Reacciones de foto-oxidación catalizadas por complejos de Cu enlazados covalentemente sobre nanotubos de TiO2
dc.contributor.advisor | Castellanos Marquez, Nelson Jair | spa |
dc.contributor.author | Castro Mendez, Rosa Ines | spa |
dc.contributor.researchgroup | Diseño y Reactividad de Estructuras Sólidas | spa |
dc.date.accessioned | 2025-03-26T15:26:37Z | |
dc.date.available | 2025-03-26T15:26:37Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, | spa |
dc.description.abstract | En este trabajo se sintetizaron los complejos cloruro de bis-[(4,4’-dicarboxi)-2,2’-biquinolina]cobre(I) (1) y [(4,4’-dicarboxi)-2,2’-bipiridina]diclorurocobre(II) (2), los cuales fueron enlazados covalentemente sobre la superficie de nanotubos de TiO2. Los respectivos complejos libres y los nanotubos se sintetizaron empleando condiciones hidrotérmicas. El proceso de anclaje de los respectivos complejos sobre el soporte se realizó bajo atmósfera inerte (N2), empleando una reacción de transesterificación entre los grupos carboxílicos de los sustituyentes presentes en el ligante y los grupos hidroxilos superficiales de los nanotubos de TiO2 previamente modificados por una reacción de sililación. Los nanotubos de TiO2 fueron caracterizados por microscopia SEM, espectroscopía Infrarroja (ATR-IR), Raman y UV-Vis en estado sólido, y sus propiedades texturales fueron determinadas por medidas de adsorción de N2. Los complejos de Cu libres y anclados sobre los nanotubos de TiO2 fueron identificados por espectroscopía Infrarroja (ATR-IR), Raman, Análisis Elemental, Difracción de Rayos X en polvo (DRXP) y espectroscopía fotoelectrónica de rayos X (XPS). La evaluación de su actividad fotocatalítica se estudió en la oxidación selectiva de alcoholes utilizando como molécula modelo el alcohol bencílico, empleando O2 molecular y luz visible. Con el desarrollo de esta propuesta se logró: 1- Obtener un sistema catalítico fotoactivo y estable para la oxidación de sustratos orgánicos precursores de productos industriales empleando catalizadores bioinspirados, 2-Avanzar en la frontera del conocimiento en procesos de activación del O2 molecular como agente oxidante amigable con el medio ambiente, 3- Avanzar en la identificación de potenciales centros activos y sistema catalíticos heterogéneos para la oxidación de moléculas orgánicas utilizando fuentes de energía alternativa que conlleve en el futuro a la renovación de tecnologías para la obtención de productos de una forma más eficiente y amigable con el medio ambiente (Texto tomado de la fuente). | |
dc.description.abstract | In this work, bis-[(4,4'-dicarboxy)-2,2'-biquinoline] copper(I) chloride (1) and [(4,4'-dicarboxy)-2,2'-bipyridine] dichloridecopper(II) (2) complexes were synthesized and covalently bonded on the surface of TiO2 nanotubes. The respective free complexes and nanotubes were synthesized using hydrothermal conditions. The anchoring process of the respective complexes on the support was performed under inert atmosphere (N2), employing a transesterification reaction between the carboxylic groups of the substituents present on the ligand and the surface hydroxyl groups of the TiO2 nanotubes previously modified by a silylation reaction. The TiO2 nanotubes were characterized by SEM microscopy, Infrared (ATR-IR), Raman and UV-Vis spectroscopy in solid state, and their textural properties were determined by N2 adsorption measurements. Free and anchored Cu complexes on TiO2 nanotubes were identified by Infrared (ATR-IR), Raman, Elemental Analysis, Powder X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) spectroscopy. The evaluation of its photocatalytic activity was studied in the selective oxidation of alcohols using benzyl alcohol as a model molecule, using molecular O2 and visible light. With the development of this proposal it was accomplished: 1- To obtain a photoactive and stable catalytic system for the oxidation of organic substrates precursors of industrial products using bio-inspired catalysts, 2- To advance in the frontier of knowledge in processes of activation of molecular O2 as an environmentally friendly oxidizing agent, 3- To improve in the identification of potential active centers and heterogeneous catalytic system for the oxidation of organic molecules using alternative energy sources that will lead in the future to the renewal of technologies for obtaining products in a more efficient and environmentally friendly way. | |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Maestria en Quimica | spa |
dc.description.researcharea | Síntesis de nuevas estructuras con actividad catalítica y fotocatalítica en reacciones de oxidación | spa |
dc.format.extent | 98 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87737 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química | spa |
dc.relation.references | Crisponi G, Nurchi VM, Fanni D, et al (2010) Copper-related diseases: From chemistry to molecular pathology. Coord Chem Rev 254:876–889. https://doi.org/10.1016/j.ccr.2009.12.018 | spa |
dc.relation.references | Pérez Y, Ballesteros R, Fajardo M, et al (2012) Copper-containing catalysts for solvent-free selective oxidation of benzyl alcohol. J Mol Catal A Chem 352:45–56. https://doi.org/10.1016/j.molcata.2011.10.009 | spa |
dc.relation.references | Das A, Ren Y, Hessin C, Murr MD El (2020) Copper catalysis with redox-active ligands. Beilstein J Org Chem 16:858–870. https://doi.org/10.3762/bjoc.16.77 | spa |
dc.relation.references | McMorn P, Hutchings GJ (2004) Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts. Chem Soc Rev 33:108–122. https://doi.org/10.1039/b200387m | spa |
dc.relation.references | Nasrollahzadeh M, Rostami-Vartooni A, Ehsani A, Moghadam M (2014) Fabrication, characterization and application of nanopolymer supported copper (II) complex as an effective and reusable catalyst for the CN bond cross-coupling reaction of sulfonamides with arylboronic acids in water under aerobic conditions. J Mol Catal A Chem 387:123–129. https://doi.org/10.1016/j.molcata.2014.02.017 | spa |
dc.relation.references | Mitrofanov A, Brandès S, Herbst F, et al (2017) Immobilization of copper complexes with (1,10-phenanthrolinyl)phosphonates on titania supports for sustainable catalysis. J Mater Chem A 5:12216–12235. https://doi.org/10.1039/c7ta01195d | spa |
dc.relation.references | Begum NS, Ahmed HMF (2008) Synthesis of nanocrystalline TiO2 thin films by liquid phase deposition technique and its application for photocatalytic degradation studies. Bull Mater Sci 31:43–48. https://doi.org/10.1007/s12034-008-0008-2 | spa |
dc.relation.references | Schneider J, Matsuoka M, Takeuchi M, et al (2014) Understanding TiO2photocatalysis: Mechanisms and materials. Chem Rev 114:9919–9986. https://doi.org/10.1021/CR5001892 | spa |
dc.relation.references | Baran EJ (2018) Química bionorgánica. Avances recientes y perspectivas. Educ Química 10:30. https://doi.org/10.22201/fq.18708404e.1999.1.66504 | spa |
dc.relation.references | López Tévez L (2016) Estudio De Complejos Metálicos Con Ligandos De Interés Biológico. Univ Nac La Plata 55–59 | spa |
dc.relation.references | Blomberg MRA, Borowski T, Himo F, et al (2014) Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 114:3601–3658. https://doi.org/10.1021/CR400388T | spa |
dc.relation.references | Sheng Y, Abreu IA, Cabelli DE, et al (2014) Superoxide dismutases and superoxide reductases. Chem Rev 114:3854–3918. https://doi.org/10.1021/CR4005296 | spa |
dc.relation.references | Solomon EI, Heppner DE, Johnston EM, et al (2014) Copper active sites in biology. Chem Rev 114:3659–3853. https://doi.org/10.1021/CR400327T/ASSET/IMAGES/LARGE/CR-2013-00327T_0033.JPEG | spa |
dc.relation.references | Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 4:176–185 | spa |
dc.relation.references | Grubman A, White AR (2014) Copper as a key regulator of cell signalling pathways. Expert Rev Mol Med 16:e11. https://doi.org/10.1017/erm.2014.11 | spa |
dc.relation.references | Santoro A, Calvo JS, Peris-Díaz MD, et al (2020) The Glutathione/Metallothionein System Challenges the Design of Efficient O2-Activating Copper Complexes. Angew Chemie - Int Ed 59:7830–7835. https://doi.org/10.1002/anie.201916316 | spa |
dc.relation.references | Quist DA, Diaz DE, Liu JJ, Karlin KD (2016) Activation of dioxygen by copper metalloproteins and insights from model complexes. JBIC J Biol Inorg Chem 2016 222 22:253–288. https://doi.org/10.1007/S00775-016-1415-2 | spa |
dc.relation.references | Trammell R, Rajabimoghadam K, Garcia-Bosch I (2019) Copper-Promoted Functionalization of Organic Molecules: From Biologically Relevant Cu/O 2 Model Systems to Organometallic Transformations. Chem. Rev. 119:2954–3031 | spa |
dc.relation.references | Lee JY, Karlin KD (2015) Elaboration of copper-oxygen mediated CH activation chemistry in consideration of future fuel and feedstock generation. Curr Opin Chem Biol 25:184–193. https://doi.org/10.1016/j.cbpa.2015.02.014 | spa |
dc.relation.references | Linder MC (1991) Biochemistry of Copper. Springer US | spa |
dc.relation.references | Gamez P, Aubel PG, Driessen WL, Reedijk J (2001) Homogeneous bio-inspired copper-catalyzed oxidation reactions. Chem. Soc. Rev. 30:376–385 | spa |
dc.relation.references | Evano G, Blanchard N, Toumi M (2008) Copper-Mediated Coupling Reactions and Their Applications in Natural Products and Designed Biomolecules Synthesis. 3054–3131 | spa |
dc.relation.references | Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC (2013) Aerobic copper-catalyzed organic reactions. Chem. Rev. 113:6234–6458 | spa |
dc.relation.references | UNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS PROFESIONALES COORDINACIÓN DE QUÍMICA ESTUDIO DE FORMACIÓN DE COMPLEJOS TERNARIOS DE COBRE (II) CON LA 2,2’-BIPIRIDINA Y ALGUNOS. https://doi.org/10.13140/RG.2.2.30634.26561 | spa |
dc.relation.references | Cuevas ’ A, Kremer ’ E, Etcheverry SB, Baran EJ (1998) Infrared Spectra of the Copper(I1) Complexes of Amino Acids with Hydrophobic Residues | spa |
dc.relation.references | Ali BF, Al-Sou’od K, Al-Ja’ar N, et al (2006) Interconversion of copper(II) to copper(I): Synthesis, characterization of copper(II) and copper(I) 2,2′-biquinoline complexes and their microbiological activity. J Coord Chem 59:229–241. https://doi.org/10.1080/00958970500329855 | spa |
dc.relation.references | Susana Balboa Benavente (2007) Química de coordinación de iones metálicos en estado de oxidación II derivados de α- hidroxicarboxilatos. Universidad de Santiago de Compostela | spa |
dc.relation.references | Zhou F, Cai Q (2015) Recent advances in copper-catalyzed asymmetric coupling reactions. Beilstein J Org Chem 11:2600–2615. https://doi.org/10.3762/bjoc.11.280 | spa |
dc.relation.references | Chen T, Cai C Synthetic Communications : An International Journal for Rapid Communication of Synthetic Organic Chemistry Selective Oxidation of Benzyl Alcohols to Aldehydes with a Salophen Copper ( II ) Complex and tert-Butyl Hydroperoxide at Room Temperature. 37–41. https://doi.org/10.1080/00397911.2015.1015034 | spa |
dc.relation.references | Markó IE, Gautier A, Dumeunier R, et al (2004) Efficient, Copper-Catalyzed, Aerobic Oxidation of Primary Alcohols. Angew Chemie Int Ed 43:1588–1591. https://doi.org/10.1002/anie.200353458 | spa |
dc.relation.references | Baleizão C, Garcia H (2006) Chiral salen complexes: An overview to recoverable and reusable homogeneous and heterogenous catalysts. Chem Rev 106:3987–4043. https://doi.org/10.1021/cr050973n | spa |
dc.relation.references | Rudler H, Denise B (2000) Copper(II)-catalyzed aerobic oxidation of indane in the presence of aldehydes: Intermediate formation of hydroperoxides. J Mol Catal A Chem 154:277–279. https://doi.org/10.1016/S1381-1169(00)00044-3 | spa |
dc.relation.references | Semmelhack MF, Schmid CR, Cortés DA, Chou CS (1984) Oxidation of Alcohols to Aldehydes with Oxygen and Cupric Ion, Mediated by Nitrosonium Ion. J Am Chem Soc 106:3374–3376. https://doi.org/10.1021/ja00323a064 | spa |
dc.relation.references | Contel M, Villuendas PR, Fernández-Gallardo J, et al (2005) Fluorocarbon soluble copper(II) carboxylate complexes with nonfluoroponytailed nitrogen ligands as precatalysts for the oxidation of alkenols and alcohols under fluorous biphasic or thermomorphic modes: Structural and mechanistic aspects. Inorg Chem 44:9771–9778. https://doi.org/10.1021/ic051220m | spa |
dc.relation.references | Greene JF, Hoover JM, Mannel DS, et al (2013) Continuous-flow aerobic oxidation of primary alcohols with a copper(I)/TEMPO catalyst. Org Process Res Dev 17:1247–1251. https://doi.org/10.1021/op400207f | spa |
dc.relation.references | Hoover JM, Ryland BL, Stahl SS (2013) Copper/TEMPO-catalyzed aerobic alcohol oxidation: Mechanistic assessment of different catalyst systems. ACS Catal 3:2599–2605. https://doi.org/10.1021/cs400689a | spa |
dc.relation.references | Cheng L, Wang J, Wang M, Wu Z (2010) Mechanistic insight into the alcohol oxidation mediated by an efficient green [CuBr2(2,2’-bipy)]-TEMPO catalyst by density functional method. Inorg Chem 49:9392–9399. https://doi.org/10.1021/ic100996b | spa |
dc.relation.references | Safaei E, Bahrami H, Pevec A, et al (2017) Copper(II) complex of new non-innocent O-aminophenol-based ligand as biomimetic model for galactose oxidase enzyme in aerobic oxidation of alcohols. J Mol Struct 1133:526–533. https://doi.org/10.1016/j.molstruc.2016.11.076 | spa |
dc.relation.references | Schultz MJ, Sigman MS (2006) Recent advances in homogeneous transition metal-catalyzed aerobic alcohol oxidations. Tetrahedron 62:8227–8241. https://doi.org/10.1016/j.tet.2006.06.065 | spa |
dc.relation.references | Peng Q, Song B, Sun N, et al (2023) Copper Pyrithione (CuPT)-Catalyzed Oxidation of Secondary and Primary Benzyl Alcohols with Molecular oxygen or Air Under Mild Conditions. Catal Letters 153:2665–2673. https://doi.org/10.1007/s10562-022-04172-3 | spa |
dc.relation.references | Nishii T, Ouchi T, Matsuda A, et al (2012) Modified Markó’s aerobic oxidation of alcohols under atmospheric pressure with air or molecular oxygen at room temperature. Tetrahedron Lett 53:5880–5882. https://doi.org/10.1016/J.TETLET.2012.08.095 | spa |
dc.relation.references | Zhan BZ, Thompson A (2004) Recent developments in the aerobic oxidation of alcohols. Tetrahedron 60:2917–2935. https://doi.org/10.1016/j.tet.2004.01.043 | spa |
dc.relation.references | Cui H, Tong X, Yu L, et al (2019) A catalytic oxidative valorization of biomass-derived furfural with ethanol by copper/azodicarboxylate system. Catal Today 319:100–104. https://doi.org/10.1016/j.cattod.2018.03.050 | spa |
dc.relation.references | Shen SS, Kartika V, Tan YS, et al (2012) Selective aerobic oxidation of allylic and benzylic alcohols catalyzed by N-hydroxyindole and copper(I) chloride. Tetrahedron Lett 53:986–990. https://doi.org/10.1016/j.tetlet.2011.12.058 | spa |
dc.relation.references | Hoover JM, Stahl SS (2011) Highly practical copper(I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols. J Am Chem Soc 133:16901–16910. https://doi.org/10.1021/JA206230H | spa |
dc.relation.references | Shibuya M, Osada Y, Sasano Y, et al (2011) Highly efficient, organocatalytic aerobic alcohol oxidation. J Am Chem Soc 133:6497–6500. https://doi.org/10.1021/JA110940C | spa |
dc.relation.references | Costas M, Llobet A (1999) Copper(I)-induced activation of dioxygen for the oxidation of organic substrates under mild conditions. An evaluation of ligand effects. J Mol Catal A Chem 142:113–124. https://doi.org/10.1016/S1381-1169(98)00278-7 | spa |
dc.relation.references | Ispir E (2014) Synthesis and Characterization of Silica-Supported Schiff Base Ligands and Their Metal Complexes: Applications as Catalysts for the Oxidation of Alkanes. Phosphorus, Sulfur Silicon Relat Elem 189:1644–1655. https://doi.org/10.1080/10426507.2014.885971 | spa |
dc.relation.references | Jiang D, Mallat T, Meier DM, et al (2010) Copper metal-organic framework: Structure and activity in the allylic oxidation of cyclohexene with molecular oxygen. J Catal 270:26–33. https://doi.org/10.1016/j.jcat.2009.12.002 | spa |
dc.relation.references | Kitajima N, Koda T, Iwata Y, Moro-oka Y (1990) Reaction Aspects of a μ-Peroxo Binuclear Copper(II) Complex. J Am Chem Soc 112:8833–8839. https://doi.org/10.1021/ja00180a026 | spa |
dc.relation.references | Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32:33–177 | spa |
dc.relation.references | Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement. J. Photochem. Photobiol. C Photochem. Rev. 24:64–82 | spa |
dc.relation.references | Moellmann J, Ehrlich S, Tonner R, Grimme S (2012) A DFT-D study of structural and energetic properties of TiO 2 modifications. J Phys Condens Matter 24:. https://doi.org/10.1088/0953-8984/24/42/424206 | spa |
dc.relation.references | Pelaez M, Nolan NT, Pillai SC, et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125:331–349 | spa |
dc.relation.references | Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TIO2 - New photochemical processes. Chem Rev 106:4428–4453. https://doi.org/10.1021/cr050172k | spa |
dc.relation.references | Fernández-García M, Martínez-Arias A, Hanson JC, Rodriguez JA (2004) Nanostructured oxides in chemistry: Characterization and properties. Chem Rev 104:4063–4104. https://doi.org/10.1021/cr030032f | spa |
dc.relation.references | Murcia J (2013) Control de la nanoestructura de sistemas M-TiO2 (M=Pt y Au) preparados por fotodeposición con propiedades fotocatalíticas optimizadas. Inst Cienc Mater Sevilla Doctor:223 | spa |
dc.relation.references | Villarroel Bolcic RM (2019) Modificación de las propiedades fotoactivas del dióxido de Titanio (TiO2) mediante la introducción de defectos durante el depósito por pulverización catódica reactiva. Universidad de Chile | spa |
dc.relation.references | Ramírez AM (2006) Fotocatálisis de TiO 2 para crear Materiales de Construcción más durables. Red Rev Cient Am Lat el Caribe, España y Port 4:12–17 | spa |
dc.relation.references | Cer M, Qu C, Avanzados M, et al (2020) Synthesis of TiO2 mesoporous particles and kinetic study of the methylene blue photodegradation. 7:22–34 | spa |
dc.relation.references | Vlazan P, Ursu DH, Irina-Moisescu C, et al (2015) Structural and electrical properties of TiO2/ZnO core-shell nanoparticles synthesized by hydrothermal method. Mater Charact 101:153–158. https://doi.org/10.1016/j.matchar.2015.01.017 | spa |
dc.relation.references | Cabrera J, López A, Vílchez R, et al (2014) Nanoestrcuturas mesoporosas 1D del TiO2 obtenidas por el metodo hidrotermal. Rev Soc Quím Perú | spa |
dc.relation.references | Pavasupree S, Ngamsinlapasathian S, Nakajima M, et al (2006) Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. J Photochem Photobiol A Chem 184:163–169. https://doi.org/10.1016/j.jphotochem.2006.04.010 | spa |
dc.relation.references | Rajasekar K, Thennarasu S, Rajesh R, et al (2013) Preparation of mesoporous TiO2/CNT nanocomposites by synthesis of mesoporous titania via EISA and their photocatalytic degradation under visible light irradiation. Solid State Sci 26:45–52. https://doi.org/10.1016/j.solidstatesciences.2013.09.003 | spa |
dc.relation.references | Wu CY, Tu KJ, Deng JP, et al (2017) Markedly enhanced surface hydroxyl groups of TiO2 nanoparticles with Superior water-dispersibility for photocatalysis. Materials (Basel) 10:. https://doi.org/10.3390/ma10050566 | spa |
dc.relation.references | Joseane J, Mesa M, Ricardo J, et al (2017) Methylene blue degradation over M-TiO 2 photocatalysts (M= Au or Pt) Degradación de azul de metileno sobre fotocatalizadores M-TiO 2 (M = Au o Pt). Cienc en Desarro 8:109–117 | spa |
dc.relation.references | José M, Rodríguez H (2017) Eliminación de NOx mediante fotocatálisis heterogénea. Universidad de las Plamas de Gran Canaria | spa |
dc.relation.references | Leong KH, Monash P, Ibrahim S, Saravanan P (2014) Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol-gel method. Sol Energy 101:321–332. https://doi.org/10.1016/j.solener.2014.01.006 | spa |
dc.relation.references | Gomez Cortez A (2018) Fotoactivación de nanotubos de dióxido de titanio inducida por luz uv. Universdiad Autonoma del Estado de Morelos | spa |
dc.relation.references | Liang HC, Li XZ, Nowotny J (2010) Photocatalytical properties of TiO2 nanotubes. Solid State Phenom 162:295–328. https://doi.org/10.4028/www.scientific.net/SSP.162.295 | spa |
dc.relation.references | Moazeni M, Hajipour H, Askari M, Nusheh M (2015) Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents. Mater Res Bull 61:70–75. https://doi.org/10.1016/j.materresbull.2014.09.069 | spa |
dc.relation.references | Fechete I, Wang Y, Védrine JC (2012) The past, present and future of heterogeneous catalysis. Catal Today 189:2–27. https://doi.org/10.1016/j.cattod.2012.04.003 | spa |
dc.relation.references | Yin JF, Velayudham M, Bhattacharya D, et al (2012) Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar cells - A goal toward a “ bright” future. Coord Chem Rev 256:3008–3035. https://doi.org/10.1016/j.ccr.2012.06.022 | spa |
dc.relation.references | Fraile JM, García JI, Mayoral JA (2009) Noncovalent immobilization of enantioselective catalysts. Chem Rev 109:360–417. https://doi.org/10.1021/cr800363y | spa |
dc.relation.references | Arzoumanian H, Castellanos NJ, Martínez FO, et al (2010) Silicon-assisted direct covalent grafting on metal oxide surfaces: Synthesis and characterization of carboxylate N,N′-ligands on TiO 2. Eur J Inorg Chem 2010:1633–1641. https://doi.org/10.1002/ejic.200901092 | spa |
dc.relation.references | Martínez H, Cáceres MF, Martínez F, et al (2016) Photo-epoxidation of cyclohexene, cyclooctene and 1-octene with molecular oxygen catalyzed by dichloro dioxo-(4,4′-dicarboxylato-2,2′-bipyridine) molybdenum(VI) grafted on mesoporous TiO2. J Mol Catal A Chem 423:248–255. https://doi.org/10.1016/j.molcata.2016.07.006 | spa |
dc.relation.references | Bakhtchadjian R, Manucharova LA, Tavadyan LA (2015) Selective oxidation of DDT by dioxygen on the dioxo-Mo(VI) complex anchored on a TiO2 under UV-irradiation. Catal Commun 69:193–195. https://doi.org/10.1016/j.catcom.2015.06.016 | spa |
dc.relation.references | Copéret C (2012) Surface and interfacial chemistry. Chimia (Aarau) 66:125–129. https://doi.org/10.2533/chimia.2012.125 | spa |
dc.relation.references | Gheorghiu CC (2013) Inmovilizacion de catalizadores homogeneos en materiales de carbon nanoestructurados. Instituto Universitario de Materiales de Alicante | spa |
dc.relation.references | Cruz P, Pérez Y, Del Hierro I, Fajardo M (2016) Copper, copper oxide nanoparticles and copper complexes supported on mesoporous SBA-15 as catalysts in the selective oxidation of benzyl alcohol in aqueous phase. Microporous Mesoporous Mater 220:136–147. https://doi.org/10.1016/j.micromeso.2015.08.029 | spa |
dc.relation.references | Valenzuela T (2016) Estudio Del Efecto Del Dopaje Con Cobre, Hierro Y Manganeso En El Catalizador De Nitruro De Carbono Grafítico (G-C3N4) Sintetizado a Partir De Urea, En La Reacción Fotocatalítica De Oxidación Del Alcohol Bencílico. 53 | spa |
dc.relation.references | Feng X, Lv P, Sun W, et al (2017) Reduced graphene oxide-supported Cu nanoparticles for the selective oxidation of benzyl alcohol to aldehyde with molecular oxygen. Catal Commun 99:105–109. https://doi.org/10.1016/j.catcom.2017.05.013 | spa |
dc.relation.references | Ortega FM (2019) Oxidación Catalítica del Alcohol Bencílico con un Complejo de Cobre (I) Anclado sobre TiO2. Univeresidad Industrial de Santander | spa |
dc.relation.references | Ndolomingo MJ, Meijboom R (2017) Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al 2 O 3 supported copper and gold nanoparticles. Appl Surf Sci 398:19–32. https://doi.org/10.1016/j.apsusc.2016.12.020 | spa |
dc.relation.references | Fan J, Dai Y, Li Y, et al (2009) Low-temperature, highly selective, gas-phase oxidation of benzyl alcohol over mesoporous K-Cu-TiO2 with stable copper(I) oxidation state. J Am Chem Soc 131:15568–15569. https://doi.org/10.1021/ja9032499 | spa |
dc.relation.references | Sharma M, Das B, Sharma M, et al (2017) Pd/Cu-Oxide Nanoconjugate at Zeolite-Y Crystallite Crafting the Mesoporous Channels for Selective Oxidation of Benzyl-Alcohols. ACS Appl Mater Interfaces 9:35453–35462. https://doi.org/10.1021/acsami.7b11086 | spa |
dc.relation.references | Fen LB, Han TK, Nee NM, et al (2011) Physico-chemical properties of titania nanotubes synthesized via hydrothermal and annealing treatment. Appl Surf Sci 258:431–435. https://doi.org/10.1016/j.apsusc.2011.08.115 | spa |
dc.relation.references | Castellanos NJ, Martínez F, Páez-Mozo EA, et al (2012) Bis(3,5-dimethylpyrazol-1-yl)acetate bound to titania and complexed to molybdenum dioxido as a bidentate N,N′-ligand. Direct comparison with a bipyridyl analog in a photocatalytic arylalkane oxidation by O2. Transit Met Chem 37:629–637. https://doi.org/10.1007/s11243-012-9631-2 | spa |
dc.relation.references | Świderski G, Wilczewska AZ, Świsłocka R, et al (2018) Spectroscopic (IR, Raman, UV–Vis) study and thermal analysis of 3d-metal complexes with 4-imidazolecarboxylic acid. J Therm Anal Calorim 134:513–525. https://doi.org/10.1007/S10973-018-7524-0/FIGURES/8 | spa |
dc.relation.references | Dudley RJ, Hathaway BJ, Hodgson PG, et al (1974) A correlation of the copper-nitrogen bond-lengths, infrared spectra and electronic spectra of some axial tetraammines and pentaammines of the copper(II) ion. J Inorg Nucl Chem 36:1947–1950. https://doi.org/10.1016/0022-1902(74)80706-2 | spa |
dc.relation.references | Cobianco S, Lezzi A, Scotti R (2000) A spectroscopic study of Cu(II)-complexes of chelating resins containing nitrogen and sulfur atoms in the chelating groups. React Funct Polym 43:7–16. https://doi.org/10.1016/S1381-5148(98)00077-7 | spa |
dc.relation.references | Prenesti E, Berto S (2002) Interaction of copper(II) with imidazole pyridine nitrogen-containing ligands in aqueous medium: A spectroscopic study. J Inorg Biochem 88:37–43. https://doi.org/10.1016/S0162-0134(01)00325-7 | spa |
dc.relation.references | Fifer RA, Schiffer J (1969) Vibrational Analysis of Copper Chloride Dihydrate. J Chem Phys 50:21–25. https://doi.org/10.1063/1.1670780 | spa |
dc.relation.references | Guha Thakurata D, Kalyan A, Sen R, Bhattacharjee R (2014) Vibrational ir active spectra of copper (ii) chloride and cobalt (ii) chloride: A combined experimental and theoretical lie algebraic study. J Comput Theor Nanosci 11:776–780. https://doi.org/10.1166/jctn.2014.3427 | spa |
dc.relation.references | Armaroli N (2001) Photoactive mono- and polynuclear Cu(I)-phenanthrolines. A viable alternative to Ru(II)-polypyridines? Chem Soc Rev 30:113–124. https://doi.org/10.1039/b000703j | spa |
dc.relation.references | Pearson RG (1963) Hard and Soft Acids and Bases. J Am Chem Soc 85:3533–3539. https://doi.org/10.1021/ja00905a001 | spa |
dc.relation.references | Cretu C, Andelescu AA, Candreva A, et al (2018) Bisubstituted-biquinoline Cu(i) complexes: Synthesis, mesomorphism and photophysical studies in solution and condensed states. J Mater Chem C 6:10073–10082. https://doi.org/10.1039/c8tc02999g | spa |
dc.relation.references | Wills KA, Mandujano-Ramírez HJ, Merino G, et al (2013) Investigation of a copper(i) biquinoline complex for application in dye-sensitized solar cells. RSC Adv 3:23361–23369. https://doi.org/10.1039/c3ra44936j | spa |
dc.relation.references | Nakamoto K (1960) Ultraviolet spectra and structures of 2,2′-bipyridine and 2,2′,2″-terpyridine in aqueous solution. J Phys Chem 64:1420–1425. https://doi.org/10.1021/j100839a014 | spa |
dc.relation.references | Marcu A, Stanila A, Rusu D, et al (2007) Spectroscopic studies of copper (II) complexes with some amino acids. J Optoelectron Adv Mater 9:741–746 | spa |
dc.relation.references | Faggi E, Gavara R, Bolte M, et al (2015) Copper(ii) complexes of macrocyclic and open-chain pseudopeptidic ligands: synthesis, characterization and interaction with dicarboxylates. Dalt Trans 44:12700–12710. https://doi.org/10.1039/c5dt01496d | spa |
dc.relation.references | Ma Z, Ming H, Huang H, et al (2012) One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J Chem 36:861–864. https://doi.org/10.1039/c2nj20942j | spa |
dc.relation.references | Avgouropoulos G, Ioannides T (2003) Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method. Appl Catal A Gen 244:155–167. https://doi.org/10.1016/S0926-860X(02)00558-6 | spa |
dc.relation.references | Zhu X, Shi X, Asiri AM, et al (2018) Efficient oxygen evolution electrocatalyzed by a Cu nanoparticle-embedded N-doped carbon nanowire array. Inorg Chem Front 5:1188–1192. https://doi.org/10.1039/c8qi00119g | spa |
dc.relation.references | Wang J, Ren J, Tang Q, et al (2022) An Efficient Cyan Emission from Copper (II) Complexes with Mixed Organic Conjugate Ligands. Materials (Basel) 15:1–16. https://doi.org/10.3390/ma15051719 | spa |
dc.relation.references | Van Albada GA, Smeets WJJ, Spek AL, Reedijk J (1997) Synthesis, spectroscopic properties and X-ray crystal structures of two dinuclear alkoxo-bridged copper (II) compounds with the ligand bis(1-methyl-2-benzimidazolyl) propane. A unique alkoxo-bridged Cu(II) dinuclear compound with an additional bidentate b. Inorganica Chim Acta 260:151–161. https://doi.org/10.1016/s0020-1693(96)05554-5 | spa |
dc.relation.references | Komaei SA, Van Albada GA, Reedijk J (1999) Synthesis, spectroscopic and magnetic properties of methoxo-bridged copper(II) complexes with 2-amino-4-methylpyridine as the ligand. Transit Met Chem 24:104–107. https://doi.org/10.1023/A:1006993017555 | spa |
dc.relation.references | Electron Paramagnetic Resonance of Transition Ions - A. Abragam, B. Bleaney - Google Libros | spa |
dc.relation.references | Weil JA, Bolton JR, Wertz JE, Buckmaster HA (1995) Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Phys Today 48:71–72. https://doi.org/10.1063/1.2808029 | spa |
dc.relation.references | Gersmann HR, Swalen JD (1962) Electron paramagnetic resonance spectra of copper complexes. J Chem Phys 36:3221–3233. https://doi.org/10.1063/1.1732450 | spa |
dc.relation.references | Sheng Z, Shao L, Chen J, et al (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite ox(2).pdf. ACS nanoletters 5:4350–4358 | spa |
dc.relation.references | Yamada Y, Yano K, Fukuzumi S (2012) Catalytic application of shape-controlled Cu 2O particles protected by Co 3O 4 nanoparticles for hydrogen evolution from ammonia borane. Energy Environ Sci 5:5356–5363. https://doi.org/10.1039/c1ee02639a | spa |
dc.relation.references | Martinez Q H, Amaya ÁA, Paez-Mozo EA, et al (2021) Photo-assisted O-atom transfer to monoterpenes with molecular oxygen and a dioxoMo(VI) complex immobilized on TiO2 nanotubes. Catal Today 375:441–457. https://doi.org/10.1016/j.cattod.2020.07.053 | spa |
dc.relation.references | Porkodi K, Arokiamary SD (2007) Synthesis and spectroscopic characterization of nanostructured anatase titania: A photocatalyst. Mater Charact 58:495–503. https://doi.org/10.1016/J.MATCHAR.2006.04.019 | spa |
dc.relation.references | Martínez H, Amaya ÁA, Páez-Mozo EA, Martínez O. F (2018) Highly efficient epoxidation of alfa-pinene with O2 photocatalyzed by dioxoMo(VI) complex anchored on TiO2 nanotubes. Microporous Mesoporous Mater 265:202–210. https://doi.org/10.1016/j.micromeso.2018.02.005 | spa |
dc.relation.references | Sing KSW, Everett DH, Haul RAW, et al (1985) Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl Chem 57:603–619. | spa |
dc.relation.references | Lin H, Huang CP, Li W, et al (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B Environ 68:1–11. https://doi.org/10.1016/j.apcatb.2006.07.018 | spa |
dc.relation.references | Yang L, Kruse B (2004) Revised Kubelka–Munk theory I Theory and application. J Opt Soc Am A 21:1933. https://doi.org/10.1364/josaa.21.001933 | spa |
dc.relation.references | Nowak M, Kauch B, Szperlich P (2009) Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev Sci Instrum 80:046107. https://doi.org/10.1063/1.3103603 | spa |
dc.relation.references | Martínez Q H, Paez-Mozo EA, Martínez O F (2021) Selective Photo-epoxidation of (R)-(+)- and (S)-(−)-Limonene by Chiral and Non-Chiral Dioxo-Mo(VI) Complexes Anchored on TiO2-Nanotubes. Top Catal 64:36–50. https://doi.org/10.1007/s11244-020-01355-3 | spa |
dc.relation.references | Ma X, Zhang J, Wang B, et al (2018) Hierarchical Cu 2 O foam/g-C 3 N 4 photocathode for photoelectrochemical hydrogen production. Appl Surf Sci 427:907–916. https://doi.org/10.1016/j.apsusc.2017.09.075 | spa |
dc.relation.references | Shantanam S, MUELLER (2018) Copper–Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity. Physiol Behav 176:139–148. https://doi.org/10.1021/acs.chemrev.6b00636.Copper | spa |
dc.relation.references | Baldenebro-López J, Castorena-González J, Flores-Holguín N, et al (2012) Computational molecular nanoscience study of the properties of copper complexes for dye-sensitized solar cells. Int J Mol Sci 13:16005–16019. https://doi.org/10.3390/ijms131216005 | spa |
dc.relation.references | Roesky HW, Andruh M The interplay of coordinative, hydrogen bonding and pÁ/ p stacking interactions in sustaining supramolecular solid-state architectures. A study case of bis(4-pyridyl)-and bis(4-pyridyl-N-oxide) tectons | spa |
dc.relation.references | Cramer CJ, Tolman WB (2007) Mononuclear Cu-O2 complexes: Geometries, spectroscopic properties, electronic structures, and reactivity. Acc Chem Res 40:601–608. https://doi.org/10.1021/AR700008C/SUPPL_FILE/AR700008C-FILE001.PDF | spa |
dc.relation.references | Rajabimoghadam K, Darwish Y, Bashir U, et al (2018) Catalytic Aerobic Oxidation of Alcohols by Copper Complexes Bearing Redox-Active Ligands with Tunable H-Bonding Groups. J Am Chem Soc 140:16625–16634. https://doi.org/10.1021/jacs.8b08748 | spa |
dc.relation.references | Würtele C, Gaoutchenova E, Harms K, et al (2006) Crystallographic Characterization of a Synthetic 1:1 End-On Copper Dioxygen Adduct Complex. Angew Chemie Int Ed 45:3867–3869. https://doi.org/10.1002/ANIE.200600351 | spa |
dc.relation.references | Schatz M, Raab V, Foxon SP, et al (2004) Combined Spectroscopic and Theoretical Evidence for a Persistent End-On Copper Superoxo Complex. Angew Chemie Int Ed 43:4360–4363. https://doi.org/10.1002/ANIE.200454125 | spa |
dc.relation.references | Lee JY, Peterson RL, Ohkubo K, et al (2015) Mechanistic Insights into the Oxidation of Substituted Phenols via Hydrogen Atom Abstraction by a Cupric−Superoxo Complex Jung. JACS. https://doi.org/10.1021/JA503105B | spa |
dc.relation.references | Balzani V, Juris A, Venturi M, et al (1996) Luminescent and redox-active polynuclear transition metal complexes. Chem Rev 96:759–833. https://doi.org/10.1021/cr941154y | spa |
dc.relation.references | Miller MT, Gantzel PK, Karpishin TB (1998) Structures of the Copper(I) and Copper(II) Complexes of 2,9-Diphenyl-1,10-phenanthroline: Implications for Excited-State Structural Distortion. Inorg Chem 37:2285–2290. https://doi.org/10.1021/ic971164s | spa |
dc.relation.references | Horváth O (1994) Photochemistry of copper(I) complexes. Coord Chem Rev 135–136:303–324. https://doi.org/10.1016/0010-8545(94)80071-5 | spa |
dc.relation.references | Stubbe JA, Van Der Donk WA (1998) Protein radicals in enzyme catalysis. Chem Rev 98:705–762. https://doi.org/10.1021/cr9400875 | spa |
dc.relation.references | Bollinger JM, Krebs C (2007) Enzymatic C-H activation by metal-superoxo intermediates. Curr Opin Chem Biol 11:151–158. https://doi.org/10.1016/j.cbpa.2007.02.037 | spa |
dc.relation.references | Fu Y, Sun D, Qin M, et al (2012) Cu(II)-and Co(II)-containing metal-organic frameworks (MOFs) as catalysts for cyclohexene oxidation with oxygen under solvent-free conditions. RSC Adv 2:3309–3314. https://doi.org/10.1039/c2ra01038k | spa |
dc.relation.references | Puzari A, Baruah JB (2002) Organic oxidative reactions mediated by copper. J Mol Catal A Chem 187:149–162. https://doi.org/10.1016/S1381-1169(02)00273-X | spa |
dc.relation.references | Meng C, Yang K, Fu X, Yuan R (2015) Photocatalytic oxidation of benzyl alcohol by homogeneous CuCl2/solvent: A model system to explore the role of molecular oxygen. ACS Catal 5:3760–3766. https://doi.org/10.1021/acscatal.5b00644 | spa |
dc.relation.references | Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63:515–582 | spa |
dc.relation.references | Luong GKT, Ku Y (2021) Selective Oxidation of Benzyl Alcohol in the Aqueous Phase by TiO2-Based Photocatalysts: A Review. Chem Eng Technol 44:2178–2190. https://doi.org/10.1002/ceat.202100321 | spa |
dc.relation.references | Islam SZ, Nagpure S, Kim DY, Rankin SE (2017) Synthesis and catalytic applications of non-metal doped mesoporous titania. Inorganics 5:1–43. https://doi.org/10.3390/inorganics5010015 | spa |
dc.relation.references | Guan R, Wang D, Zhang Y, et al (2021) Enhanced photocatalytic N2 fixation via defective and fluoride modified TiO2 surface. Appl Catal B Environ 282:119580. https://doi.org/10.1016/j.apcatb.2020.119580 | spa |
dc.relation.references | Zhang M, Wang Q, Chen C, et al (2009) Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: Oxygen isotope studies. Angew Chemie - Int Ed 48:6081–6084. https://doi.org/10.1002/anie.200900322 | spa |
dc.relation.references | Chen J, Zhang W, Li H, et al (2021) Recent advances in TiO2 ‐based catalysts for N2 reduction reaction . SusMat 1:174–193. https://doi.org/10.1002/sus2.13 | spa |
dc.relation.references | Enache DI, Knight DW, Hutchings GJ (2005) Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts. Catal Letters 103:43–52. https://doi.org/10.1007/s10562-005-6501-y | spa |
dc.relation.references | Diaz-Angulo J, Gomez-Bonilla I, Jimenez-Tohapanta C, et al (2019) Visible-light activation of TiO2 by dye-sensitization for degradation of pharmaceutical compounds. Photochem Photobiol Sci 18:897–904. https://doi.org/10.1039/c8pp00270c | spa |
dc.relation.references | Augustynski J, Vlachopoulos N, Liska P, GräTzel M (1988) Very Efficient Visible Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface Area Polycrystalline Titanium Dioxide Films. J Am Chem Soc 110:1216–1220. https://doi.org/10.1021/ja00212a033 | spa |
dc.relation.references | Watanabe M, Sun S, Ishihara T, et al (2018) Visible Light-Driven Dye-Sensitized Photocatalytic Hydrogen Production by Porphyrin and its Cyclic Dimer and Trimer: Effect of Multi-Pyridyl-Anchoring Groups on Photocatalytic Activity and Stability. ACS Appl Energy Mater 1:6072–6081. https://doi.org/10.1021/acsaem.8b01113 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 540 - Química y ciencias afines::543 - Química analítica | spa |
dc.subject.lemb | ESPECTROSCOPIA DE RAYOS-X | spa |
dc.subject.lemb | X-ray spectroscopy | eng |
dc.subject.lemb | ANALISIS ESPECTRAL | spa |
dc.subject.lemb | Spectrum analysis | eng |
dc.subject.lemb | Catalysts | eng |
dc.subject.lemb | COBRE | spa |
dc.subject.lemb | Copper | eng |
dc.subject.lemb | COMPUESTOS DE TITANIO | spa |
dc.subject.lemb | Titanium compounds | eng |
dc.subject.lemb | CATALIZADORES | spa |
dc.subject.proposal | Complejos de cobre | spa |
dc.subject.proposal | Oxidación de alcohol bencílico | spa |
dc.subject.proposal | Fotocatálisis heterogénea | spa |
dc.subject.proposal | TiO2 | spa |
dc.subject.proposal | Activación de O2 molecular | spa |
dc.subject.proposal | Copper complexes | eng |
dc.subject.proposal | Benzyl alcohol oxidation | eng |
dc.subject.proposal | Heterogeneous photocatalysis | eng |
dc.subject.proposal | TiO2 | eng |
dc.subject.proposal | Molecular O2 activation | eng |
dc.title | Reacciones de foto-oxidación catalizadas por complejos de Cu enlazados covalentemente sobre nanotubos de TiO2 | |
dc.title.translated | Photooxidation reactions catalyzed by covalently bonded Cu complexes on TiO2 nanotubes | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1033696953.2025.pdf
- Tamaño:
- 4.5 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Química
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: