Caracterización fisicoquímica de un péptido polivalente, derivado de la Lactoferricina Bovina, candidato a fármaco para el tratamiento del cáncer de mama

dc.contributor.advisorRivera Monroy, Zuly Jenny
dc.contributor.advisorGonzález Cárdenas, Ivonne Alejandra
dc.contributor.authorHuertas Ortiz, Kevin Andrey
dc.contributor.researchgroupSíntesis y Aplicación de Moléculas Peptídicasspa
dc.date.accessioned2022-09-15T13:57:04Z
dc.date.available2022-09-15T13:57:04Z
dc.date.issued2021
dc.descriptiongráficas, ilustraciones, tablasspa
dc.description.abstractSegún la Organización Mundial de la Salud (OMS), el cáncer de mama es el tipo de cáncer más incidente entre las mujeres. Para el 2020 se reportaron cerca de 2,3 millones de nuevos casos de cáncer de mama y 685.000 muertes en el mundo fueron causadas por esta enfermedad. En la búsqueda de nuevos agentes terapéuticos, se ha propuesto el uso de péptidos polivalentes derivados de la Lactoferricina Bovina (LfcinB), y se han encontrado tres péptidos con actividad citotóxica frente a líneas celulares derivadas del cáncer de mama: el palíndromo LfcinB (21-25)Pal: RWQWRWQWR; el dímero [26F]-LficnB (20-30): (RRWQWRFKKLG)2K-Ahx y el tetrámero LfcinB (20-25)4: ((RRWQWR)2K-Ahx-C)2. Para desarrollo de un medicamento, una etapa crucial en la fase cero de los estudios preclínicos es la caracterización fisicoquímica de la molécula que presenta actividad promisoria, esta fase involucra la implementación y validación de los métodos que serán utilizados para el análisis de la molécula. Esta investigación fue conducida dentro de este contexto, y se seleccionó el péptido tetramérico LfcinB (20-25)4 como molécula modelo. Específicamente: (i) se sintetizó un lote de 100 mg del péptido LfcinB (20-25)4, (ii) se desarrolló y optimizó un método de análisis de péptidos sintéticos por RP-HPLC, (iii) se caracterizó el péptido LfcinB (20-25)4 mediante RMN (1D-2D) y espectrometría de masas (ESI-Q, ESI-QTOF, MALDI-TOF). Adicionalmente, (iv) se analizó en el lote el contenido de agua por Karl Fischer, el contenido de TFA residual por HPLC-DAD y el contenido del péptido por RP- X HPLC-DAD, estas tres metodologías de cuantificación fueron validadas siguiendo los lineamientos de la USP capítulo <1225>. Las metodologías de análisis implementadas, desarrolladas y validadas en esta tesis contribuyen a la caracterización fisicoquímica de péptidos promisorios como agentes terapéuticos. (Texto tomado de la fuente)spa
dc.description.abstractAccording to World Health Organization, breast cancer is the most common cancer type among women. In 2020, around 2,3 million of new cases of breast cancer were reported and 685.000 of deaths were caused by this disease. In the search of new therapeutic agents, polyvalent peptides derived from Bovine Lactoferricin (LfcinB) were proposed. Three peptides were found with cytotoxic activity against breast cancer cell lines: palindrome RWQWRWQWR; dimer (RRWQWRFKKLG)2K-Ahx and tetramer LfcinB (20-25)4: ((RRWQWR)2K-Ahx-C)2. One of the crucial steps on the zero-phase of preclinical studies, for development of a new drug, is the physicochemical characterization of the molecule with promissory activity. This phase involves implementation and validation of methods that shall be used for the analysis of the molecule. This research was conducted within this context, and the tetrameric peptide LfcinB (20-25)4 was selected as model molecule. Specifically: (i) a batch of 100 mg of peptide LfcinB (20- 25)4 was synthetized, (ii) a method for the analysis of peptides by RP-HPLC was developed and optimized, (iii) peptide LfcinB (20-25)4 was characterized by NMR (1D-2) and mass spectrometry (ESI-Q, ESI-QTOF, MALDI-TOF). In addition, (iv) water content by Karl Fischer, TFA content by HPLC-DAD and peptide content by RP-HPLC-DAD were analyzed in the batch of peptide; these three quantitation methodologies were validated according to USP guidelines in chapter <1225>. The analytical methodologies implemented, developed, and validated on this thesis contribute to physicochemical characterization of promissory peptides as therapeutic agentseng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaQuímica Analíticaspa
dc.format.extentxxiv, 134 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82290
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesWHO. World Health Organization - Cancer [Internet]. 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/cancerspa
dc.relation.referencesSung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;0(0):1–41.spa
dc.relation.referencesHuertas N de J, Monroy ZJR, Medina RF, Castañeda JEG. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Molecules. 2017;22(6).spa
dc.relation.referencesHuertas Méndez NDJ, Vargas Casanova Y, Gómez Chimbi AK, Hernández E, Leal Castro AL, Melo Diaz JM, et al. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules. 2017;22(3):1–10.spa
dc.relation.referencesLeón-Calvijo MA, Leal-Castro AL, Almanzar-Reina GA, Rosas-Pérez JE, García-Castañeda JE, Rivera-Monroy ZJ. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. Biomed Res Int. 2015;2015:1DUMMY.spa
dc.relation.referencesVargas Casanova Y, Rodríguez Guerra JA, Umaña Pérez YA, Leal Castro AL, Almanzar Reina G, García Castañeda JE, et al. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules. 2017;22(10):1–11.spa
dc.relation.referencesUnited THE, Pharmacopeia S. 2018 USP 41. Vol. 5. 2018.spa
dc.relation.referencesJanvier S, Sutter E De, Wynendaele E, Spiegeleer B De, Vanhee C, Deconinck E. Talanta Analysis of illegal peptide drugs via HILIC-DAD-MS. Talanta [Internet]. 2017;174(June):562–71. Available from: http://dx.doi.org/10.1016/j.talanta.2017.06.034spa
dc.relation.referencesMutalik S, Hewavitharana AK, Shaw PN, Anissimov YG, Roberts MS, Parekh HS. Development and validation of a reversed-phase high-performance liquid chromatographic method for quantification of peptide dendrimers in human skin permeation experiments. 2009;877:3556–62.spa
dc.relation.referencesAnaya K, Sus N, Gadelha C, Frank J. Development and validation of a rapid reversed ‑ phase liquid chromatography method for CnAMP1 peptide quantification in human intestinal cell lines. Amino Acids [Internet]. 2019;51(3):407–18. Available from: https://doi.org/10.1007/s00726-018-2675-7spa
dc.relation.referencesEgusquiaguirre SP, Manguán-garcía C, Perona R, Luís J, Maria R, Igartua M. Development and validation of a rapid HPLC method for the quantification of GSE4 peptide in biodegradable PEI – PLGA nanoparticles. J Chromatogr B [Internet]. 2014;972:95–101. Available from: http://dx.doi.org/10.1016/j.jchromb.2014.09.041spa
dc.relation.referencesInstituto Nacional del Cáncer. Cáncer de seno (mama) [Internet]. 2019. Available from: https://www.cancer.gov/espanol/tipos/senospa
dc.relation.referencesSalvatierra-González R, Benguigui Y. Resistencia antimicrobiana en las Américas: Magnitud del problema y su contención. Organ Panam la Salud, Of Sanit Panam Of Reg la Organ Mund la Salud. 2000;spa
dc.relation.referencesCastañeda-casimiro J, Ortega-roque JA, Marcela A, Aquino-andrade A, Serafín-lópez J, Estrada-parra S, et al. Péptidos antimicrobianos: péptidos con múltiples funciones. Alergia, asma e Inmunol [Internet]. 2009;18(1):16–29. Available from: http://www.medigraphic.com/pdfs/alergia/al-2009/al091d.pdfspa
dc.relation.referencesBarragán-Cárdenas A, Insuasty-Cepeda DS, Niño-Ramírez VA, Umaña-Pérez A, Ochoa-Zarzosa A, López-Meza JE, et al. The Nonapeptide RWQWRWQWR: A Promising Molecule for Breast Cancer Therapy. ChemistrySelect. 2020;5(31):9691–700.spa
dc.relation.referencesBarragán-Cárdenas A, Urrea-Pelayo M, Niño-Ramírez VA, Umaña-Pérez A, Vernot JP, Parra-Giraldo CM, et al. Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin. RSC Adv. 2020;10(30):17593–601.spa
dc.relation.referencesGuerra JR, Cárdenas AB, Ochoa-Zarzosa A, Meza JL, Umaña Pérez A, Fierro-Medina R, et al. The tetrameric peptide LfcinB (20-25)4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line. RSC Adv. 2019;9(36):20497–504.spa
dc.relation.referencesKunda NK. Antimicrobial peptides as novel therapeutics for non-small cell lung cancer. Drug Discov Today [Internet]. 2020;25(1):238–47. Available from: https://doi.org/10.1016/j.drudis.2019.11.012spa
dc.relation.referencesGifford JL, Hunter HN, Vogel HJ. Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci. 2005;62(22):2588–98.spa
dc.relation.referencesBruni N, Capucchio MT, Biasibetti E, Pessione E, Cirrincione S, Giraudo L, et al. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules. 2016;21(6).spa
dc.relation.referencesSchibli DJ, Hwang PM, Vogel HJ. The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles. FEBS Lett. 1999;446(2–3):213–7.spa
dc.relation.referencesInsuasty-Cepeda DS, Barragán-Cárdenas AC, Ochoa-Zarzosa A, López-Meza JE, Fierro-Medina R, García-Castañeda JE, et al. Peptides derived from (RRWQWRMKKLG)2- K-Ahx induce selective cellular death in breast cancer cell lines through apoptotic pathway. Int J Mol Sci. 2020;21(12):1–13.spa
dc.relation.referencesAndersson L, Blomberg L, Flegel M, Lepsa L, Nilsson B, Verlander M. Large-scale synthesis of peptides. Biopolym - Pept Sci Sect. 2000;55(3):227–50.spa
dc.relation.referencesZompra AA, Galanis AS, Werbitzky O, Albericio F. Manufacturing peptides as active pharmaceutical ingredients. Future Med Chem. 2009;1(2):361–77.spa
dc.relation.referencesArdila-Chantré N, Hernández-Cardona AK, Pineda-Castañeda HM, Estupiñan-Torres SM, Leal-Castro AL, Fierro-Medina R, et al. Short peptides conjugated to non-peptidic motifs exhibit antibacterial activity. RSC Adv. 2020;10(49):29580–6.spa
dc.relation.referencesInsuasty Cepeda D, Pineda Castañeda H, Rodríguez Mayor A, García Castañeda J, Maldonado Villamil M, Fierro Medina R, et al. Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology. Molecules [Internet]. 2019;24(7):1215. Available from: https://www.mdpi.com/1420-3049/24/7/1215spa
dc.relation.referencesFDA-U.S. Department of Health and Human Services. Analytical Procedures and Methods Validation for Drugs and Biologics. Guid Ind. 2015;(July):1–15.spa
dc.relation.referencesAguirre, L E al. Validación de Métodos Analíticos. Barcelona: AEFI; 2001.spa
dc.relation.referencesAOAC. How to Meet ISO 17025 Requirements for Method Verification. ALACC Guid. 2007;spa
dc.relation.referencesICH-Harmonised-tripartite-guideline. Validation of Analytical Procedures : Text and Methodology, Q2 (R1), Geneva. Int Conf Harmon. 2005;1994(October 1994):1–17.spa
dc.relation.referencesMagnusson B, Örnemark U. Eurachem Guide: The Fitness for Purpose of Analytical Methods - A Laboratory Guide to Method Validation and Related Topics. 2nd ed. Eurachem. 2014. 62 p.spa
dc.relation.referencesISO 5725-1:1994 Accuracy (trueness and precision) of measurement methods and results - Part 1: General principles and definitions. In 1994.spa
dc.relation.referencesJCGM 200:2012 International vocabulary of metrology - Basic and general concepts and associated terms (VIM). 2012. 91 p.spa
dc.relation.referencesThe Global Cancer Observatory [Internet]. World Health Organization. 2018. Available from: https://gco.iarc.fr/today/homespa
dc.relation.referencesTerrasse V. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018 [Internet]. 2018. Available from: https://www.iarc.fr/wp-content/uploads/2018/09/pr263_E.pdfspa
dc.relation.referencesOrganization WH. Globocan Colombia Fact Sheet. 2018;1–2. Available from: https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdfspa
dc.relation.referencesBustamante Rojas C. Fases del desarrollo de un nuevo medicamento. 2013;1–4. Available from: http://clinicalevidence.pbworks.com/w/file/fetch/63221078/FASES DE DESARROLL%0AO.pdfspa
dc.relation.referencesAtkinson A. Principles of Clinical Pharmacology. Second Edi. 2007. 501–505 p.spa
dc.relation.referencesRoux S, Zékri E, Rousseau B, Cintrat JC, Fay N. Elimination and exchange of trifluoroacetate counter-ion from cationic peptides: A critical evaluation of different approaches. J Pept Sci. 2008;14(3):354–9.spa
dc.relation.referencesThermo. Application Note 115 Determination of Trifluoroacetic Acid ( TFA ) in Peptides. :1–6.spa
dc.relation.referencesWujcik CE, Cahill TM, Seiber JN. Extraction and Analysis of Trifluoroacetic Acid in Environmental Waters. Anal Chem. 1998;70(19):4074–80.spa
dc.relation.referencesCahill TM, Benesch JA, Gustin MS, Zimmerman EJ, Seiber JN. Simplified method for trace analysis of trifluoroacetic acid in plant, soil and water samples using headspace gas chromatography. ACS Div Environ Chem Prepr. 1999;39(2):15–7.spa
dc.relation.referencesJohnson M, Liu M, Struble E, Hettiarachchi K. Characterization of cyclic peptides containing disulfide bonds. J Pharm Biomed Anal [Internet]. 2015;109:112–20. Available from: http://dx.doi.org/10.1016/j.jpba.2015.01.009spa
dc.relation.referencesAnthis NJ, Clore GM. Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci. 2013;22(6):851–8.spa
dc.relation.referencesMoffatt F, Senkans P, Ricketts D. Approaches towards the quantitative analysis of peptides and proteins by reversed-phase high-performance liquid chromatography in the absence of a pure reference sample. J Chromatogr A. 2000;891(2):235–42.spa
dc.relation.referencesMcNaught A, Wilkinson A. IUPAC the Gold Book [Internet]. 2019. p. 1. Available from: https://goldbook.iupac.org/terms/view/I03089spa
dc.relation.referencesVanhee C, Janvier S, Desmedt B, Moens G, Deconinck E, Beer O De, et al. Talanta Analysis of illegal peptide biopharmaceuticals frequently encountered by controlling agencies. Talanta [Internet]. 2015;142:1–10. Available from: http://dx.doi.org/10.1016/j.talanta.2015.04.022spa
dc.relation.referencesStahl M. Peak purity analysis in HPLC and CE using diode-array technology. Agil Technol [Internet]. 2003;8:5988–8647. Available from: http://www.agilent.com/cs/library/applications/5988-8647EN.pdf (Accessed on 24 April 2016)spa
dc.relation.referencesFDA. Methods, Method Verification and Validation. ORA Lab Proced. 2014;II:1–19.spa
dc.relation.referencesVander Heyden Y, Nijhuis A, Smeyers-Verbeke J, Vandeginste BGM, Massart DL. Guidance for robustness/ruggedness tests in method validation. J Pharm Biomed Anal. 2001;24(5–6):723–53.spa
dc.relation.referencesMyers R, Montgomery DC, Anderson-Cook CM. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 4th ed. Hoboken, New Jersey: John Wiley & Sons; 2016. 825 p.spa
dc.relation.referencesMüller A, Flottmann D, Schulz W, Seitz W, Weber WH. Assessment of robustness for an LC-MS-MS multi-method by response-surface methodology, and its sensitivity. Anal Bioanal Chem. 2008;390(5):1317–26.spa
dc.relation.referencesLi W, Zhao LC, Wang Z, Zheng YN, Liang J, Wang H. Response surface metodology to optimize enzymatic preparation of deapio-platycodin D and platycodin D from radix platycodi. Int J Mol Sci. 2012;13(4):4089–100.spa
dc.relation.referencesSarabia LA, Ortiz MC. Response Surface Methodology. Comprehensive Chemometrics. 2009;345–90.spa
dc.relation.referencesAgrawal R, Belemkar S, Bonde C. A Stepwise Strategy Employing Automated Screening for Reversed-Phase Chromatographic Separation of Itraconazole and Its Impurities. Chromatographia [Internet]. 2019;82(12):1767–75. Available from: https://doi.org/10.1007/s10337-019-03802-0spa
dc.relation.referencesDolan JW. System Suitability. LCGC North Am. 2009;27(12):1040–4.spa
dc.relation.referencesvan Deemter JJ, Klinkenberg A, Zuiderweg FJ. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem Eng Sci. 1956;5(6):271–89.spa
dc.relation.referencesGritti F, Guiochon G. The van Deemter equation: Assumptions, limits, and adjustment to modern high performance liquid chromatography. J Chromatogr A [Internet]. 2013;1302:1–13. Available from: http://dx.doi.org/10.1016/j.chroma.2013.06.032spa
dc.relation.referencesHawkes SJ. Modernization of the van Deemter equation for chromatographic zone dispersion. 1983;60(May):393–8.spa
dc.relation.referencesDeStefano JJ, Schuster SA, Lawhorn JM, Kirkland JJ. Performance characteristics of new superficially porous particles. J Chromatogr A [Internet]. 2012;1258:76–83. Available from: http://dx.doi.org/10.1016/j.chroma.2012.08.036spa
dc.relation.referencesGonzález-Ruiz V, Olives AI, Martín MA. Core-shell particles lead the way to renewing high-performance liquid chromatography. TrAC - Trends Anal Chem [Internet]. 2015;64:17–28. Available from: http://dx.doi.org/10.1016/j.trac.2014.08.008spa
dc.relation.referencesFekete S, Ganzler K, Fekete J. Efficiency of the new sub-2μm core-shell (KinetexTM) column in practice, applied for small and large molecule separation. J Pharm Biomed Anal. 2011;54(3):482–90.spa
dc.relation.referencesDesmet G, Clicq D, Gzil P. Geometry-independent plate height representation methods for the direct comparison of the kinetic performance of LC supports with a different size or morphology. Anal Chem. 2005;77(13):4058–70.spa
dc.relation.referencesDesmet G, Clicq D, Nguyen DTT, Guillarme D, Rudaz S, Veuthey JL, et al. Practical constraints in the kinetic plot representation of chromatographic performance data: Theory and application to experimental data. Anal Chem. 2006;78(7):2150–62.spa
dc.relation.referencesBroeckhoven K, Cabooter D, Desmet G. Kinetic performance comparison of fully and superficially porous particles with sizes ranging between 2.7 μm and 5 μm: Intrinsic evaluation and application to a pharmaceutical test compound. J Pharm Anal [Internet]. 2013;3(5):313–23. Available from: http://dx.doi.org/10.1016/j.jpha.2012.12.006spa
dc.relation.referencesBroeckhoven K, Cabooter D, Eeltink S, Desmet G. Kinetic plot based comparison of the efficiency and peak capacity of high-performance liquid chromatography columns: Theoretical background and selected examples. J Chromatogr A [Internet]. 2012;1228:20–30. Available from: http://dx.doi.org/10.1016/j.chroma.2011.08.003spa
dc.relation.referencesBroeckhoven K, Cabooter D, Lynen F, Sandra P, Desmet G. The kinetic plot method applied to gradient chromatography: Theoretical framework and experimental validation. J Chromatogr A [Internet]. 2010;1217(17):2787–95. Available from: http://dx.doi.org/10.1016/j.chroma.2010.02.023spa
dc.relation.referencesSnyder LR, Kirkland JJ, Dolan JW. Introduction to Modern Liquid Chromatography. 3rd ed. New Jersey: John Wiley & Sons; 2010. 960 p.spa
dc.relation.referencesSnyder LR, Dolan JW. High-performance gradient elution: the practical application of the linear-solvent-strength model. New Jersey: John Wiley & Sons; 2007. 496 p.spa
dc.relation.referencesMeyer VR. Practical High Performance Liquid Chromatography. 5th ed. Chichester: John Wiley & Sons; 2010. 432 p.spa
dc.relation.referencesAguilar M. HPLC of Peptides and Proteins [Internet]. Vol. 251, Methods in Molecular Biology. 2004. 3–8 p. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14704444spa
dc.relation.referencesDolan JW. Method Adjustment for Gradient Elution. LCGC North America. 2017;480–5.spa
dc.relation.referencesYang Y. Peptide Global Deprotection/Scavenger-Induced Side Reactions. Side Reactions in Peptide Synthesis. 2016. 43–75 p.spa
dc.relation.referencesMohammad M, Motalib A, Afrina A, Salahuddin KM, Mashud SM, Sharif A. Method Validation for the Determination of Water Content of Metered Dose Inhaler By Karl Fischer Coulometer. Int Res J Pharm. 2012;3(7):144–7.spa
dc.relation.referencesAOAC. Guidelines for Standard Method Performance Requirements. J AOAC Int Off Method Anal. 2016;9.spa
dc.relation.referencesDaniel C. Use of Half-Normal Plots in Interpreting Factorial Two-Level Experiments. Technometrics. 1959;1(4):311.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.lembNeoplasmasspa
dc.subject.lembNeoplasmseng
dc.subject.lembCancerspa
dc.subject.lembCáncereng
dc.subject.proposalpéptidos anticáncerigenosspa
dc.subject.proposalvalidaciónspa
dc.subject.proposalcaracterización fisicoquímicaspa
dc.subject.proposalagentes terapéuticosspa
dc.subject.proposalHPLCspa
dc.subject.proposalEspectrometría de masasspa
dc.subject.proposalTherapeutic peptideseng
dc.subject.proposalvalidationeng
dc.subject.proposalphysicochemical characterizationeng
dc.subject.proposaltherapeutic agentseng
dc.subject.proposalHPLCeng
dc.subject.proposalMass spectrometryeng
dc.titleCaracterización fisicoquímica de un péptido polivalente, derivado de la Lactoferricina Bovina, candidato a fármaco para el tratamiento del cáncer de mamaspa
dc.title.translatedPhysicochemical characterization of a polyvalent peptide, derived from Bovine Lactoferricin, drug candidate for breast cancer treatmenteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo de un medicamento contra el cáncer de mama basado en un péptido polivalente derivado de la LfcinB - Estudio de la fase preclínica (fase cero): caracterización fisicoquímica de un lote del fármaco para estudios pre-clínicosspa
oaire.fundernameMINCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Maestría Kevin Huertas V-Final Repositorio.pdf
Tamaño:
3.81 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: