Ley de reciprocidad de Artin

dc.contributor.advisorRodríguez Vega, John Jaime
dc.contributor.authorRodriguez Ruiz, Daniel Camilo
dc.date.accessioned2021-05-20T20:03:12Z
dc.date.available2021-05-20T20:03:12Z
dc.date.issued2021-03-19
dc.description.abstractEn este trabajo final se presenta de una manera general la teoría de los cuerpos numéricos, en donde se muestran propiedades del anillo de enteros algebraicos y del grupo de clases de ideales. También se realiza un estudio detallado sobre la ramificación de un ideal primo en una extensión, luego, se introduce el símbolo de Artin, este es una generalización del símbolo de Legendre. A partir de algunas propiedades del símbolo de Artin se presenta una primera prueba de la ley de reciprocidad cuadrática. Además, se define el homomorfismo de Artin y se enuncia el teorema de Artin para el cuerpo de clases de Hilbert. Por último, se estudia brevemente el grupo de clases de ideales generalizado y se enuncia el teorema de Artin, a partir de este se presenta otra prueba de la ley de reciprocidad cuadrática.spa
dc.description.abstractThis thesis a general review of the theory of number fields is given. We study some properties of the ring of integers of a number field and also of the ideal class group. We also carried out a detailed study of the ramification of prime ideals in field extensions. Then we define Artin’s symbol (which is a generalization of Legendre's symbol) and use some of its properties to give a first proof of the quadratic reciprocity law. In addition we study the Artin homomorphism and state Artin’s theorem for the Hilbert class field. Finally, we focus on the generalized ideal class group and state Artin’s theorem in this context. This allow us to present another proof of the quadratic reciprocity law.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.format.extent1 recurso en línea (112 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79544
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesS. Alaca and K. S. Williams, Introductory algebraic number theory, Cambridge University Press, Cambridge, 2004.spa
dc.relation.referencesE. Artin, Algebra with Galois theory, reprint of the 1947 original, Courant Lecture Notes in Mathematics, 15, Courant Institute of Mathematical Sciences, New York, 2007.spa
dc.relation.referencesE. Artin and J. Tate, Class field theory, AMS Chelsea Publishing, Providence, RI, 2009.spa
dc.relation.referencesE. Artin, Über eine neue Art von L-Reihen, Abh. Math. Sem. Univ Hamburg. (1923).spa
dc.relation.referencesJ. Booher, Reciprocity laws, https://www.math.canterbury.ac.nz/~j.booher/expos/reciprocity.pdf, 2013.spa
dc.relation.referencesN. Childress, Class field theory, Universitext, Springer, New York, 2009.spa
dc.relation.referencesD. A. Cox, Primes of the form x^2 + ny^2, A Wiley-Interscience Publication, John Wiley \& Sons, Inc., New York, 1989.spa
dc.relation.referencesJ. Dieudonné, The historical development of algebraic geometry, Amer. Math. Monthly 79 (1972).spa
dc.relation.referencesJ. Esmonde and M. Ram Murty, Problems in algebraic number theory, Graduate Texts in Mathematics, 190, Springer-Verlag, New York, 1999.spa
dc.relation.referencesT. W. Hungerford, Algebra, reprint of the 1974 original, Graduate Texts in Mathematics, 73, Springer-Verlag, New York, 1980.spa
dc.relation.referencesK. Ireland and M. Rosen, A classical introduction to modern number theory, second edition, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990.spa
dc.relation.referencesC. Ivorra Castillo, Teoría de cuerpos de clases, https://www.uv.es/ivorra/Libros/Cuerpos.pdf.spa
dc.relation.referencesG. J. Janusz, Algebraic number fields, second edition, Graduate Studies in Mathematics, 7, American Mathematical Society, Providence, RI, 1996.spa
dc.relation.referencesS. Lang, Algebra, revised third edition, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002.spa
dc.relation.referencesS. Lang, Algebraic number theory, second edition, Graduate Texts in Mathematics, 110, Springer-Verlag, New York, 1994.spa
dc.relation.referencesF. Lemmermeyer, Reciprocity laws, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000.spa
dc.relation.referencesD. A. Marcus, Number fields, Springer-Verlag, Berlin, Heidelberg, New York, 1977.spa
dc.relation.referencesMathematical developments arising from Hilbert problems, Proceedings of Symposia in Pure Mathematics, Vol. XXVIII, American Mathematical Society, Providence, RI, 1976.spa
dc.relation.referencesJ. S. Milne, Algebraic Number Theory, v3.08, https://www.jmilne.org/math/CourseNotes/ANT.pdf, 2020.spa
dc.relation.referencesJ. Neukirch, Algebraic number theory, Springer-Verlag, Berlin Heidelberg, 1999.spa
dc.relation.referencesP. Ribenboim, Algebraic numbers, Wiley-Interscience, New York, 1972.spa
dc.relation.referencesP. Ribenboim, Classical theory of algebraic numbers, Universitext, Springer-Verlag, New York, 2001.spa
dc.relation.referencesP. Samuel, Algebraic theory of numbers, Translated from the French by Allan J. Silberger, Houghton Mifflin Co., Boston, MA, 1970.spa
dc.relation.referencesN. Snyder, Artin’s L-functions:A Historical Approach, 2002.spa
dc.relation.referencesP. Stevenhagen, The arithmetic of number rings, in Algorithmic number theory: lattices, number fields, curves and cryptography, 209--266, Math. Sci. Res. Inst. Publ., 44, Cambridge Univ. Press, Cambridge.spa
dc.relation.referencesI. Stewart and D. Tall, Algebraic number theory and Fermats last theorem, third edition, A K Peters, Ltd., Natick, MA, 2002.spa
dc.relation.referencesM. Trifković, Algebraic theory of quadratic numbers, Universitext, Springer, New York, 2013.spa
dc.relation.referencesB. F. Wyman, What is a reciprocity law?, Amer. Math. Monthly 79 (1972), 571--586; correction, ibid. 80 (1973), 281.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.otherFactorización (Matemáticas)
dc.subject.otherFactorization (Mathematics)
dc.subject.proposalIdeal fraccionariospa
dc.subject.proposalCuerpo numéricospa
dc.subject.proposalSímbolo de Artinspa
dc.subject.proposalHomomorfismo de Artinspa
dc.subject.proposalLey de reciprocidad cuadráticaspa
dc.subject.proposalTeorema de Artinspa
dc.subject.proposalLey de reciprocidad débilspa
dc.subject.proposalFractional idealeng
dc.subject.proposalNumber fieldeng
dc.subject.proposalArtin's symboleng
dc.subject.proposalArtin's mapeng
dc.subject.proposalQuadratic reciprocity laweng
dc.subject.proposalArtin's theoremeng
dc.subject.proposalWeak reciprocity laweng
dc.subject.unescoÁlgebra
dc.subject.unescoAlgebra
dc.titleLey de reciprocidad de Artinspa
dc.title.translatedArtin reciprocity laweng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022988149.2021.pdf
Tamaño:
593.92 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: