Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum
dc.contributor.advisor | González Almario, Adriana | spa |
dc.contributor.advisor | Duarte Ruiz, Álvaro | spa |
dc.contributor.author | García Suárez, Angélica Tatiana | spa |
dc.contributor.researchgroup | Nuevos Materiales Nano y Supramoleculares | spa |
dc.date.accessioned | 2024-01-30T16:44:43Z | |
dc.date.available | 2024-01-30T16:44:43Z | |
dc.date.issued | 2023-11-17 | |
dc.description | ilustraciones (algunas a color), diagramas, fotografías | spa |
dc.description.abstract | Ralstonia solanacearum es una bacteria fitopatógena que afecta a un amplio rango de hospedantes de importancia agronómica entre los que se encuentra el plátano (Musa x paradisiaca), causando la enfermedad denominada Moko o Maduraviche que afecta un amplio rango de musáceas a nivel mundial, siendo este un producto hortícola de importancia en la alimentación humana y en la economía colombiana. Para el control de esta enfermedad se han utilizado diferentes pesticidas y antibióticos, pero la aplicación de estos productos no muestra resultados satisfactorios. En este estudio se sintetizaron dos tamaños diferentes de nanopartículas de plata [1-AgNPs] y [2-AgNPs] mediante reducción química empleando nitrato de plata, borohidruro de sodio y citrato de sodio, y para la síntesis de nanopartículas de cobre [1-CuNPs] y [2-CuNPs], cloruro de cobre y ácido L-ascórbico. Para la caracterización se emplearon técnicas como: Dispersión Dinámica de Luz (DLS), Espectroscopia Ultravioleta Visible (Uv-Vis), Espectroscopia Infrarroja (IR), Espectroscopia Raman, Difracción de Rayos X (DRX), Absorción Atómica de Llama (FAAS), Microscopia Electrónica de Barrido (SEM) y Microscopia Electrónica de Transmisión del Alta Resolución (HRTEM), con el fin de identificar la composición, distribución de tamaño y morfología. Posteriormente, a partir de un pseudotallo de plátano proveniente de un cultivo de Norte de Santander - Colombia, que presentaba síntomas de necrosis de haces vasculares y exudado bacteriano, se aisló e identificó R. solanacearum y se evaluó in vitro la actividad antibacteriana de las nanopartículas contra este fitopatógeno por el método de difusión en pozo y se determinó la concentración mínima inhibitoria (CMI). Como resultado se evidenció una mayor actividad antibacteriana para las nanopartículas de cobre demostrando su potencial para abordar los desafíos en el tratamiento de esta enfermedad. (Texto tomado de la fuente) | spa |
dc.description.abstract | Ralstonia solanacearum is a phytopathogenic bacterium that affects a wide range of hosts of agronomic importance, among which is the plantain (Musa x paradisiaca), causing the disease called Moko or Maduraviche that affects a wide range of musaceae worldwide, this being an important horticultural product in human nutrition and in the Colombian economy. For the control of this disease, different pesticides and antibiotics have been used, but the application of these products not show satisfactory results. Therefore, in this study, two different sizes of silver nanoparticles [1-AgNPs] and [2-AgNPs] were synthesized by chemical reduction using silver nitrate, sodium borohydride and sodium citrate, and for the synthesis of copper nanoparticles [1- CuNPs] and [2-CuNPs], copper chloride and L-ascorbic acid. For the characterization, techniques such as: Dynamic Light Scattering (DLS), Ultraviolet Visible Spectroscopy (Uv-Vis), Infrared Spectroscopy (IR), Raman Spectroscopy, X-ray Diffraction (XRD), Flame Atomic Absorption (FAAS), were used. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), in order to identify the composition, size distribution and morphology. Subsequently, from a plantain pseudostem from a crop in Norte de Santander - Colombia, which presented symptoms of necrosis of vascular bundles and bacterial exudate, R. solanacearum was isolated and identified and evaluated in vitro the antibacterial activity of the nanoparticles against this phytopathogen by the well diffusion method and the minimum inhibitory concentration (MIC) was determined. As a result, a greater antibacterial activity was evidenced for copper nanoparticles, demonstrating their potential to address the challenges in the treatment of this disease. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias- Química | spa |
dc.format.extent | xviii, 133 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85527 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química | spa |
dc.relation.references | Paudel, S.; Dobhal, S.; Alvarez, A. M.; Arif, M. Taxonomy and Phylogenetic Research on Ralstonia Solanacearum Species Complex: A Complex Pathogen with Extraordinary Economic Consequences. Pathogens 2020, 9, 1–26. https://doi.org/10.3390/pathogens9110886 | spa |
dc.relation.references | Singh, B. Nanotechnology in Agri-Food Production. Nanotechnol. Sci. Appl. 2014, 7, 31–53. | spa |
dc.relation.references | Nion, Y.; Toyota, K. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia Solanacearum. Microbes Environ. 2015, 30 (1), 1–11. https://doi.org/10.1264/jsme2.ME14144 | spa |
dc.relation.references | Rupa, V.; Dutta, A.; Kumar, A.; Maurya, S. Effectiveness of Combination of Antibiotics on Different Isolates of ‘Ralstonia Solanacearum’—A Dreaded Soil Born Phytopathogen and A Causative Agent of Bacterial Wil; India, 2017. https://doi.org/10.1007/978-981-10-5538-6 | spa |
dc.relation.references | Datta, T.; Singh, M.; Thapa, M.; Dutta, M. Size-Dependent Antibacterial Activity of Copper Nanoparticles against Xanthomonas Oryzae Pv . Oryzae – A Synthetic and Mechanistic Approach. Colloid Interface Sci. Commun. 2019, 32, 1–10. https://doi.org/10.1016/j.colcom.2019.100190 | spa |
dc.relation.references | Naranjo, E.; Martinez, Y. Avances En El Diagnositico de La Marchitez Bacteriana ( Ralstonia Solanacearum) Situación Actual y Perspectivas En Cuba. Rev. Protección Veg 2013, 28 (3), 160–170 | spa |
dc.relation.references | Moncayo, A. La Resistencia a Los Antibioticos y La Falta de Interes de La Industria Farmaceutica. Infect. Asoc. Colomb. Infectol. 2014, 18 (2), 35–36. https://doi.org/10.1016/j.infect.2014.02.003 | spa |
dc.relation.references | Shaikh, S.; Nazam, N.; Rizvi, S.; Ahmad, K.; Baig, M.; Lee, E.; Choi, I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci. 2019, 20, 1–15. https://doi.org/10.3390/ijms20102468. | spa |
dc.relation.references | Xu, L.; Wang, Y.; Huang, J.; Chen, C.; Wang, Z.; Xie, H. Silver Nanoparticles: Synthesis, Medical Applications and Biosafety. Theranostics 2020, 10, 8996–9031. https://doi.org/10.7150/thno.45413 | spa |
dc.relation.references | Gianluigi, F.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. https://doi.org/10.3390/molecules20058856 | spa |
dc.relation.references | Vikas, S.; Krishan, K. S.; Manjit, K. S. Nanosilver: Potent Antimicrobial Agent and Its Biosynthesis. African J. Biotechnol. 2014, 13, 546–554. https://doi.org/10.5897/ajb2013.1314 | spa |
dc.relation.references | Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria : A Preliminary Study. J. Nanomater. 2015, 1–8 | spa |
dc.relation.references | Singh, M.; Singh, S.; Prasad, S.; Gambhir, I. Nanotechnology in Medicine and Antibacterial Effect of Silver Nanoparticles. Dig. J. Nanomater. biostructures 2008, 3, 115–122 | spa |
dc.relation.references | Parveen, F.; Sannakki, B.; Mandke, M.; Pathan, H. Copper Nanoparticles: Synthesis Methods and Its Light Harvesting Performance. Sol. Energy Mater. Sol. Cells 2016, 144, 371–382. https://doi.org/10.1016/j.solmat.2015.08.03 | spa |
dc.relation.references | Na, I.; Kennedy, D. Size-Specific Copper Nanoparticle Cytotoxicity Varies between Human Cell Lines. Int. J. Mol. Sci. 2021, 22, 2–11. https://doi.org/10.3390/ ijms22041548 | spa |
dc.relation.references | Lu, H.; Tang, S.; Yun, G.; Li, H.; Zhang, Y.; Qiao, R.; Li, W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis. Biosensors 2020, 10, 1–34. https://doi.org/10.3390/BIOS10110165 | spa |
dc.relation.references | Zhang, X.; Liu, Z.; Shen, W.; Gurunathan, S. Silver Nanoparticles : Synthesis , Characterization , Properties , Applications , and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1–34. https://doi.org/10.3390/ijms17091534 | spa |
dc.relation.references | Diaz, E. Nanopartículas de Plata : Síntesis y Funcionalizacion . Una Breve Revisión. Mundo Nano 2019, 12, 1–11 | spa |
dc.relation.references | Song, X.; Sun, S.; Zhang, W.; Yin, Z. A Method for the Synthesis of Spherical Copper Nanoparticles in the Organic Phase. J. Colloid Interface Sci. 2004, 273, 464–470. https://doi.org/10.1016/j.jcis.2004.01.01 | spa |
dc.relation.references | Arunachalam, D.; Kannappan, G. Synthesis of Copper Precursor, Copper and Its Oxide Nanoparticles by Green Chemical Reduction Method and Its Antimicrobial Activity. J. Appl. Pharm. Sci. Sci. 2013, 3, 16–21. https://doi.org/10.7324/JAPS.2013.3504 | spa |
dc.relation.references | McCafferty, E. Introduction to Corrosion Science. Thermodynamics of Corrosion: Pourbaix Diagrams. Springer Sci. Bus. Media 2010, 95–117. https://doi.org/10.1007/978-1-4419-0455-3 | spa |
dc.relation.references | Thanh, N.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Am. Chem. Soc. 2014, 3 (1), 7610–7630. https://doi.org/10.1021/cr400544s. | spa |
dc.relation.references | Polte, J. Fundamental Growth Principles of Colloidal Metal Nanoparticles - a New Perspective. CrystEngComm 2015, 17, 1–17. https://doi.org/10.1039/c5ce01014d. | spa |
dc.relation.references | Chouhan, N. Silver Nanoparticles- Fabrication, Characterization and Applications, intechOpen.; 2018. | spa |
dc.relation.references | Deshpande, J.; Chakrabarty, S.; Kulkarni, A. Heterogeneous Nucleation in Citrate Synthesis of AgNPs : Effect of Mixing and Solvation Dynamics. Chem. Eng. J. 2021, 1–11. https://doi.org/10.1016/j.cej.2020.127753. | spa |
dc.relation.references | Trefry, J.; Monahan, J.; Weaver, K.; Meyerhoefer, A.; Markopolous, M. Size Selection and Concentration of Silver Nanoparticles by Tangential Flow Ultrafiltration for SERS-Based Biosensors. 2010, 10970–10972. https://doi.org/10.1021/ja103809c. | spa |
dc.relation.references | Mikac, L.; Ivanda, M.; Gotić, M.; Mihelj, T.; Horvat, L. Synthesis and Characterization of Silver Colloidal Nanoparticles with Different Coatings for SERS Application. J. Nanoparticle Res. 2014, 16 (12), 1–13. https://doi.org/10.1007/s11051-014-2748-9 | spa |
dc.relation.references | Baalousha, M.; Nam, J.; Lead, J. Natural Colloids and Manufactured Nanoparticles in Aquatic and Terrestrial Systems. Nat. colloids 2014, 1–41. | spa |
dc.relation.references | Monge, M. Nanoparticulas de Plata: Metodos de Sintesis En Disolucion y Propiedades Bactericidas. Acad. Journals 2009, 105 (1), 33–41. | spa |
dc.relation.references | Demirci, U. About the Technological Readiness of the H2 Generation by Hydrolysis of B(−N)−H Compounds. Energy Technol. 2018, 6, 470–486. https://doi.org/10.1002/ente.201700486 | spa |
dc.relation.references | Dung, T.; Tuyet, T.; Fribourg-blanc, E.; Chien, M. The Influence of Solvents and Surfactants on the Preparation of Copper Nanoparticles by a Chemical Reduction Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 1–7. https://doi.org/10.1088/2043-6262/2/2/025004 | spa |
dc.relation.references | Tamilvanan, A.; Kulendran, B. Copper Nanoparticles : Synthetic Strategies , Properties and Multifunctional Application. Int. J. Nanosci. 2014, 13 (May), 1–22. https://doi.org/10.1142/S0219581X14300016. | spa |
dc.relation.references | Gawande, M.; Goswami, A.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. Cu and Cu-Based Nanoparticles : Synthesis and Applications in Catalysis. Am. Chem. Soc. Chem. Rev. 2016, No. 116, 3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482 | spa |
dc.relation.references | Shen, J.; Griffiths, P.; Campbell, S.; Utinger, B.; Kalberer, M. Ascorbate Oxidation by Iron, Copper and Reactive Oxygen Species: Review, Model Development and Derivation of Key Rate Constants. Sci. Reports Nat. 2021, 11, 1–14. https://doi.org/10.1038/s41598-021-86477-8 | spa |
dc.relation.references | Rucker, R.; Suttie, J.; Donald, M.; Johnston, C. Handbok of Vitamins: Ascorbic Acid. Marcel Dakker 2001, 529–54 | spa |
dc.relation.references | Njus, D.; Kelley, P.; Tu, Y.; Schlegel, H. Ascorbic Acid: The Chemistry Underlying Its Antioxidant Properties. Free Radic. Biol. Med. 2020, 159, 37–43. https://doi.org/10.1016/j.freeradbiomed.2020.07.01 | spa |
dc.relation.references | DiLabio, G.; Wright, J. Hemiketal Formation of Dehydroascorbic Acid Drives Ascorbyl Radical Anion Disproportionation. Free Radic. Biol. Med. 2000, 29, 480–485. https://doi.org/10.1016/S0891-5849(00)00357-9 | spa |
dc.relation.references | Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of Highly Stable Dispersions of Nanosized Copper Particles Using L-Ascorbic Acid. Green Chem. 2011, 13, 900–904. https://doi.org/10.1039/C0GC00772B | spa |
dc.relation.references | Pokropivny, V.; Skorokhod, V. Classification of Nanostructures by Dimensionality and Concept of Surface Forms Engineering in Nanomaterial Science. Mater. Sci. Eng. 2007, 27, 990–993. https://doi.org/10.1016/j.msec.2006.09.023 | spa |
dc.relation.references | Harish, V.; Tewari, D.; Manish, G.; Yadav, A. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. Nanomaterials 2022, 12, 1–32. https://doi.org/10.3390/nano12183226 | spa |
dc.relation.references | Gonzalez, A.; Noguez, C.; Berànek, J.; Barnard, A. Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles. J. Phys. Chem. 2014, 118, 9128–9136. https://doi.org/10.1021/jp5018168 | spa |
dc.relation.references | Gonzalez, E.; Puntes, V.; Casals, E. Nanomateriales - Nanoparticulas Coloidales; Series de nanociencia y nanotecnología: Bogotá- Colombia, 2015 | spa |
dc.relation.references | Capeding, M.; Alberto, E.; Guerrero, J. The Effectiveness and Safety of 1 % Silver Sulfadiazine ( Flammazine ) Cream in Preventing Infection in Potentially Contaminated Traumatic Wounds among Pediatric Patients. J. trauma Treat. 2017, 6 (2167), 2–6. https://doi.org/10.4172/2167-1222.1000395. | spa |
dc.relation.references | Yin, X.; Zhang, J.; Shuping, I.; Lei, M.; Li, Q.; Chu, H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomedicine 2020, 15, 2555–2562. https://doi.org/10.2147/IJN.S246764. | spa |
dc.relation.references | Babatunde, D.; Denwigwe, I.; Babatunde, O.; Gbadamosi, S.; Babalola, I.; Agboola, O. Environmental and Societal Impact of Nanotechnology. IEEE Access 2019, 8, 4640–4667. https://doi.org/10.1109/ACCESS.2019.2961513 | spa |
dc.relation.references | Naito, M.; Yokoyama, T.; Hosokawa, K.; Nogi, K. Nanoparticle Technology Handbook, Third Edit.; Joe Hayton: Amsterdam, 2018. | spa |
dc.relation.references | Dawadi, S.; Katuwal, S.; Gupta, A.; Lamichhane, U.; Thapa, R.; Jaisi, S. Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications. J. Nanomater. 2021, 1–23. https://doi.org/10.1155/2021/6687290. | spa |
dc.relation.references | Singh, A.; Yaqoob, M.; Joshi, B.; Sharma, B. Phytofabrication of Silver Nanoparticles : Novel Drug to Overcome Hepatocellular Ailments. Toxicol. Reports 2018, 5, 333–342. https://doi.org/10.1016/j.toxrep.2018.02.013. | spa |
dc.relation.references | Cheng, H.; Wang, H.; Zhang, J. Phytofabrication of Silver Nanoparticles Using Three Flower Extracts and Their Antibacterial Activities Against Pathogen Ralstonia Solanacearum Strain YY06 of Bacterial Wilt. Front. Microbiol. 2020, 11 (September). https://doi.org/10.3389/fmicb.2020.02110. | spa |
dc.relation.references | Chand, K.; Cao, D.; Eldin, D.; Hussain, A.; Qadeer, A.; Zhu, K.; Nazim, M.; Mehdi, G.; Dong, S. Green Synthesis, Characterization and Photocatalytic Application of Silver Nanoparticles Synthesized by Various Plant Extracts. Arab. J. Chem. 2020, 13, 8248–8261. https://doi.org/10.1016/j.arabjc.2020.01.009. | spa |
dc.relation.references | Chen, J.; Li, S.; Lou, J.; Wang, R.; Ding, W. Enhancement of the Antibacterial Activity of Silver Nanoparticles against Phytopathogenic Bacterium Ralstonia Solanacearum by Stabilization. J. Nanomater. 2016, 1–15. https://doi.org/10.1155/2016/7135852 | spa |
dc.relation.references | Sathiya, R.; Geetha, D.; Ramesh, P.; Aroulmoji, V. Synthesis and Characterization of Nano Silver for Different Temperatures and Their Antimicrobial Activity. Int. J. Adv. Sci. Eng. 2017, 4, 547–553. https://doi.org/10.29294/IJASE.4.2.2017.547-553. | spa |
dc.relation.references | ezza, F.; Tichapondwa, S.; Chirwa, E. Fabrication of Monodispersed Copper Oxide Nanoparticles with Potential Application as Antimicrobial Agents. Sci. Rep. 2020, 10, 1–18. https://doi.org/10.1038/s41598-020-73497-z. | spa |
dc.relation.references | Agudelo, W.; Montoya, Y.; Bustamante, J. Using a Non-Reducing Sugar in the Green Synthesis of Gold and Silver Nanoparticles by the Chemical Reduction Method. DYNA 2018, 85 (206), 69–78. https://doi.org/10.15446/dyna.v85n206.72136. | spa |
dc.relation.references | Obregon, M.; Rodriguez, P.; Molares, J.; Salazar, M. Hospedantes de Ralstonia Solanacearumm En Plantaciones de Banano Platano En Colombia. Rev.Fac.Nal.Agr. Medellin 2008, 61, 4518–4526. | spa |
dc.relation.references | Tans, J.; Huang, H.; Allen, C. Ralstonia Solanacearum Needs Motility for Invasive Virulence on Tomato. J. Bacteriol. 2001, 183, 3597–3605. https://doi.org/10.1128/JB.183.12.359 | spa |
dc.relation.references | Prior, P.; Ailloud, F.; Dalsing, B. L.; Remenant, B. Genomic and Proteomic Evidence Supporting the Division of the Plant Pathogen Ralstonia Solanacearum into Three Species. BioMed Cent. Genomics 2016, 17, 1–11. https://doi.org/10.1186/s12864-016-2413-z | spa |
dc.relation.references | Safni, I.; Subandiyah, S.; Fegan, M. Ecology , Epidemiology and Disease Management of Ralstonia Syzygii in Indonesia. Front. Microbiol. 2018, 9, 1–11. https://doi.org/10.3389/fmicb.2018.00419 | spa |
dc.relation.references | Alvarez, E.; Pantoja, A.; Gañan, L.; Ceballos, G. Estado Del Arte y Opciones de Manejo de Moko y La Sigatoka Negra En America Latina y El Caribe. Centro Internacional de Agricultura Tropical CIAT. Cali - Colombia 2019, pp 1–40 | spa |
dc.relation.references | Bautista, L.; García, S.; Bolaños, M. Relationship between Soil Fertility and Plantain Nutrition in Cundinamarca (Colombia) with the Incidence of Two Bacterial Diseases. Rev. Colomb. ciencias hortícolas 2020, 14, 50–62 | spa |
dc.relation.references | Bareño, F. Cadena de Plátano: Dirección de Cadenas Agricolas y Forestales. Ministerio de Agricultura y Desarrollo Rural. 2021, pp 1–10 | spa |
dc.relation.references | Poueymiro, M.; Genin, S. Secreted Proteins from Ralstonia Solanacearum: A Hundred Tricks to Kill a Plant. Curr. Opin. Microbiol. 2009, 12, 44–52. https://doi.org/10.1016/j.mib.2008.11.008 | spa |
dc.relation.references | García, R.; Kerns, J.; Thiessen, L. Ralstonia Solanacearum Species Complex: A Quick Diagnostic Guide. Plant Heal. Prog. 2019, 20, 7–13. https://doi.org/10.1094/PHP-04-18-0015-DG | spa |
dc.relation.references | López, M.; Morán, S.; Sagovia, J. Manejo Fitosanitario de La Marchitez Bacteriana ( Ralstonia Solanacearum E . F . Smith ) Del Tomate Lycopersicon Esculentum Mill, Universidad de el salvador, 2016 | spa |
dc.relation.references | Villalobos, V. Moko Del Plátano - Ficha Técnica/RSR2 /CNRF. Secr. Agric. - SENASICA 2023, 1, 1–8 | spa |
dc.relation.references | Instituto Colombiano Agropecuario (ICA). Resolución 3330 de 2013; Colombia, 2013; pp 1–5. https://www.icbf.gov.co/cargues/avance/docs/resolucion_ica_3330_2013.htm | spa |
dc.relation.references | Silva, G.; Figueiredo, L.; Faveri, M.; Cortelli, S.; Duarte, P. Mechanisms of Action of Systemic Antibiotics in Periodntal Tretament and Mechanisms of Bacterial Resistence to These Drugs. J Appl Oral Sci 2012, 20, 295–309 | spa |
dc.relation.references | Mikhailova, E. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. 2020, 11 (84), 1–26. https://doi.org/10.3390/jfb11040084 | spa |
dc.relation.references | Rahman, S.; Rahman, L.; Khalil, T.; Ali, N.; Zia, D.; Ali, M. Endophyte-Mediated Synthesis of Silver Nanoparticles and Their Biological Applications. Microbiol. Biotechnol. 2019, 103, 2551–2569. https://doi.org/10.1007/s00253-019-09661-x | spa |
dc.relation.references | Rawat, M.; Kumar, N.; Yadukrishnan, P. Mechanisms of Action of Nanoparticles in Living Systems. 2018, 220–236. https://doi.org/10.4018/978-1-5225-3126-5.ch014 | spa |
dc.relation.references | Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci. 2018, 19 (2), 1–17. https://doi.org/10.3390/ijms19020444 | spa |
dc.relation.references | Din, M. I.; Arshad, F.; Hussain, Z.; Mukhtar, M. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles : Catalytic , Antibacterial , Cytotoxicity , and Antioxidant Activities. 2017. https://doi.org/10.1186/s11671-017-2399-8 | spa |
dc.relation.references | Venis, R.; Basu, O. Silver and Zinc Oxide Nanoparticle Disinfection in Water Treatment Applications : Synergy and Water Quality Influences. H2Open J. 2021, 4, 114–128. https://doi.org/10.2166/h2oj.2021.098 | spa |
dc.relation.references | Xu, L.; Zhu, Z.; Sun, D. Bioinspired Nanomodification Strategies :Moving from Chemical Based Agrosynthems to Sustainable Agriculture. Am. Chem. Soc. - Nano 2021, 15, 12655–12686. https://doi.org/10.1021/acsnano.1c0394 | spa |
dc.relation.references | Reddy, J.; Kumar, S.; Bhamore, J. R.; Kim, K.; Dutta, T.; Vellingiri, K. Phytochemical-Assisted Synthetic Approaches for Silver Nanoparticles Antimicrobial Applications : A Review. Adv. Colloid Interface Sci. 2018, 256, 326–339. https://doi.org/10.1016/j.cis.2018.03.001 | spa |
dc.relation.references | Chandra, S.; Kumar, A. Recyclable Copper Nanoparticles: Efficient Catalyst for Selective Cyclization of Schiff Bases. J. Saudi Chem. Soc. 2016, 20, 367–372. https://doi.org/10.1016/j.jscs.2012.07.00 | spa |
dc.relation.references | Jamkhande, P.; Ghule, N.; Bamer, A.; Kalaskar, M. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 2019, 53, 1–6. https://doi.org/10.1016/j.jddst.2019.101174. | spa |
dc.relation.references | Sharma, P.; Goyal, D.; Baranwal, M.; Chudasama, B. ROS-Induced Cytotoxicity of Colloidal Copper Nanoparticles in MCF-7 Human Breast Cancer Cell Line: An in Vitro Study. J. Nanoparticle Res. 2020, 22, 1–11. https://doi.org/10.1007/s11051-020-04976-7 | spa |
dc.relation.references | Nakamoto, K. Infrared and Raman Spectral of Inorganic and Coordination Compounds. Theory and Aplication in Inorganic Chemistry, Sixth.; Wiley: New Jersey, 2009 | spa |
dc.relation.references | Larkin, P. Infrared and Raman Spectroscopy. Pinciples and Spectral Interpretation; Amsterdam, 2011. https://doi.org/10.3390/rel9100297 | spa |
dc.relation.references | Agarwal, U.; Atalla, R. Raman Spectroscopy; CRC Press: Wisconsin, 1995. https://doi.org/10.1007/978-3-642-74065-7 | spa |
dc.relation.references | Ohue, K.; Ohtake, K. Zetasizer Nano Series ZS DLS User Manual 0317- Malvern; United Kingdom, 2013; Vol. 67 | spa |
dc.relation.references | Dorofeev, G.; Streletskii, A.; Povstugar, I.; Protasov, A.; Elsukov, E. Determination of Nanoparticle Sizes by the X- Ray Diffraction Method. Colloid J. 2012, 74, 710–720. https://doi.org/10.1134/S1061933X12060051 | spa |
dc.relation.references | Farrukh, M. Atomic Absorption Spectroscopy. 2011, 50–10 | spa |
dc.relation.references | Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-Controlled Silver Nanoparticles Synthesized over the Range 5-100 Nm the Same Protocol and Their Antibacterial Efficacy. Rsc Adv. 2014, 3974–3983. https://doi.org/10.1039/c3ra44507k | spa |
dc.relation.references | Mavani, K. Synthesis of Silver Nanoparticles by Using Sodium Borohydride as a Reducing Agent. Int. J. Eng. Res. Technol. 2014, 2 (3), 1–5. https://doi.org/10.13140/2.1.3116.8648 | spa |
dc.relation.references | Frank, A.; Cathcart, N.; Maly, K.; Kitaev, V. Synthesis of Silver Nanoprisms with Variable Size and Investigation of Their Optical Properties: A First-Year Undergraduate Experiment Exploring Plasmonic Nanoparticles. J. Chem. Educ. 2010, 87, 1098–1101. https://doi.org/10.1021/ed100166g | spa |
dc.relation.references | Contreras, B.; Diaz, V.; Guzman, E.; Sanhueza, I.; Godoy, S.; Torres, S.; Oyarzún, P. Slight PH Fluctuations in the Gold Nanoparticle Synthesis Process Influence the Performance of the Citrate Reduction Method. J. Sensors 2018, 18, 2–9. https://doi.org/10.3390/s18072246 | spa |
dc.relation.references | Zabiszak, M.; Nowak, M.; Taras, K.; Kaczmarek, M. Carboxyl Groups of Citric Acid in the Process of Complex Formation with Bivalent and Trivalent Metal Ions in Biological Systems. J. Inorg. Biochem. 2018, 182, 37–47. https://doi.org/10.1016/j.jinorgbio.2018.01.01 | spa |
dc.relation.references | Yaguo, C.; Xianqing, P.; Wei, G.; Zhejuan, Z.; Nie, E.; Sun, Z. Large-Scale and Facile Synthesis of Silver Nanoparticles via a Microwave Method for a Conductive Pen. RSC Adv. 2017, 7, 34041–34048. https://doi.org/10.1039/C7RA05125E | spa |
dc.relation.references | Mendoza, M.; Avalos, M. Nanoestructuras y Su Caracterización Por Medio de Microscopía Electrónica de Transmisión. Mundo Nano. Rev. Interdiscip. en Nanociencias y Nanotecnología 2020, 13, 61–78. https://doi.org/10.22201/ceiich.24485691e.2020.25.69630 | spa |
dc.relation.references | Wu, S. Preparation of Fine Copper Powder Using Ascorbic Acid as Reducing Agent and Its Application in MLCC. Mater. Lett. 2007, 61, 1125–1129. https://doi.org/10.1016/j.matlet.2006.06.068 | spa |
dc.relation.references | Macan, A.; Gazivoda, T.; Raić-malić, S. Therapeutic Perspective of Vitamin C and Its Derivatives. J. Antioxidants 2019, 8, 7–36. https://doi.org/10.3390/antiox8080247 | spa |
dc.relation.references | Meghana, S.; Kabra, P.; Chakraborty, S.; Padmavathy, N. Understanding the Pathway of Antibacterial Activity of Copper Oxide Nanoparticles. R. Soc. Chem. 2015, 5, 12293–12299. https://doi.org/10.1039/c4ra12163e | spa |
dc.relation.references | Barriere, C.; Piettre, K.; Latour, V.; Margeat, O.; Chaudret, B.; Fau, P. Ligand Effects on the Air Stability of Copper Nanoparticles Obtained from Organometallic Synthesis. J. Mater. Chem. 2012, 22, 2279–2285. https://doi.org/10.1039/c2jm14963j. | spa |
dc.relation.references | Granata, G.; Yamaoka, T.; Pagnanelli, F.; Fuwa, A. Study of the Synthesis of Copper Nanoparticles : The Role of Capping and Kinetic towards Control of Particle Size and Stability. J. Nanoparticle Res. 2016, 18, 3–12. https://doi.org/10.1007/s11051-016-3438-6. | spa |
dc.relation.references | Corrales, L.; Caycedo, L. Physicochemical Principles of Dyes Used in Microbiology. Nova 2019, 18, 73–100. https://doi.org/10.22490/24629448.370 | spa |
dc.relation.references | Suslow, T.; Schroth, M.; Isaka, M. Application of a Rapid Method for Gram Differentiation of Plant Pathogenic and Saprophytic Bacteria Without Staining. Phytopathology. 1982, p 917. https://doi.org/10.1094/phyto-77-917 | spa |
dc.relation.references | Bhumbla, U. Identification of Bacteria by Biochemical Reactions. In Workbook for Practical Microbiology; 2018; pp 73–81. https://doi.org/10.5005/jp/books/14206 | spa |
dc.relation.references | Franklin, C.; Wikler, M.; Alder, J.; Dudley, M.; Ferraro, M.; Hardy, D. Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard. Clin. Lab. Stand. Inst. 2012, 32, 1–58. https://doi.org/M02-A11 | spa |
dc.relation.references | Weinstein, M.; Pate, J.; Burnham, C.; Campeau, S.; Conville, P.; Doern, C. M07 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clin. Lab. Stand. Inst. 2022, 11–61. https://doi.org/M07,11Thed | spa |
dc.relation.references | Perea, J.; García, R.; Allade, R.; Carrillo, J.; León, J. Identificación de Razas y Biovares de Ralstonia Solanacearum Aisladas de Plantas de Tomate. Rev. Mex. Fitopatol. 2011, 29, 98–108 | spa |
dc.relation.references | Thomas, E.; Torres, J. Gelatin Hydrolysis Test Protocol. Am. Soc. Microbiol. 2016, 1–10 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.agrovoc | Ralstonia solanacearum | spa |
dc.subject.agrovoc | Bactericidas | spa |
dc.subject.agrovoc | Bactericides | eng |
dc.subject.ddc | 540 - Química y ciencias afines::546 - Química inorgánica | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales | spa |
dc.subject.lcc | Metal nanoparticles | eng |
dc.subject.lcc | Nanopartículas metálicas | spa |
dc.subject.lemb | Marchitez bacteriana del plátano | spa |
dc.subject.lemb | Bacterial blight (Plantain banana) | eng |
dc.subject.lemb | Enfermedades bacterianas de las plantas | spa |
dc.subject.lemb | Bacterial diseases of plants | eng |
dc.subject.lemb | Bacterias fitopatógenas | spa |
dc.subject.lemb | Bacteria, Phytopathogenic | eng |
dc.subject.proposal | Nanopartículas | spa |
dc.subject.proposal | Agente antibacteriano | spa |
dc.subject.proposal | Marchitez bacteriana | spa |
dc.subject.proposal | Ralstonia solanacearum | spa |
dc.subject.proposal | Fitopatógeno | spa |
dc.subject.proposal | Nanoparticles | eng |
dc.subject.proposal | Antibacterial agent | eng |
dc.subject.proposal | Bacterial wilt | eng |
dc.subject.proposal | Phytopathogen | eng |
dc.title | Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum | spa |
dc.title.translated | Synthesis, characterization and evaluation of the antibacterial activity of copper and silver nanoparticles against the phytopathogen Ralstonia solanacearum | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Consejeros | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Proyecto aprobado No. 45667, registrado en HERMES | spa |
oaire.fundername | Universidad Nacional de Colombia - Resolución de la UGI Facultad de Ciencias - Sede Bogotá | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1022349067.2023.pdf
- Tamaño:
- 6.11 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Maestría en Ciencias - Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: