Oryzae Pv . Oryzae – A Synthetic and Mechanistic Approach. Colloid Interface Sci. Commun. 2019, 32, 1–10. https://doi.org/10.1016/j.colcom.2019.100190spa
dc.relation.referencesNaranjo, E.; Martinez, Y. Avances En El Diagnositico de La Marchitez Bacteriana ( Ralstonia Solanacearum) Situación Actual y Perspectivas En Cuba. Rev. Protección Veg 2013, 28 (3), 160–170spa
dc.relation.referencesMoncayo, A. La Resistencia a Los Antibioticos y La Falta de Interes de La Industria Farmaceutica. Infect. Asoc. Colomb. Infectol. 2014, 18 (2), 35–36. https://doi.org/10.1016/j.infect.2014.02.003spa
dc.relation.referencesShaikh, S.; Nazam, N.; Rizvi, S.; Ahmad, K.; Baig, M.; Lee, E.; Choi, I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci. 2019, 20, 1–15. https://doi.org/10.3390/ijms20102468.spa
dc.relation.referencesXu, L.; Wang, Y.; Huang, J.; Chen, C.; Wang, Z.; Xie, H. Silver Nanoparticles: Synthesis, Medical Applications and Biosafety. Theranostics 2020, 10, 8996–9031. https://doi.org/10.7150/thno.45413spa
dc.relation.referencesGianluigi, F.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. https://doi.org/10.3390/molecules20058856spa
dc.relation.referencesVikas, S.; Krishan, K. S.; Manjit, K. S. Nanosilver: Potent Antimicrobial Agent and Its Biosynthesis. African J. Biotechnol. 2014, 13, 546–554. https://doi.org/10.5897/ajb2013.1314spa
dc.relation.referencesAbbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria : A Preliminary Study. J. Nanomater. 2015, 1–8spa
dc.relation.referencesSingh, M.; Singh, S.; Prasad, S.; Gambhir, I. Nanotechnology in Medicine and Antibacterial Effect of Silver Nanoparticles. Dig. J. Nanomater. biostructures 2008, 3, 115–122spa
dc.relation.referencesParveen, F.; Sannakki, B.; Mandke, M.; Pathan, H. Copper Nanoparticles: Synthesis Methods and Its Light Harvesting Performance. Sol. Energy Mater. Sol. Cells 2016, 144, 371–382. https://doi.org/10.1016/j.solmat.2015.08.03spa
dc.relation.referencesNa, I.; Kennedy, D. Size-Specific Copper Nanoparticle Cytotoxicity Varies between Human Cell Lines. Int. J. Mol. Sci. 2021, 22, 2–11. https://doi.org/10.3390/ ijms22041548spa
dc.relation.referencesLu, H.; Tang, S.; Yun, G.; Li, H.; Zhang, Y.; Qiao, R.; Li, W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis. Biosensors 2020, 10, 1–34. https://doi.org/10.3390/BIOS10110165spa
dc.relation.referencesZhang, X.; Liu, Z.; Shen, W.; Gurunathan, S. Silver Nanoparticles : Synthesis , Characterization , Properties , Applications , and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1–34. https://doi.org/10.3390/ijms17091534spa
dc.relation.referencesDiaz, E. Nanopartículas de Plata : Síntesis y Funcionalizacion . Una Breve Revisión. Mundo Nano 2019, 12, 1–11spa
dc.relation.referencesSong, X.; Sun, S.; Zhang, W.; Yin, Z. A Method for the Synthesis of Spherical Copper Nanoparticles in the Organic Phase. J. Colloid Interface Sci. 2004, 273, 464–470. https://doi.org/10.1016/j.jcis.2004.01.01spa
dc.relation.referencesArunachalam, D.; Kannappan, G. Synthesis of Copper Precursor, Copper and Its Oxide Nanoparticles by Green Chemical Reduction Method and Its Antimicrobial Activity. J. Appl. Pharm. Sci. Sci. 2013, 3, 16–21. https://doi.org/10.7324/JAPS.2013.3504spa
dc.relation.referencesMcCafferty, E. Introduction to Corrosion Science. Thermodynamics of Corrosion: Pourbaix Diagrams. Springer Sci. Bus. Media 2010, 95–117. https://doi.org/10.1007/978-1-4419-0455-3spa
dc.relation.referencesThanh, N.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Am. Chem. Soc. 2014, 3 (1), 7610–7630. https://doi.org/10.1021/cr400544s.spa
dc.relation.referencesPolte, J. Fundamental Growth Principles of Colloidal Metal Nanoparticles - a New Perspective. CrystEngComm 2015, 17, 1–17. https://doi.org/10.1039/c5ce01014d.spa
dc.relation.referencesChouhan, N. Silver Nanoparticles- Fabrication, Characterization and Applications, intechOpen.; 2018.spa
dc.relation.referencesDeshpande, J.; Chakrabarty, S.; Kulkarni, A. Heterogeneous Nucleation in Citrate Synthesis of AgNPs : Effect of Mixing and Solvation Dynamics. Chem. Eng. J. 2021, 1–11. https://doi.org/10.1016/j.cej.2020.127753.spa
dc.relation.referencesTrefry, J.; Monahan, J.; Weaver, K.; Meyerhoefer, A.; Markopolous, M. Size Selection and Concentration of Silver Nanoparticles by Tangential Flow Ultrafiltration for SERS-Based Biosensors. 2010, 10970–10972. https://doi.org/10.1021/ja103809c.spa
dc.relation.referencesMikac, L.; Ivanda, M.; Gotić, M.; Mihelj, T.; Horvat, L. Synthesis and Characterization of Silver Colloidal Nanoparticles with Different Coatings for SERS Application. J. Nanoparticle Res. 2014, 16 (12), 1–13. https://doi.org/10.1007/s11051-014-2748-9spa
dc.relation.referencesBaalousha, M.; Nam, J.; Lead, J. Natural Colloids and Manufactured Nanoparticles in Aquatic and Terrestrial Systems. Nat. colloids 2014, 1–41.spa
dc.relation.referencesMonge, M. Nanoparticulas de Plata: Metodos de Sintesis En Disolucion y Propiedades Bactericidas. Acad. Journals 2009, 105 (1), 33–41.spa
dc.relation.referencesDemirci, U. About the Technological Readiness of the H2 Generation by Hydrolysis of B(−N)−H Compounds. Energy Technol. 2018, 6, 470–486. https://doi.org/10.1002/ente.201700486spa
dc.relation.referencesDung, T.; Tuyet, T.; Fribourg-blanc, E.; Chien, M. The Influence of Solvents and Surfactants on the Preparation of Copper Nanoparticles by a Chemical Reduction Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 1–7. https://doi.org/10.1088/2043-6262/2/2/025004spa
dc.relation.referencesTamilvanan, A.; Kulendran, B. Copper Nanoparticles : Synthetic Strategies , Properties and Multifunctional Application. Int. J. Nanosci. 2014, 13 (May), 1–22. https://doi.org/10.1142/S0219581X14300016.spa
dc.relation.referencesGawande, M.; Goswami, A.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. Cu and Cu-Based Nanoparticles : Synthesis and Applications in Catalysis. Am. Chem. Soc. Chem. Rev. 2016, No. 116, 3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482spa
dc.relation.referencesShen, J.; Griffiths, P.; Campbell, S.; Utinger, B.; Kalberer, M. Ascorbate Oxidation by Iron, Copper and Reactive Oxygen Species: Review, Model Development and Derivation of Key Rate Constants. Sci. Reports Nat. 2021, 11, 1–14. https://doi.org/10.1038/s41598-021-86477-8spa
dc.relation.referencesRucker, R.; Suttie, J.; Donald, M.; Johnston, C. Handbok of Vitamins: Ascorbic Acid. Marcel Dakker 2001, 529–54spa
dc.relation.referencesNjus, D.; Kelley, P.; Tu, Y.; Schlegel, H. Ascorbic Acid: The Chemistry Underlying Its Antioxidant Properties. Free Radic. Biol. Med. 2020, 159, 37–43. https://doi.org/10.1016/j.freeradbiomed.2020.07.01spa
dc.relation.referencesDiLabio, G.; Wright, J. Hemiketal Formation of Dehydroascorbic Acid Drives Ascorbyl Radical Anion Disproportionation. Free Radic. Biol. Med. 2000, 29, 480–485. https://doi.org/10.1016/S0891-5849(00)00357-9spa
dc.relation.referencesXiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of Highly Stable Dispersions of Nanosized Copper Particles Using L-Ascorbic Acid. Green Chem. 2011, 13, 900–904. https://doi.org/10.1039/C0GC00772Bspa
dc.relation.referencesPokropivny, V.; Skorokhod, V. Classification of Nanostructures by Dimensionality and Concept of Surface Forms Engineering in Nanomaterial Science. Mater. Sci. Eng. 2007, 27, 990–993. https://doi.org/10.1016/j.msec.2006.09.023spa
dc.relation.referencesHarish, V.; Tewari, D.; Manish, G.; Yadav, A. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. Nanomaterials 2022, 12, 1–32. https://doi.org/10.3390/nano12183226spa
dc.relation.referencesGonzalez, A.; Noguez, C.; Berànek, J.; Barnard, A. Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles. J. Phys. Chem. 2014, 118, 9128–9136. https://doi.org/10.1021/jp5018168spa
dc.relation.referencesGonzalez, E.; Puntes, V.; Casals, E. Nanomateriales - Nanoparticulas Coloidales; Series de nanociencia y nanotecnología: Bogotá- Colombia, 2015spa
dc.relation.referencesCapeding, M.; Alberto, E.; Guerrero, J. The Effectiveness and Safety of 1 % Silver Sulfadiazine ( Flammazine ) Cream in Preventing Infection in Potentially Contaminated Traumatic Wounds among Pediatric Patients. J. trauma Treat. 2017, 6 (2167), 2–6. https://doi.org/10.4172/2167-1222.1000395.spa
dc.relation.referencesYin, X.; Zhang, J.; Shuping, I.; Lei, M.; Li, Q.; Chu, H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomedicine 2020, 15, 2555–2562. https://doi.org/10.2147/IJN.S246764.spa
dc.relation.referencesBabatunde, D.; Denwigwe, I.; Babatunde, O.; Gbadamosi, S.; Babalola, I.; Agboola, O. Environmental and Societal Impact of Nanotechnology. IEEE Access 2019, 8, 4640–4667. https://doi.org/10.1109/ACCESS.2019.2961513spa
dc.relation.referencesNaito, M.; Yokoyama, T.; Hosokawa, K.; Nogi, K. Nanoparticle Technology Handbook, Third Edit.; Joe Hayton: Amsterdam, 2018.spa
dc.relation.referencesDawadi, S.; Katuwal, S.; Gupta, A.; Lamichhane, U.; Thapa, R.; Jaisi, S. Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications. J. Nanomater. 2021, 1–23. https://doi.org/10.1155/2021/6687290.spa
dc.relation.referencesSingh, A.; Yaqoob, M.; Joshi, B.; Sharma, B. Phytofabrication of Silver Nanoparticles : Novel Drug to Overcome Hepatocellular Ailments. Toxicol. Reports 2018, 5, 333–342. https://doi.org/10.1016/j.toxrep.2018.02.013.spa
dc.relation.referencesCheng, H.; Wang, H.; Zhang, J. Phytofabrication of Silver Nanoparticles Using Three Flower Extracts and Their Antibacterial Activities Against Pathogen Ralstonia Solanacearum Strain YY06 of Bacterial Wilt. Front. Microbiol. 2020, 11 (September). https://doi.org/10.3389/fmicb.2020.02110.spa
dc.relation.referencesChand, K.; Cao, D.; Eldin, D.; Hussain, A.; Qadeer, A.; Zhu, K.; Nazim, M.; Mehdi, G.; Dong, S. Green Synthesis, Characterization and Photocatalytic Application of Silver Nanoparticles Synthesized by Various Plant Extracts. Arab. J. Chem. 2020, 13, 8248–8261. https://doi.org/10.1016/j.arabjc.2020.01.009.spa
dc.relation.referencesChen, J.; Li, S.; Lou, J.; Wang, R.; Ding, W. Enhancement of the Antibacterial Activity of Silver Nanoparticles against Phytopathogenic Bacterium Ralstonia Solanacearum by Stabilization. J. Nanomater. 2016, 1–15. https://doi.org/10.1155/2016/7135852spa
dc.relation.referencesSathiya, R.; Geetha, D.; Ramesh, P.; Aroulmoji, V. Synthesis and Characterization of Nano Silver for Different Temperatures and Their Antimicrobial Activity. Int. J. Adv. Sci. Eng. 2017, 4, 547–553. https://doi.org/10.29294/IJASE.4.2.2017.547-553.spa
dc.relation.referencesezza, F.; Tichapondwa, S.; Chirwa, E. Fabrication of Monodispersed Copper Oxide Nanoparticles with Potential Application as Antimicrobial Agents. Sci. Rep. 2020, 10, 1–18. https://doi.org/10.1038/s41598-020-73497-z.spa
dc.relation.referencesAgudelo, W.; Montoya, Y.; Bustamante, J. Using a Non-Reducing Sugar in the Green Synthesis of Gold and Silver Nanoparticles by the Chemical Reduction Method. DYNA 2018, 85 (206), 69–78. https://doi.org/10.15446/dyna.v85n206.72136.spa
dc.relation.referencesObregon, M.; Rodriguez, P.; Molares, J.; Salazar, M. Hospedantes de Ralstonia Solanacearumm En Plantaciones de Banano Platano En Colombia. Rev.Fac.Nal.Agr. Medellin 2008, 61, 4518–4526.spa
dc.relation.referencesTans, J.; Huang, H.; Allen, C. Ralstonia Solanacearum Needs Motility for Invasive Virulence on Tomato. J. Bacteriol. 2001, 183, 3597–3605. https://doi.org/10.1128/JB.183.12.359spa
dc.relation.referencesPrior, P.; Ailloud, F.; Dalsing, B. L.; Remenant, B. Genomic and Proteomic Evidence Supporting the Division of the Plant Pathogen Ralstonia Solanacearum into Three Species. BioMed Cent. Genomics 2016, 17, 1–11. https://doi.org/10.1186/s12864-016-2413-zspa
dc.relation.referencesSafni, I.; Subandiyah, S.; Fegan, M. Ecology , Epidemiology and Disease Management of Ralstonia Syzygii in Indonesia. Front. Microbiol. 2018, 9, 1–11. https://doi.org/10.3389/fmicb.2018.00419spa
dc.relation.referencesAlvarez, E.; Pantoja, A.; Gañan, L.; Ceballos, G. Estado Del Arte y Opciones de Manejo de Moko y La Sigatoka Negra En America Latina y El Caribe. Centro Internacional de Agricultura Tropical CIAT. Cali - Colombia 2019, pp 1–40spa
dc.relation.referencesBautista, L.; García, S.; Bolaños, M. Relationship between Soil Fertility and Plantain Nutrition in Cundinamarca (Colombia) with the Incidence of Two Bacterial Diseases. Rev. Colomb. ciencias hortícolas 2020, 14, 50–62spa
dc.relation.referencesBareño, F. Cadena de Plátano: Dirección de Cadenas Agricolas y Forestales. Ministerio de Agricultura y Desarrollo Rural. 2021, pp 1–10spa
dc.relation.referencesPoueymiro, M.; Genin, S. Secreted Proteins from Ralstonia Solanacearum: A Hundred Tricks to Kill a Plant. Curr. Opin. Microbiol. 2009, 12, 44–52. https://doi.org/10.1016/j.mib.2008.11.008spa
dc.relation.referencesGarcía, R.; Kerns, J.; Thiessen, L. Ralstonia Solanacearum Species Complex: A Quick Diagnostic Guide. Plant Heal. Prog. 2019, 20, 7–13. https://doi.org/10.1094/PHP-04-18-0015-DGspa
dc.relation.referencesLópez, M.; Morán, S.; Sagovia, J. Manejo Fitosanitario de La Marchitez Bacteriana ( Ralstonia Solanacearum E . F . Smith ) Del Tomate Lycopersicon Esculentum Mill, Universidad de el salvador, 2016spa
dc.relation.referencesVillalobos, V. Moko Del Plátano - Ficha Técnica/RSR2 /CNRF. Secr. Agric. - SENASICA 2023, 1, 1–8spa
dc.relation.referencesInstituto Colombiano Agropecuario (ICA). Resolución 3330 de 2013; Colombia, 2013; pp 1–5. https://www.icbf.gov.co/cargues/avance/docs/resolucion_ica_3330_2013.htmspa
dc.relation.referencesSilva, G.; Figueiredo, L.; Faveri, M.; Cortelli, S.; Duarte, P. Mechanisms of Action of Systemic Antibiotics in Periodntal Tretament and Mechanisms of Bacterial Resistence to These Drugs. J Appl Oral Sci 2012, 20, 295–309spa
dc.relation.referencesMikhailova, E. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. 2020, 11 (84), 1–26. https://doi.org/10.3390/jfb11040084spa
dc.relation.referencesRahman, S.; Rahman, L.; Khalil, T.; Ali, N.; Zia, D.; Ali, M. Endophyte-Mediated Synthesis of Silver Nanoparticles and Their Biological Applications. Microbiol. Biotechnol. 2019, 103, 2551–2569. https://doi.org/10.1007/s00253-019-09661-xspa
dc.relation.referencesRawat, M.; Kumar, N.; Yadukrishnan, P. Mechanisms of Action of Nanoparticles in Living Systems. 2018, 220–236. https://doi.org/10.4018/978-1-5225-3126-5.ch014spa
dc.relation.referencesKędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci. 2018, 19 (2), 1–17. https://doi.org/10.3390/ijms19020444spa
dc.relation.referencesDin, M. I.; Arshad, F.; Hussain, Z.; Mukhtar, M. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles : Catalytic , Antibacterial , Cytotoxicity , and Antioxidant Activities. 2017. https://doi.org/10.1186/s11671-017-2399-8spa
dc.relation.referencesVenis, R.; Basu, O. Silver and Zinc Oxide Nanoparticle Disinfection in Water Treatment Applications : Synergy and Water Quality Influences. H2Open J. 2021, 4, 114–128. https://doi.org/10.2166/h2oj.2021.098spa
dc.relation.referencesXu, L.; Zhu, Z.; Sun, D. Bioinspired Nanomodification Strategies :Moving from Chemical Based Agrosynthems to Sustainable Agriculture. Am. Chem. Soc. - Nano 2021, 15, 12655–12686. https://doi.org/10.1021/acsnano.1c0394spa
dc.relation.referencesReddy, J.; Kumar, S.; Bhamore, J. R.; Kim, K.; Dutta, T.; Vellingiri, K. Phytochemical-Assisted Synthetic Approaches for Silver Nanoparticles Antimicrobial Applications : A Review. Adv. Colloid Interface Sci. 2018, 256, 326–339. https://doi.org/10.1016/j.cis.2018.03.001spa
dc.relation.referencesChandra, S.; Kumar, A. Recyclable Copper Nanoparticles: Efficient Catalyst for Selective Cyclization of Schiff Bases. J. Saudi Chem. Soc. 2016, 20, 367–372. https://doi.org/10.1016/j.jscs.2012.07.00spa
dc.relation.referencesJamkhande, P.; Ghule, N.; Bamer, A.; Kalaskar, M. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 2019, 53, 1–6. https://doi.org/10.1016/j.jddst.2019.101174.spa
dc.relation.referencesSharma, P.; Goyal, D.; Baranwal, M.; Chudasama, B. ROS-Induced Cytotoxicity of Colloidal Copper Nanoparticles in MCF-7 Human Breast Cancer Cell Line: An in Vitro Study. J. Nanoparticle Res. 2020, 22, 1–11. https://doi.org/10.1007/s11051-020-04976-7spa
dc.relation.referencesNakamoto, K. Infrared and Raman Spectral of Inorganic and Coordination Compounds. Theory and Aplication in Inorganic Chemistry, Sixth.; Wiley: New Jersey, 2009spa
dc.relation.referencesLarkin, P. Infrared and Raman Spectroscopy. Pinciples and Spectral Interpretation; Amsterdam, 2011. https://doi.org/10.3390/rel9100297spa
dc.relation.referencesAgarwal, U.; Atalla, R. Raman Spectroscopy; CRC Press: Wisconsin, 1995. https://doi.org/10.1007/978-3-642-74065-7spa
dc.relation.referencesOhue, K.; Ohtake, K. Zetasizer Nano Series ZS DLS User Manual 0317- Malvern; United Kingdom, 2013; Vol. 67spa
dc.relation.referencesDorofeev, G.; Streletskii, A.; Povstugar, I.; Protasov, A.; Elsukov, E. Determination of Nanoparticle Sizes by the X- Ray Diffraction Method. Colloid J. 2012, 74, 710–720. https://doi.org/10.1134/S1061933X12060051spa
dc.relation.referencesFarrukh, M. Atomic Absorption Spectroscopy. 2011, 50–10spa
dc.relation.referencesAgnihotri, S.; Mukherji, S.; Mukherji, S. Size-Controlled Silver Nanoparticles Synthesized over the Range 5-100 Nm the Same Protocol and Their Antibacterial Efficacy. Rsc Adv. 2014, 3974–3983. https://doi.org/10.1039/c3ra44507kspa
dc.relation.referencesMavani, K. Synthesis of Silver Nanoparticles by Using Sodium Borohydride as a Reducing Agent. Int. J. Eng. Res. Technol. 2014, 2 (3), 1–5. https://doi.org/10.13140/2.1.3116.8648spa
dc.relation.referencesFrank, A.; Cathcart, N.; Maly, K.; Kitaev, V. Synthesis of Silver Nanoprisms with Variable Size and Investigation of Their Optical Properties: A First-Year Undergraduate Experiment Exploring Plasmonic Nanoparticles. J. Chem. Educ. 2010, 87, 1098–1101. https://doi.org/10.1021/ed100166gspa
dc.relation.referencesContreras, B.; Diaz, V.; Guzman, E.; Sanhueza, I.; Godoy, S.; Torres, S.; Oyarzún, P. Slight PH Fluctuations in the Gold Nanoparticle Synthesis Process Influence the Performance of the Citrate Reduction Method. J. Sensors 2018, 18, 2–9. https://doi.org/10.3390/s18072246spa
dc.relation.referencesZabiszak, M.; Nowak, M.; Taras, K.; Kaczmarek, M. Carboxyl Groups of Citric Acid in the Process of Complex Formation with Bivalent and Trivalent Metal Ions in Biological Systems. J. Inorg. Biochem. 2018, 182, 37–47. https://doi.org/10.1016/j.jinorgbio.2018.01.01spa
dc.relation.referencesYaguo, C.; Xianqing, P.; Wei, G.; Zhejuan, Z.; Nie, E.; Sun, Z. Large-Scale and Facile Synthesis of Silver Nanoparticles via a Microwave Method for a Conductive Pen. RSC Adv. 2017, 7, 34041–34048. https://doi.org/10.1039/C7RA05125Espa
dc.relation.referencesMendoza, M.; Avalos, M. Nanoestructuras y Su Caracterización Por Medio de Microscopía Electrónica de Transmisión. Mundo Nano. Rev. Interdiscip. en Nanociencias y Nanotecnología 2020, 13, 61–78. https://doi.org/10.22201/ceiich.24485691e.2020.25.69630spa
dc.relation.referencesWu, S. Preparation of Fine Copper Powder Using Ascorbic Acid as Reducing Agent and Its Application in MLCC. Mater. Lett. 2007, 61, 1125–1129. https://doi.org/10.1016/j.matlet.2006.06.068spa
dc.relation.referencesMacan, A.; Gazivoda, T.; Raić-malić, S. Therapeutic Perspective of Vitamin C and Its Derivatives. J. Antioxidants 2019, 8, 7–36. https://doi.org/10.3390/antiox8080247spa
dc.relation.referencesMeghana, S.; Kabra, P.; Chakraborty, S.; Padmavathy, N. Understanding the Pathway of Antibacterial Activity of Copper Oxide Nanoparticles. R. Soc. Chem. 2015, 5, 12293–12299. https://doi.org/10.1039/c4ra12163espa
dc.relation.referencesBarriere, C.; Piettre, K.; Latour, V.; Margeat, O.; Chaudret, B.; Fau, P. Ligand Effects on the Air Stability of Copper Nanoparticles Obtained from Organometallic Synthesis. J. Mater. Chem. 2012, 22, 2279–2285. https://doi.org/10.1039/c2jm14963j.spa
dc.relation.referencesGranata, G.; Yamaoka, T.; Pagnanelli, F.; Fuwa, A. Study of the Synthesis of Copper Nanoparticles : The Role of Capping and Kinetic towards Control of Particle Size and Stability. J. Nanoparticle Res. 2016, 18, 3–12. https://doi.org/10.1007/s11051-016-3438-6.spa
dc.relation.referencesCorrales, L.; Caycedo, L. Physicochemical Principles of Dyes Used in Microbiology. Nova 2019, 18, 73–100. https://doi.org/10.22490/24629448.370spa
dc.relation.referencesSuslow, T.; Schroth, M.; Isaka, M. Application of a Rapid Method for Gram Differentiation of Plant Pathogenic and Saprophytic Bacteria Without Staining. Phytopathology. 1982, p 917. https://doi.org/10.1094/phyto-77-917spa
dc.relation.referencesBhumbla, U. Identification of Bacteria by Biochemical Reactions. In Workbook for Practical Microbiology; 2018; pp 73–81. https://doi.org/10.5005/jp/books/14206spa
dc.relation.referencesFranklin, C.; Wikler, M.; Alder, J.; Dudley, M.; Ferraro, M.; Hardy, D. Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard. Clin. Lab. Stand. Inst. 2012, 32, 1–58. https://doi.org/M02-A11spa
dc.relation.referencesWeinstein, M.; Pate, J.; Burnham, C.; Campeau, S.; Conville, P.; Doern, C. M07 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clin. Lab. Stand. Inst. 2022, 11–61. https://doi.org/M07,11Thedspa
dc.relation.referencesPerea, J.; García, R.; Allade, R.; Carrillo, J.; León, J. Identificación de Razas y Biovares de Ralstonia Solanacearum Aisladas de Plantas de Tomate. Rev. Mex. Fitopatol. 2011, 29, 98–108spa
dc.relation.referencesThomas, E.; Torres, J. Gelatin Hydrolysis Test Protocol. Am. Soc. Microbiol. 2016, 1–10spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.agrovocRalstonia solanacearumspa
dc.subject.agrovocBactericidasspa
dc.subject.agrovocBactericideseng
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánicaspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.lccMetal nanoparticleseng
dc.subject.lccNanopartículas metálicasspa
dc.subject.lembMarchitez bacteriana del plátanospa
dc.subject.lembBacterial blight (Plantain banana)eng
dc.subject.lembEnfermedades bacterianas de las plantasspa
dc.subject.lembBacterial diseases of plantseng
dc.subject.lembBacterias fitopatógenasspa
dc.subject.lembBacteria, Phytopathogeniceng
dc.subject.proposalNanopartículasspa
dc.subject.proposalAgente antibacterianospa
dc.subject.proposalMarchitez bacterianaspa
dc.subject.proposalRalstonia solanacearumspa
dc.subject.proposalFitopatógenospa
dc.subject.proposalNanoparticleseng
dc.subject.proposalAntibacterial agenteng
dc.subject.proposalBacterial wilteng
dc.subject.proposalPhytopathogeneng
dc.titleSíntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearumspa
dc.title.translatedSynthesis, characterization and evaluation of the antibacterial activity of copper and silver nanoparticles against the phytopathogen Ralstonia solanacearumeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProyecto aprobado No. 45667, registrado en HERMESspa
oaire.fundernameUniversidad Nacional de Colombia - Resolución de la UGI Facultad de Ciencias - Sede Bogotáspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022349067.2023.pdf
Tamaño:
6.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: