Reacciones de foto-oxidación catalizadas por complejos de Cu enlazados covalentemente sobre nanotubos de TiO2

dc.contributor.advisorCastellanos Marquez, Nelson Jairspa
dc.contributor.authorCastro Mendez, Rosa Inesspa
dc.contributor.researchgroupDiseño y Reactividad de Estructuras Sólidasspa
dc.date.accessioned2025-03-26T15:26:37Z
dc.date.available2025-03-26T15:26:37Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas,spa
dc.description.abstractEn este trabajo se sintetizaron los complejos cloruro de bis-[(4,4’-dicarboxi)-2,2’-biquinolina]cobre(I) (1) y [(4,4’-dicarboxi)-2,2’-bipiridina]diclorurocobre(II) (2), los cuales fueron enlazados covalentemente sobre la superficie de nanotubos de TiO2. Los respectivos complejos libres y los nanotubos se sintetizaron empleando condiciones hidrotérmicas. El proceso de anclaje de los respectivos complejos sobre el soporte se realizó bajo atmósfera inerte (N2), empleando una reacción de transesterificación entre los grupos carboxílicos de los sustituyentes presentes en el ligante y los grupos hidroxilos superficiales de los nanotubos de TiO2 previamente modificados por una reacción de sililación. Los nanotubos de TiO2 fueron caracterizados por microscopia SEM, espectroscopía Infrarroja (ATR-IR), Raman y UV-Vis en estado sólido, y sus propiedades texturales fueron determinadas por medidas de adsorción de N2. Los complejos de Cu libres y anclados sobre los nanotubos de TiO2 fueron identificados por espectroscopía Infrarroja (ATR-IR), Raman, Análisis Elemental, Difracción de Rayos X en polvo (DRXP) y espectroscopía fotoelectrónica de rayos X (XPS). La evaluación de su actividad fotocatalítica se estudió en la oxidación selectiva de alcoholes utilizando como molécula modelo el alcohol bencílico, empleando O2 molecular y luz visible. Con el desarrollo de esta propuesta se logró: 1- Obtener un sistema catalítico fotoactivo y estable para la oxidación de sustratos orgánicos precursores de productos industriales empleando catalizadores bioinspirados, 2-Avanzar en la frontera del conocimiento en procesos de activación del O2 molecular como agente oxidante amigable con el medio ambiente, 3- Avanzar en la identificación de potenciales centros activos y sistema catalíticos heterogéneos para la oxidación de moléculas orgánicas utilizando fuentes de energía alternativa que conlleve en el futuro a la renovación de tecnologías para la obtención de productos de una forma más eficiente y amigable con el medio ambiente (Texto tomado de la fuente).
dc.description.abstractIn this work, bis-[(4,4'-dicarboxy)-2,2'-biquinoline] copper(I) chloride (1) and [(4,4'-dicarboxy)-2,2'-bipyridine] dichloridecopper(II) (2) complexes were synthesized and covalently bonded on the surface of TiO2 nanotubes. The respective free complexes and nanotubes were synthesized using hydrothermal conditions. The anchoring process of the respective complexes on the support was performed under inert atmosphere (N2), employing a transesterification reaction between the carboxylic groups of the substituents present on the ligand and the surface hydroxyl groups of the TiO2 nanotubes previously modified by a silylation reaction. The TiO2 nanotubes were characterized by SEM microscopy, Infrared (ATR-IR), Raman and UV-Vis spectroscopy in solid state, and their textural properties were determined by N2 adsorption measurements. Free and anchored Cu complexes on TiO2 nanotubes were identified by Infrared (ATR-IR), Raman, Elemental Analysis, Powder X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) spectroscopy. The evaluation of its photocatalytic activity was studied in the selective oxidation of alcohols using benzyl alcohol as a model molecule, using molecular O2 and visible light. With the development of this proposal it was accomplished: 1- To obtain a photoactive and stable catalytic system for the oxidation of organic substrates precursors of industrial products using bio-inspired catalysts, 2- To advance in the frontier of knowledge in processes of activation of molecular O2 as an environmentally friendly oxidizing agent, 3- To improve in the identification of potential active centers and heterogeneous catalytic system for the oxidation of organic molecules using alternative energy sources that will lead in the future to the renewal of technologies for obtaining products in a more efficient and environmentally friendly way.
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestria en Quimicaspa
dc.description.researchareaSíntesis de nuevas estructuras con actividad catalítica y fotocatalítica en reacciones de oxidaciónspa
dc.format.extent98 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87737
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesCrisponi G, Nurchi VM, Fanni D, et al (2010) Copper-related diseases: From chemistry to molecular pathology. Coord Chem Rev 254:876–889. https://doi.org/10.1016/j.ccr.2009.12.018spa
dc.relation.referencesPérez Y, Ballesteros R, Fajardo M, et al (2012) Copper-containing catalysts for solvent-free selective oxidation of benzyl alcohol. J Mol Catal A Chem 352:45–56. https://doi.org/10.1016/j.molcata.2011.10.009spa
dc.relation.referencesDas A, Ren Y, Hessin C, Murr MD El (2020) Copper catalysis with redox-active ligands. Beilstein J Org Chem 16:858–870. https://doi.org/10.3762/bjoc.16.77spa
dc.relation.referencesMcMorn P, Hutchings GJ (2004) Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts. Chem Soc Rev 33:108–122. https://doi.org/10.1039/b200387mspa
dc.relation.referencesNasrollahzadeh M, Rostami-Vartooni A, Ehsani A, Moghadam M (2014) Fabrication, characterization and application of nanopolymer supported copper (II) complex as an effective and reusable catalyst for the CN bond cross-coupling reaction of sulfonamides with arylboronic acids in water under aerobic conditions. J Mol Catal A Chem 387:123–129. https://doi.org/10.1016/j.molcata.2014.02.017spa
dc.relation.referencesMitrofanov A, Brandès S, Herbst F, et al (2017) Immobilization of copper complexes with (1,10-phenanthrolinyl)phosphonates on titania supports for sustainable catalysis. J Mater Chem A 5:12216–12235. https://doi.org/10.1039/c7ta01195dspa
dc.relation.referencesBegum NS, Ahmed HMF (2008) Synthesis of nanocrystalline TiO2 thin films by liquid phase deposition technique and its application for photocatalytic degradation studies. Bull Mater Sci 31:43–48. https://doi.org/10.1007/s12034-008-0008-2spa
dc.relation.referencesSchneider J, Matsuoka M, Takeuchi M, et al (2014) Understanding TiO2photocatalysis: Mechanisms and materials. Chem Rev 114:9919–9986. https://doi.org/10.1021/CR5001892spa
dc.relation.referencesBaran EJ (2018) Química bionorgánica. Avances recientes y perspectivas. Educ Química 10:30. https://doi.org/10.22201/fq.18708404e.1999.1.66504spa
dc.relation.referencesLópez Tévez L (2016) Estudio De Complejos Metálicos Con Ligandos De Interés Biológico. Univ Nac La Plata 55–59spa
dc.relation.referencesBlomberg MRA, Borowski T, Himo F, et al (2014) Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 114:3601–3658. https://doi.org/10.1021/CR400388Tspa
dc.relation.referencesSheng Y, Abreu IA, Cabelli DE, et al (2014) Superoxide dismutases and superoxide reductases. Chem Rev 114:3854–3918. https://doi.org/10.1021/CR4005296spa
dc.relation.referencesSolomon EI, Heppner DE, Johnston EM, et al (2014) Copper active sites in biology. Chem Rev 114:3659–3853. https://doi.org/10.1021/CR400327T/ASSET/IMAGES/LARGE/CR-2013-00327T_0033.JPEGspa
dc.relation.referencesKim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 4:176–185spa
dc.relation.referencesGrubman A, White AR (2014) Copper as a key regulator of cell signalling pathways. Expert Rev Mol Med 16:e11. https://doi.org/10.1017/erm.2014.11spa
dc.relation.referencesSantoro A, Calvo JS, Peris-Díaz MD, et al (2020) The Glutathione/Metallothionein System Challenges the Design of Efficient O2-Activating Copper Complexes. Angew Chemie - Int Ed 59:7830–7835. https://doi.org/10.1002/anie.201916316spa
dc.relation.referencesQuist DA, Diaz DE, Liu JJ, Karlin KD (2016) Activation of dioxygen by copper metalloproteins and insights from model complexes. JBIC J Biol Inorg Chem 2016 222 22:253–288. https://doi.org/10.1007/S00775-016-1415-2spa
dc.relation.referencesTrammell R, Rajabimoghadam K, Garcia-Bosch I (2019) Copper-Promoted Functionalization of Organic Molecules: From Biologically Relevant Cu/O 2 Model Systems to Organometallic Transformations. Chem. Rev. 119:2954–3031spa
dc.relation.referencesLee JY, Karlin KD (2015) Elaboration of copper-oxygen mediated CH activation chemistry in consideration of future fuel and feedstock generation. Curr Opin Chem Biol 25:184–193. https://doi.org/10.1016/j.cbpa.2015.02.014spa
dc.relation.referencesLinder MC (1991) Biochemistry of Copper. Springer USspa
dc.relation.referencesGamez P, Aubel PG, Driessen WL, Reedijk J (2001) Homogeneous bio-inspired copper-catalyzed oxidation reactions. Chem. Soc. Rev. 30:376–385spa
dc.relation.referencesEvano G, Blanchard N, Toumi M (2008) Copper-Mediated Coupling Reactions and Their Applications in Natural Products and Designed Biomolecules Synthesis. 3054–3131spa
dc.relation.referencesAllen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC (2013) Aerobic copper-catalyzed organic reactions. Chem. Rev. 113:6234–6458spa
dc.relation.referencesUNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS PROFESIONALES COORDINACIÓN DE QUÍMICA ESTUDIO DE FORMACIÓN DE COMPLEJOS TERNARIOS DE COBRE (II) CON LA 2,2’-BIPIRIDINA Y ALGUNOS. https://doi.org/10.13140/RG.2.2.30634.26561spa
dc.relation.referencesCuevas ’ A, Kremer ’ E, Etcheverry SB, Baran EJ (1998) Infrared Spectra of the Copper(I1) Complexes of Amino Acids with Hydrophobic Residuesspa
dc.relation.referencesAli BF, Al-Sou’od K, Al-Ja’ar N, et al (2006) Interconversion of copper(II) to copper(I): Synthesis, characterization of copper(II) and copper(I) 2,2′-biquinoline complexes and their microbiological activity. J Coord Chem 59:229–241. https://doi.org/10.1080/00958970500329855spa
dc.relation.referencesSusana Balboa Benavente (2007) Química de coordinación de iones metálicos en estado de oxidación II derivados de α- hidroxicarboxilatos. Universidad de Santiago de Compostelaspa
dc.relation.referencesZhou F, Cai Q (2015) Recent advances in copper-catalyzed asymmetric coupling reactions. Beilstein J Org Chem 11:2600–2615. https://doi.org/10.3762/bjoc.11.280spa
dc.relation.referencesChen T, Cai C Synthetic Communications : An International Journal for Rapid Communication of Synthetic Organic Chemistry Selective Oxidation of Benzyl Alcohols to Aldehydes with a Salophen Copper ( II ) Complex and tert-Butyl Hydroperoxide at Room Temperature. 37–41. https://doi.org/10.1080/00397911.2015.1015034spa
dc.relation.referencesMarkó IE, Gautier A, Dumeunier R, et al (2004) Efficient, Copper-Catalyzed, Aerobic Oxidation of Primary Alcohols. Angew Chemie Int Ed 43:1588–1591. https://doi.org/10.1002/anie.200353458spa
dc.relation.referencesBaleizão C, Garcia H (2006) Chiral salen complexes: An overview to recoverable and reusable homogeneous and heterogenous catalysts. Chem Rev 106:3987–4043. https://doi.org/10.1021/cr050973nspa
dc.relation.referencesRudler H, Denise B (2000) Copper(II)-catalyzed aerobic oxidation of indane in the presence of aldehydes: Intermediate formation of hydroperoxides. J Mol Catal A Chem 154:277–279. https://doi.org/10.1016/S1381-1169(00)00044-3spa
dc.relation.referencesSemmelhack MF, Schmid CR, Cortés DA, Chou CS (1984) Oxidation of Alcohols to Aldehydes with Oxygen and Cupric Ion, Mediated by Nitrosonium Ion. J Am Chem Soc 106:3374–3376. https://doi.org/10.1021/ja00323a064spa
dc.relation.referencesContel M, Villuendas PR, Fernández-Gallardo J, et al (2005) Fluorocarbon soluble copper(II) carboxylate complexes with nonfluoroponytailed nitrogen ligands as precatalysts for the oxidation of alkenols and alcohols under fluorous biphasic or thermomorphic modes: Structural and mechanistic aspects. Inorg Chem 44:9771–9778. https://doi.org/10.1021/ic051220mspa
dc.relation.referencesGreene JF, Hoover JM, Mannel DS, et al (2013) Continuous-flow aerobic oxidation of primary alcohols with a copper(I)/TEMPO catalyst. Org Process Res Dev 17:1247–1251. https://doi.org/10.1021/op400207fspa
dc.relation.referencesHoover JM, Ryland BL, Stahl SS (2013) Copper/TEMPO-catalyzed aerobic alcohol oxidation: Mechanistic assessment of different catalyst systems. ACS Catal 3:2599–2605. https://doi.org/10.1021/cs400689aspa
dc.relation.referencesCheng L, Wang J, Wang M, Wu Z (2010) Mechanistic insight into the alcohol oxidation mediated by an efficient green [CuBr2(2,2’-bipy)]-TEMPO catalyst by density functional method. Inorg Chem 49:9392–9399. https://doi.org/10.1021/ic100996bspa
dc.relation.referencesSafaei E, Bahrami H, Pevec A, et al (2017) Copper(II) complex of new non-innocent O-aminophenol-based ligand as biomimetic model for galactose oxidase enzyme in aerobic oxidation of alcohols. J Mol Struct 1133:526–533. https://doi.org/10.1016/j.molstruc.2016.11.076spa
dc.relation.referencesSchultz MJ, Sigman MS (2006) Recent advances in homogeneous transition metal-catalyzed aerobic alcohol oxidations. Tetrahedron 62:8227–8241. https://doi.org/10.1016/j.tet.2006.06.065spa
dc.relation.referencesPeng Q, Song B, Sun N, et al (2023) Copper Pyrithione (CuPT)-Catalyzed Oxidation of Secondary and Primary Benzyl Alcohols with Molecular oxygen or Air Under Mild Conditions. Catal Letters 153:2665–2673. https://doi.org/10.1007/s10562-022-04172-3spa
dc.relation.referencesNishii T, Ouchi T, Matsuda A, et al (2012) Modified Markó’s aerobic oxidation of alcohols under atmospheric pressure with air or molecular oxygen at room temperature. Tetrahedron Lett 53:5880–5882. https://doi.org/10.1016/J.TETLET.2012.08.095spa
dc.relation.referencesZhan BZ, Thompson A (2004) Recent developments in the aerobic oxidation of alcohols. Tetrahedron 60:2917–2935. https://doi.org/10.1016/j.tet.2004.01.043spa
dc.relation.referencesCui H, Tong X, Yu L, et al (2019) A catalytic oxidative valorization of biomass-derived furfural with ethanol by copper/azodicarboxylate system. Catal Today 319:100–104. https://doi.org/10.1016/j.cattod.2018.03.050spa
dc.relation.referencesShen SS, Kartika V, Tan YS, et al (2012) Selective aerobic oxidation of allylic and benzylic alcohols catalyzed by N-hydroxyindole and copper(I) chloride. Tetrahedron Lett 53:986–990. https://doi.org/10.1016/j.tetlet.2011.12.058spa
dc.relation.referencesHoover JM, Stahl SS (2011) Highly practical copper(I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols. J Am Chem Soc 133:16901–16910. https://doi.org/10.1021/JA206230Hspa
dc.relation.referencesShibuya M, Osada Y, Sasano Y, et al (2011) Highly efficient, organocatalytic aerobic alcohol oxidation. J Am Chem Soc 133:6497–6500. https://doi.org/10.1021/JA110940Cspa
dc.relation.referencesCostas M, Llobet A (1999) Copper(I)-induced activation of dioxygen for the oxidation of organic substrates under mild conditions. An evaluation of ligand effects. J Mol Catal A Chem 142:113–124. https://doi.org/10.1016/S1381-1169(98)00278-7spa
dc.relation.referencesIspir E (2014) Synthesis and Characterization of Silica-Supported Schiff Base Ligands and Their Metal Complexes: Applications as Catalysts for the Oxidation of Alkanes. Phosphorus, Sulfur Silicon Relat Elem 189:1644–1655. https://doi.org/10.1080/10426507.2014.885971spa
dc.relation.referencesJiang D, Mallat T, Meier DM, et al (2010) Copper metal-organic framework: Structure and activity in the allylic oxidation of cyclohexene with molecular oxygen. J Catal 270:26–33. https://doi.org/10.1016/j.jcat.2009.12.002spa
dc.relation.referencesKitajima N, Koda T, Iwata Y, Moro-oka Y (1990) Reaction Aspects of a μ-Peroxo Binuclear Copper(II) Complex. J Am Chem Soc 112:8833–8839. https://doi.org/10.1021/ja00180a026spa
dc.relation.referencesCarp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32:33–177spa
dc.relation.referencesVerbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement. J. Photochem. Photobiol. C Photochem. Rev. 24:64–82spa
dc.relation.referencesMoellmann J, Ehrlich S, Tonner R, Grimme S (2012) A DFT-D study of structural and energetic properties of TiO 2 modifications. J Phys Condens Matter 24:. https://doi.org/10.1088/0953-8984/24/42/424206spa
dc.relation.referencesPelaez M, Nolan NT, Pillai SC, et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125:331–349spa
dc.relation.referencesThompson TL, Yates JT (2006) Surface science studies of the photoactivation of TIO2 - New photochemical processes. Chem Rev 106:4428–4453. https://doi.org/10.1021/cr050172kspa
dc.relation.referencesFernández-García M, Martínez-Arias A, Hanson JC, Rodriguez JA (2004) Nanostructured oxides in chemistry: Characterization and properties. Chem Rev 104:4063–4104. https://doi.org/10.1021/cr030032fspa
dc.relation.referencesMurcia J (2013) Control de la nanoestructura de sistemas M-TiO2 (M=Pt y Au) preparados por fotodeposición con propiedades fotocatalíticas optimizadas. Inst Cienc Mater Sevilla Doctor:223spa
dc.relation.referencesVillarroel Bolcic RM (2019) Modificación de las propiedades fotoactivas del dióxido de Titanio (TiO2) mediante la introducción de defectos durante el depósito por pulverización catódica reactiva. Universidad de Chilespa
dc.relation.referencesRamírez AM (2006) Fotocatálisis de TiO 2 para crear Materiales de Construcción más durables. Red Rev Cient Am Lat el Caribe, España y Port 4:12–17spa
dc.relation.referencesCer M, Qu C, Avanzados M, et al (2020) Synthesis of TiO2 mesoporous particles and kinetic study of the methylene blue photodegradation. 7:22–34spa
dc.relation.referencesVlazan P, Ursu DH, Irina-Moisescu C, et al (2015) Structural and electrical properties of TiO2/ZnO core-shell nanoparticles synthesized by hydrothermal method. Mater Charact 101:153–158. https://doi.org/10.1016/j.matchar.2015.01.017spa
dc.relation.referencesCabrera J, López A, Vílchez R, et al (2014) Nanoestrcuturas mesoporosas 1D del TiO2 obtenidas por el metodo hidrotermal. Rev Soc Quím Perúspa
dc.relation.referencesPavasupree S, Ngamsinlapasathian S, Nakajima M, et al (2006) Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. J Photochem Photobiol A Chem 184:163–169. https://doi.org/10.1016/j.jphotochem.2006.04.010spa
dc.relation.referencesRajasekar K, Thennarasu S, Rajesh R, et al (2013) Preparation of mesoporous TiO2/CNT nanocomposites by synthesis of mesoporous titania via EISA and their photocatalytic degradation under visible light irradiation. Solid State Sci 26:45–52. https://doi.org/10.1016/j.solidstatesciences.2013.09.003spa
dc.relation.referencesWu CY, Tu KJ, Deng JP, et al (2017) Markedly enhanced surface hydroxyl groups of TiO2 nanoparticles with Superior water-dispersibility for photocatalysis. Materials (Basel) 10:. https://doi.org/10.3390/ma10050566spa
dc.relation.referencesJoseane J, Mesa M, Ricardo J, et al (2017) Methylene blue degradation over M-TiO 2 photocatalysts (M= Au or Pt) Degradación de azul de metileno sobre fotocatalizadores M-TiO 2 (M = Au o Pt). Cienc en Desarro 8:109–117spa
dc.relation.referencesJosé M, Rodríguez H (2017) Eliminación de NOx mediante fotocatálisis heterogénea. Universidad de las Plamas de Gran Canariaspa
dc.relation.referencesLeong KH, Monash P, Ibrahim S, Saravanan P (2014) Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol-gel method. Sol Energy 101:321–332. https://doi.org/10.1016/j.solener.2014.01.006spa
dc.relation.referencesGomez Cortez A (2018) Fotoactivación de nanotubos de dióxido de titanio inducida por luz uv. Universdiad Autonoma del Estado de Morelosspa
dc.relation.referencesLiang HC, Li XZ, Nowotny J (2010) Photocatalytical properties of TiO2 nanotubes. Solid State Phenom 162:295–328. https://doi.org/10.4028/www.scientific.net/SSP.162.295spa
dc.relation.referencesMoazeni M, Hajipour H, Askari M, Nusheh M (2015) Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents. Mater Res Bull 61:70–75. https://doi.org/10.1016/j.materresbull.2014.09.069spa
dc.relation.referencesFechete I, Wang Y, Védrine JC (2012) The past, present and future of heterogeneous catalysis. Catal Today 189:2–27. https://doi.org/10.1016/j.cattod.2012.04.003spa
dc.relation.referencesYin JF, Velayudham M, Bhattacharya D, et al (2012) Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar cells - A goal toward a “ bright” future. Coord Chem Rev 256:3008–3035. https://doi.org/10.1016/j.ccr.2012.06.022spa
dc.relation.referencesFraile JM, García JI, Mayoral JA (2009) Noncovalent immobilization of enantioselective catalysts. Chem Rev 109:360–417. https://doi.org/10.1021/cr800363yspa
dc.relation.referencesArzoumanian H, Castellanos NJ, Martínez FO, et al (2010) Silicon-assisted direct covalent grafting on metal oxide surfaces: Synthesis and characterization of carboxylate N,N′-ligands on TiO 2. Eur J Inorg Chem 2010:1633–1641. https://doi.org/10.1002/ejic.200901092spa
dc.relation.referencesMartínez H, Cáceres MF, Martínez F, et al (2016) Photo-epoxidation of cyclohexene, cyclooctene and 1-octene with molecular oxygen catalyzed by dichloro dioxo-(4,4′-dicarboxylato-2,2′-bipyridine) molybdenum(VI) grafted on mesoporous TiO2. J Mol Catal A Chem 423:248–255. https://doi.org/10.1016/j.molcata.2016.07.006spa
dc.relation.referencesBakhtchadjian R, Manucharova LA, Tavadyan LA (2015) Selective oxidation of DDT by dioxygen on the dioxo-Mo(VI) complex anchored on a TiO2 under UV-irradiation. Catal Commun 69:193–195. https://doi.org/10.1016/j.catcom.2015.06.016spa
dc.relation.referencesCopéret C (2012) Surface and interfacial chemistry. Chimia (Aarau) 66:125–129. https://doi.org/10.2533/chimia.2012.125spa
dc.relation.referencesGheorghiu CC (2013) Inmovilizacion de catalizadores homogeneos en materiales de carbon nanoestructurados. Instituto Universitario de Materiales de Alicantespa
dc.relation.referencesCruz P, Pérez Y, Del Hierro I, Fajardo M (2016) Copper, copper oxide nanoparticles and copper complexes supported on mesoporous SBA-15 as catalysts in the selective oxidation of benzyl alcohol in aqueous phase. Microporous Mesoporous Mater 220:136–147. https://doi.org/10.1016/j.micromeso.2015.08.029spa
dc.relation.referencesValenzuela T (2016) Estudio Del Efecto Del Dopaje Con Cobre, Hierro Y Manganeso En El Catalizador De Nitruro De Carbono Grafítico (G-C3N4) Sintetizado a Partir De Urea, En La Reacción Fotocatalítica De Oxidación Del Alcohol Bencílico. 53spa
dc.relation.referencesFeng X, Lv P, Sun W, et al (2017) Reduced graphene oxide-supported Cu nanoparticles for the selective oxidation of benzyl alcohol to aldehyde with molecular oxygen. Catal Commun 99:105–109. https://doi.org/10.1016/j.catcom.2017.05.013spa
dc.relation.referencesOrtega FM (2019) Oxidación Catalítica del Alcohol Bencílico con un Complejo de Cobre (I) Anclado sobre TiO2. Univeresidad Industrial de Santanderspa
dc.relation.referencesNdolomingo MJ, Meijboom R (2017) Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al 2 O 3 supported copper and gold nanoparticles. Appl Surf Sci 398:19–32. https://doi.org/10.1016/j.apsusc.2016.12.020spa
dc.relation.referencesFan J, Dai Y, Li Y, et al (2009) Low-temperature, highly selective, gas-phase oxidation of benzyl alcohol over mesoporous K-Cu-TiO2 with stable copper(I) oxidation state. J Am Chem Soc 131:15568–15569. https://doi.org/10.1021/ja9032499spa
dc.relation.referencesSharma M, Das B, Sharma M, et al (2017) Pd/Cu-Oxide Nanoconjugate at Zeolite-Y Crystallite Crafting the Mesoporous Channels for Selective Oxidation of Benzyl-Alcohols. ACS Appl Mater Interfaces 9:35453–35462. https://doi.org/10.1021/acsami.7b11086spa
dc.relation.referencesFen LB, Han TK, Nee NM, et al (2011) Physico-chemical properties of titania nanotubes synthesized via hydrothermal and annealing treatment. Appl Surf Sci 258:431–435. https://doi.org/10.1016/j.apsusc.2011.08.115spa
dc.relation.referencesCastellanos NJ, Martínez F, Páez-Mozo EA, et al (2012) Bis(3,5-dimethylpyrazol-1-yl)acetate bound to titania and complexed to molybdenum dioxido as a bidentate N,N′-ligand. Direct comparison with a bipyridyl analog in a photocatalytic arylalkane oxidation by O2. Transit Met Chem 37:629–637. https://doi.org/10.1007/s11243-012-9631-2spa
dc.relation.referencesŚwiderski G, Wilczewska AZ, Świsłocka R, et al (2018) Spectroscopic (IR, Raman, UV–Vis) study and thermal analysis of 3d-metal complexes with 4-imidazolecarboxylic acid. J Therm Anal Calorim 134:513–525. https://doi.org/10.1007/S10973-018-7524-0/FIGURES/8spa
dc.relation.referencesDudley RJ, Hathaway BJ, Hodgson PG, et al (1974) A correlation of the copper-nitrogen bond-lengths, infrared spectra and electronic spectra of some axial tetraammines and pentaammines of the copper(II) ion. J Inorg Nucl Chem 36:1947–1950. https://doi.org/10.1016/0022-1902(74)80706-2spa
dc.relation.referencesCobianco S, Lezzi A, Scotti R (2000) A spectroscopic study of Cu(II)-complexes of chelating resins containing nitrogen and sulfur atoms in the chelating groups. React Funct Polym 43:7–16. https://doi.org/10.1016/S1381-5148(98)00077-7spa
dc.relation.referencesPrenesti E, Berto S (2002) Interaction of copper(II) with imidazole pyridine nitrogen-containing ligands in aqueous medium: A spectroscopic study. J Inorg Biochem 88:37–43. https://doi.org/10.1016/S0162-0134(01)00325-7spa
dc.relation.referencesFifer RA, Schiffer J (1969) Vibrational Analysis of Copper Chloride Dihydrate. J Chem Phys 50:21–25. https://doi.org/10.1063/1.1670780spa
dc.relation.referencesGuha Thakurata D, Kalyan A, Sen R, Bhattacharjee R (2014) Vibrational ir active spectra of copper (ii) chloride and cobalt (ii) chloride: A combined experimental and theoretical lie algebraic study. J Comput Theor Nanosci 11:776–780. https://doi.org/10.1166/jctn.2014.3427spa
dc.relation.referencesArmaroli N (2001) Photoactive mono- and polynuclear Cu(I)-phenanthrolines. A viable alternative to Ru(II)-polypyridines? Chem Soc Rev 30:113–124. https://doi.org/10.1039/b000703jspa
dc.relation.referencesPearson RG (1963) Hard and Soft Acids and Bases. J Am Chem Soc 85:3533–3539. https://doi.org/10.1021/ja00905a001spa
dc.relation.referencesCretu C, Andelescu AA, Candreva A, et al (2018) Bisubstituted-biquinoline Cu(i) complexes: Synthesis, mesomorphism and photophysical studies in solution and condensed states. J Mater Chem C 6:10073–10082. https://doi.org/10.1039/c8tc02999gspa
dc.relation.referencesWills KA, Mandujano-Ramírez HJ, Merino G, et al (2013) Investigation of a copper(i) biquinoline complex for application in dye-sensitized solar cells. RSC Adv 3:23361–23369. https://doi.org/10.1039/c3ra44936jspa
dc.relation.referencesNakamoto K (1960) Ultraviolet spectra and structures of 2,2′-bipyridine and 2,2′,2″-terpyridine in aqueous solution. J Phys Chem 64:1420–1425. https://doi.org/10.1021/j100839a014spa
dc.relation.referencesMarcu A, Stanila A, Rusu D, et al (2007) Spectroscopic studies of copper (II) complexes with some amino acids. J Optoelectron Adv Mater 9:741–746spa
dc.relation.referencesFaggi E, Gavara R, Bolte M, et al (2015) Copper(ii) complexes of macrocyclic and open-chain pseudopeptidic ligands: synthesis, characterization and interaction with dicarboxylates. Dalt Trans 44:12700–12710. https://doi.org/10.1039/c5dt01496dspa
dc.relation.referencesMa Z, Ming H, Huang H, et al (2012) One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J Chem 36:861–864. https://doi.org/10.1039/c2nj20942jspa
dc.relation.referencesAvgouropoulos G, Ioannides T (2003) Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method. Appl Catal A Gen 244:155–167. https://doi.org/10.1016/S0926-860X(02)00558-6spa
dc.relation.referencesZhu X, Shi X, Asiri AM, et al (2018) Efficient oxygen evolution electrocatalyzed by a Cu nanoparticle-embedded N-doped carbon nanowire array. Inorg Chem Front 5:1188–1192. https://doi.org/10.1039/c8qi00119gspa
dc.relation.referencesWang J, Ren J, Tang Q, et al (2022) An Efficient Cyan Emission from Copper (II) Complexes with Mixed Organic Conjugate Ligands. Materials (Basel) 15:1–16. https://doi.org/10.3390/ma15051719spa
dc.relation.referencesVan Albada GA, Smeets WJJ, Spek AL, Reedijk J (1997) Synthesis, spectroscopic properties and X-ray crystal structures of two dinuclear alkoxo-bridged copper (II) compounds with the ligand bis(1-methyl-2-benzimidazolyl) propane. A unique alkoxo-bridged Cu(II) dinuclear compound with an additional bidentate b. Inorganica Chim Acta 260:151–161. https://doi.org/10.1016/s0020-1693(96)05554-5spa
dc.relation.referencesKomaei SA, Van Albada GA, Reedijk J (1999) Synthesis, spectroscopic and magnetic properties of methoxo-bridged copper(II) complexes with 2-amino-4-methylpyridine as the ligand. Transit Met Chem 24:104–107. https://doi.org/10.1023/A:1006993017555spa
dc.relation.referencesElectron Paramagnetic Resonance of Transition Ions - A. Abragam, B. Bleaney - Google Librosspa
dc.relation.referencesWeil JA, Bolton JR, Wertz JE, Buckmaster HA (1995) Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Phys Today 48:71–72. https://doi.org/10.1063/1.2808029spa
dc.relation.referencesGersmann HR, Swalen JD (1962) Electron paramagnetic resonance spectra of copper complexes. J Chem Phys 36:3221–3233. https://doi.org/10.1063/1.1732450spa
dc.relation.referencesSheng Z, Shao L, Chen J, et al (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite ox(2).pdf. ACS nanoletters 5:4350–4358spa
dc.relation.referencesYamada Y, Yano K, Fukuzumi S (2012) Catalytic application of shape-controlled Cu 2O particles protected by Co 3O 4 nanoparticles for hydrogen evolution from ammonia borane. Energy Environ Sci 5:5356–5363. https://doi.org/10.1039/c1ee02639aspa
dc.relation.referencesMartinez Q H, Amaya ÁA, Paez-Mozo EA, et al (2021) Photo-assisted O-atom transfer to monoterpenes with molecular oxygen and a dioxoMo(VI) complex immobilized on TiO2 nanotubes. Catal Today 375:441–457. https://doi.org/10.1016/j.cattod.2020.07.053spa
dc.relation.referencesPorkodi K, Arokiamary SD (2007) Synthesis and spectroscopic characterization of nanostructured anatase titania: A photocatalyst. Mater Charact 58:495–503. https://doi.org/10.1016/J.MATCHAR.2006.04.019spa
dc.relation.referencesMartínez H, Amaya ÁA, Páez-Mozo EA, Martínez O. F (2018) Highly efficient epoxidation of alfa-pinene with O2 photocatalyzed by dioxoMo(VI) complex anchored on TiO2 nanotubes. Microporous Mesoporous Mater 265:202–210. https://doi.org/10.1016/j.micromeso.2018.02.005spa
dc.relation.referencesSing KSW, Everett DH, Haul RAW, et al (1985) Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl Chem 57:603–619.spa
dc.relation.referencesLin H, Huang CP, Li W, et al (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B Environ 68:1–11. https://doi.org/10.1016/j.apcatb.2006.07.018spa
dc.relation.referencesYang L, Kruse B (2004) Revised Kubelka–Munk theory I Theory and application. J Opt Soc Am A 21:1933. https://doi.org/10.1364/josaa.21.001933spa
dc.relation.referencesNowak M, Kauch B, Szperlich P (2009) Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev Sci Instrum 80:046107. https://doi.org/10.1063/1.3103603spa
dc.relation.referencesMartínez Q H, Paez-Mozo EA, Martínez O F (2021) Selective Photo-epoxidation of (R)-(+)- and (S)-(−)-Limonene by Chiral and Non-Chiral Dioxo-Mo(VI) Complexes Anchored on TiO2-Nanotubes. Top Catal 64:36–50. https://doi.org/10.1007/s11244-020-01355-3spa
dc.relation.referencesMa X, Zhang J, Wang B, et al (2018) Hierarchical Cu 2 O foam/g-C 3 N 4 photocathode for photoelectrochemical hydrogen production. Appl Surf Sci 427:907–916. https://doi.org/10.1016/j.apsusc.2017.09.075spa
dc.relation.referencesShantanam S, MUELLER (2018) Copper–Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity. Physiol Behav 176:139–148. https://doi.org/10.1021/acs.chemrev.6b00636.Copperspa
dc.relation.referencesBaldenebro-López J, Castorena-González J, Flores-Holguín N, et al (2012) Computational molecular nanoscience study of the properties of copper complexes for dye-sensitized solar cells. Int J Mol Sci 13:16005–16019. https://doi.org/10.3390/ijms131216005spa
dc.relation.referencesRoesky HW, Andruh M The interplay of coordinative, hydrogen bonding and pÁ/ p stacking interactions in sustaining supramolecular solid-state architectures. A study case of bis(4-pyridyl)-and bis(4-pyridyl-N-oxide) tectonsspa
dc.relation.referencesCramer CJ, Tolman WB (2007) Mononuclear Cu-O2 complexes: Geometries, spectroscopic properties, electronic structures, and reactivity. Acc Chem Res 40:601–608. https://doi.org/10.1021/AR700008C/SUPPL_FILE/AR700008C-FILE001.PDFspa
dc.relation.referencesRajabimoghadam K, Darwish Y, Bashir U, et al (2018) Catalytic Aerobic Oxidation of Alcohols by Copper Complexes Bearing Redox-Active Ligands with Tunable H-Bonding Groups. J Am Chem Soc 140:16625–16634. https://doi.org/10.1021/jacs.8b08748spa
dc.relation.referencesWürtele C, Gaoutchenova E, Harms K, et al (2006) Crystallographic Characterization of a Synthetic 1:1 End-On Copper Dioxygen Adduct Complex. Angew Chemie Int Ed 45:3867–3869. https://doi.org/10.1002/ANIE.200600351spa
dc.relation.referencesSchatz M, Raab V, Foxon SP, et al (2004) Combined Spectroscopic and Theoretical Evidence for a Persistent End-On Copper Superoxo Complex. Angew Chemie Int Ed 43:4360–4363. https://doi.org/10.1002/ANIE.200454125spa
dc.relation.referencesLee JY, Peterson RL, Ohkubo K, et al (2015) Mechanistic Insights into the Oxidation of Substituted Phenols via Hydrogen Atom Abstraction by a Cupric−Superoxo Complex Jung. JACS. https://doi.org/10.1021/JA503105Bspa
dc.relation.referencesBalzani V, Juris A, Venturi M, et al (1996) Luminescent and redox-active polynuclear transition metal complexes. Chem Rev 96:759–833. https://doi.org/10.1021/cr941154yspa
dc.relation.referencesMiller MT, Gantzel PK, Karpishin TB (1998) Structures of the Copper(I) and Copper(II) Complexes of 2,9-Diphenyl-1,10-phenanthroline: Implications for Excited-State Structural Distortion. Inorg Chem 37:2285–2290. https://doi.org/10.1021/ic971164sspa
dc.relation.referencesHorváth O (1994) Photochemistry of copper(I) complexes. Coord Chem Rev 135–136:303–324. https://doi.org/10.1016/0010-8545(94)80071-5spa
dc.relation.referencesStubbe JA, Van Der Donk WA (1998) Protein radicals in enzyme catalysis. Chem Rev 98:705–762. https://doi.org/10.1021/cr9400875spa
dc.relation.referencesBollinger JM, Krebs C (2007) Enzymatic C-H activation by metal-superoxo intermediates. Curr Opin Chem Biol 11:151–158. https://doi.org/10.1016/j.cbpa.2007.02.037spa
dc.relation.referencesFu Y, Sun D, Qin M, et al (2012) Cu(II)-and Co(II)-containing metal-organic frameworks (MOFs) as catalysts for cyclohexene oxidation with oxygen under solvent-free conditions. RSC Adv 2:3309–3314. https://doi.org/10.1039/c2ra01038kspa
dc.relation.referencesPuzari A, Baruah JB (2002) Organic oxidative reactions mediated by copper. J Mol Catal A Chem 187:149–162. https://doi.org/10.1016/S1381-1169(02)00273-Xspa
dc.relation.referencesMeng C, Yang K, Fu X, Yuan R (2015) Photocatalytic oxidation of benzyl alcohol by homogeneous CuCl2/solvent: A model system to explore the role of molecular oxygen. ACS Catal 5:3760–3766. https://doi.org/10.1021/acscatal.5b00644spa
dc.relation.referencesFujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63:515–582spa
dc.relation.referencesLuong GKT, Ku Y (2021) Selective Oxidation of Benzyl Alcohol in the Aqueous Phase by TiO2-Based Photocatalysts: A Review. Chem Eng Technol 44:2178–2190. https://doi.org/10.1002/ceat.202100321spa
dc.relation.referencesIslam SZ, Nagpure S, Kim DY, Rankin SE (2017) Synthesis and catalytic applications of non-metal doped mesoporous titania. Inorganics 5:1–43. https://doi.org/10.3390/inorganics5010015spa
dc.relation.referencesGuan R, Wang D, Zhang Y, et al (2021) Enhanced photocatalytic N2 fixation via defective and fluoride modified TiO2 surface. Appl Catal B Environ 282:119580. https://doi.org/10.1016/j.apcatb.2020.119580spa
dc.relation.referencesZhang M, Wang Q, Chen C, et al (2009) Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: Oxygen isotope studies. Angew Chemie - Int Ed 48:6081–6084. https://doi.org/10.1002/anie.200900322spa
dc.relation.referencesChen J, Zhang W, Li H, et al (2021) Recent advances in TiO2 ‐based catalysts for N2 reduction reaction . SusMat 1:174–193. https://doi.org/10.1002/sus2.13spa
dc.relation.referencesEnache DI, Knight DW, Hutchings GJ (2005) Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts. Catal Letters 103:43–52. https://doi.org/10.1007/s10562-005-6501-yspa
dc.relation.referencesDiaz-Angulo J, Gomez-Bonilla I, Jimenez-Tohapanta C, et al (2019) Visible-light activation of TiO2 by dye-sensitization for degradation of pharmaceutical compounds. Photochem Photobiol Sci 18:897–904. https://doi.org/10.1039/c8pp00270cspa
dc.relation.referencesAugustynski J, Vlachopoulos N, Liska P, GräTzel M (1988) Very Efficient Visible Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface Area Polycrystalline Titanium Dioxide Films. J Am Chem Soc 110:1216–1220. https://doi.org/10.1021/ja00212a033spa
dc.relation.referencesWatanabe M, Sun S, Ishihara T, et al (2018) Visible Light-Driven Dye-Sensitized Photocatalytic Hydrogen Production by Porphyrin and its Cyclic Dimer and Trimer: Effect of Multi-Pyridyl-Anchoring Groups on Photocatalytic Activity and Stability. ACS Appl Energy Mater 1:6072–6081. https://doi.org/10.1021/acsaem.8b01113spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.lembESPECTROSCOPIA DE RAYOS-Xspa
dc.subject.lembX-ray spectroscopyeng
dc.subject.lembANALISIS ESPECTRALspa
dc.subject.lembSpectrum analysiseng
dc.subject.lembCatalystseng
dc.subject.lembCOBREspa
dc.subject.lembCoppereng
dc.subject.lembCOMPUESTOS DE TITANIOspa
dc.subject.lembTitanium compoundseng
dc.subject.lembCATALIZADORESspa
dc.subject.proposalComplejos de cobrespa
dc.subject.proposalOxidación de alcohol bencílicospa
dc.subject.proposalFotocatálisis heterogéneaspa
dc.subject.proposalTiO2spa
dc.subject.proposalActivación de O2 molecularspa
dc.subject.proposalCopper complexeseng
dc.subject.proposalBenzyl alcohol oxidationeng
dc.subject.proposalHeterogeneous photocatalysiseng
dc.subject.proposalTiO2eng
dc.subject.proposalMolecular O2 activationeng
dc.titleReacciones de foto-oxidación catalizadas por complejos de Cu enlazados covalentemente sobre nanotubos de TiO2
dc.title.translatedPhotooxidation reactions catalyzed by covalently bonded Cu complexes on TiO2 nanotubeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1033696953.2025.pdf
Tamaño:
4.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: