Selección de cepas nativas de bacterias aerobias formadoras de endospora como promotoras de crecimiento vegetal con enfasis en su capacidad antagonista contra Xanthomonas campestris pv. vitians del cultivo de lechuga

dc.contributor.advisorUribe-Velez, Danielspa
dc.contributor.advisorGarcía- Dominguez, Celsaspa
dc.contributor.authorBenavides- Rodriguez, Laura Karinaspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Bogotáspa
dc.contributor.researchgroupMicrobiologia Agricolaspa
dc.date.accessioned2020-03-08T20:12:23Zspa
dc.date.available2020-03-08T20:12:23Zspa
dc.date.issued2019-10-11spa
dc.description.abstractLa producción de lechuga en el mundo ha venido presentando un aumento progresivo, dado el auge que ha tenido el consumo de vegetales por su papel en la prevención de enfermedades. Colombia no se ha quedado atrás aumentando la producción en los últimos años convirtiéndose en una fuente de empleo significativa para el sector rural. Sin embargo, la dinámica de producción ha llevado al uso intensivo de suelos, generando problemáticas ambientales, lo que se ve representado en una disminución en el rendimiento y pérdidas económicas, razón por la cual, nuevas alternativas biológicas están siendo estudiadas con el fin de mitigar el impacto de la explotación de los suelos y uso desmesurado de productos químicos. Por tanto, este estudio evaluó de manera in vitro e in vivo cincuenta aislamientos de bacterias aerobias formadoras de endospora (BAFEs) como promotoras de crecimiento vegetal en el cultivo de lechuga haciendo énfasis en su capacidad para promover en presencia de roca fosfórica y en su actividad antagónica frente al aislamiento LC100 de Xanthomonas campestris pv. vitians (Xcv). De los cincuenta aislamientos evaluados, doce cepas presentaron actividad promotora destacándose el aislamiento 4p-03 que en presencia de roca fosfórica arrojó valores de peso seco de raíz y vástago 100% mayores al control, once cepas tuvieron actividad antagonista in vitro y cinco in vivo destacándose los aislamientos 7p-03 y 2p-03 con una reducción promedio en la severidad de la enfermedad del 25%. Se observó una interacción entre los aislamientos cuando fueron aplicados en una misma planta disminuyendo el efecto promotor, pero mitigando los impactos de la enfermedad.spa
dc.description.abstractThe production of lettuce in the world has been presenting a progressive increase, given the boom that has taken the consumption of vegetables for their role in disease prevention. Colombia has not been left behind increasing production in recent years becoming a significant source of employment for the rural sector. However, the dynamics of production have led to the intensive use of soils, generating environmental problems, which is represented in a decrease in yield and economic losses, which is why new biological alternatives are being studied to mitigate the impact of the exploitation of soils and excessive use of chemical products. Therefore, this study evaluated in vitro and in vivo fifty isolates of aerobic endospore-forming bacteria (BAFEs) as promoters of plant growth in lettuce cultivation emphasizing their ability to promote in the presence of phosphoric rock and its activity antagonistic against the LC100 isolation of Xanthomonas campestris pv. vitians (Xcv). Of the fifty isolates evaluated, twelve strains showed promoter activity, highlighting the 4p-03 isolation, which in the presence of phosphoric rock yielded values of 100% greater root and stem dry weight than the control, eleven strains had antagonistic activity in vitro and five in vivo standing out 7p-03 and 2p-03 isolates with an average reduction in disease severity of 25%. An interaction between the isolates was observed when they were applied in the same plant reducing the promoter effect but mitigating the impacts of the diseases.spa
dc.description.degreelevelMaestríaspa
dc.format.extent128spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationBenavides Rodriguez, Laura Karina (2020). Selección de cepas nativas de bacterias aerobias formadoras de endospora como promotoras de crecimiento vegetal con enfasis en su capacidad antagonista contra Xanthomonas campestris pv. vitians del cultivo de lechugaspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75964
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Biotecnologíaspa
dc.relation.referencesAgronet. (2019). Agronet. Retrieved from https://www.agronet.gov.co/Paginas/inicio.aspx Agronet - MINAGRICULTURA. (2017). Evaluaciones agropecuarias municupales - Lechuga.spa
dc.relation.referencesAgyarko, K., Abunyewa, A., Kwasi Asiedu, E., y Heva, E. (2016). Dissolution of rock phosphate in animal manure soil amendment and lettuce growth. In Eurasian Journal of Soil Science (EJSS) (Vol. 5).spa
dc.relation.referencesAhemad, M., y Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26(1), 1–20. https://doi.org/https://doi.org/10.1016/j.jksus.2013.05.001spa
dc.relation.referencesAl-Saleh, M. A., Ibrahim, Y. E., Abo-Elyousr, K. A. M., y Alibrahim, J. S. (2011). Population dynamics of Xanthomonas campestris pv. vitians on different plant species and management of bacterial leaf spot of lettuce under greenhouse conditions. Crop Protection, 30(7), 883–887. https://doi.org/http://dx.doi.org/10.1016/j.cropro.2011.03.032spa
dc.relation.referencesAl-Saleh, M., y Ibrahim, Y. (2009). First Report of Bacterial Leaf Spot of Lettuce (Lactuca sativa) Caused by Xanthomonas campestris pv. vitians in Saudi Arabia. In Plant Disease - PLANT DIS (Vol. 93). https://doi.org/10.1094/PDIS-93-1-0107Bspa
dc.relation.referencesAlejandro Antúnez B., Sofía Felmer E., Patricia Estay P, Paulina Sepúlveda R, Fabio Corradini S, R., G. S. Del. (2017). Manual de producción de lechuga. Santiago de Chile.spa
dc.relation.referencesAli, B., Sabri, A., Ljung, K., y Hasnain, S. (2008). Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). In World Journal of Microbiology and Biotechnology (Vol. 25). https://doi.org/10.1007/s11274-008-9918-9spa
dc.relation.referencesAlkhader, A., Abu-Rayyan, A., y Rusan, M. (2013). The effect of phosphorus fertilizers on the growth and quality of lettuce (Lactuca sativa L.) under greenhouse and field conditions. In Journal of Food, Agriculture and Environment (Vol. 11).spa
dc.relation.referencesAlori, E. T., Glick, B. R., y Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8, 971. https://doi.org/10.3389/fmicb.2017.00971spa
dc.relation.referencesAlvez, B., Alonso, G., y Oropeza, M. (2016). GENOTIPIFICACIÓN Y PERFIL BIOQUÍMICO DE AISLADOS DE Xanthomonas albilineans EN VENEZUELA. Interciencia, 41(11), 732–739. Retrieved from http://www.redalyc.org/articulo.oa?id=33948191002spa
dc.relation.referencesArkhipova, T., U. Veselov, S., Melent’ev, A., V. Martynenko, E., y Kudoyarova, G. (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. In Plant and Soil - PLANT SOIL (Vol. 272). https://doi.org/10.1007/s11104-004-5047-xspa
dc.relation.referencesASOHOFRUCOL, C. C. I. C. (2007). Plan Horticola Nacional PHN.spa
dc.relation.referencesASOHOFRUCOL, y Ministerio de Ambiente Vivienda y Desarrollo rural. (2009). Guía ambiental Hortofruticola de Colombia.spa
dc.relation.referencesBarak, J. D., Koike, S. T., y Gilbertson, R. L. (2001). Role of Crop Debris and Weeds in the Epidemiology of Bacterial Leaf Spot of Lettuce in California. Plant Disease, 85(2), 169–178. https://doi.org/10.1094/PDIS.2001.85.2.169spa
dc.relation.referencesBarak, J., T. Koike, S., y Gilbertson, R. (2002). Movement of Xanthomonas campestris pv. vitians in the stems of lettuce and seed contamination. In Plant Pathology (Vol. 51). https://doi.org/10.1046/j.1365-3059.2002.00730.xspa
dc.relation.referencesBeneduzi, A., Ambrosini, A., y Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4 (suppl)), 1044–1051. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23411488spa
dc.relation.referencesBull, C., y Koike, S. T. (2005). Evaluating the Efficacy of Commercial Products for Management of Bacterial Leaf Spot on Lettuce. Plant Health Progress. https://doi.org/10.1094/PHP-2005-1121-01-RSspa
dc.relation.referencesCamara de comercio. (2015). Manual lechuga. Producción y Calidad Vol. 22, pp. 1–53. Retrieved from http://hdl.handle.net/11520/14316spa
dc.relation.referencesCarisse, O., Ouimet, A., Toussaint, V., y Philion, V. (2000). Evaluation of the effect of seed treatments, bactericides, and cultivars on bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians. Plant Disease, 84(3), 295–299. https://doi.org/10.1094/PDIS.2000.84.3.295spa
dc.relation.referencesCassan, F., Vanderleyden, J., y Spaepen, S. (2013). Physiological and Agronomical Aspects of Phytohormone Production by Model Plant-Growth-Promoting Rhizobacteria (PGPR) Belonging to the Genus Azospirillum. In Journal of Plant Growth Regulation (Vol. 33). https://doi.org/10.1007/s00344-013-9362-4spa
dc.relation.referencesChan, J. W. Y. F., y Goodwin, P. H. (1999). The molecular genetics of virulence of Xanthomonas campestris. Biotechnology Advances, 17(6), 489–508. https://doi.org/http://dx.doi.org/10.1016/S0734-9750(99)00025-7spa
dc.relation.referencesChoudhary, D. K., y Johri, B. N. (2009). Interactions of Bacillus spp. and plants – With special reference to induced systemic resistance (ISR). Microbiological Research, 164(5), 493–513. https://doi.org/https://doi.org/10.1016/j.micres.2008.08.007spa
dc.relation.referencesCompant, S., Van der Heijden, M., y Sessitsch, A. (2010). Climate change effects on beneficial plant-microorganism interactions. In FEMS microbiology ecology (Vol. 73). https://doi.org/10.1111/j.1574-6941.2010.00900.xspa
dc.relation.referencesDANE. (2016). Encuesta nacional agropecuaria ENA.spa
dc.relation.referencesDaniels, M. J. (1989). Chapter 17 - Pathogenicity of Xanthomonas and Related Bacteria Towards Plants A2 - Hopwood, David A. (K. F. B. T.-G. of B. D. Chater, Ed.). https://doi.org/http://dx.doi.org/10.1016/B978-0-12-355574-8.50027-6spa
dc.relation.referencesVries, I. M. (1997). Origin and domestication of Lactuca sativa L. Genetic Resources and Crop Evolution, 44(2), 165–174. https://doi.org/10.1023/A:1008611200727spa
dc.relation.referencesEdnar, W., M. Mguni, C., Mortensen, C., L. Keswani, C., y Hockenhull, J. (2002). Biological Control of Black Rot (Xanthomonas campestris pv. campestris) of Brassicas with an Antagonistic Strain of Bacillus subtilis in Zimbabwe. In European Journal of Plant Pathology (Vol. 108). https://doi.org/10.1023/A:1015671031906spa
dc.relation.referencesElliot, C. (1931). Manual of Bacterial Plant Pathogens. Soil Science, 31(1). Retrieved from https://journals.lww.com/soilsci/Fulltext/1931/01000/Manual_of_Bacterial_Plant_Path ogens.7.aspxspa
dc.relation.referencesEvidente, A., y Mottats, A. (2002). Bioactive metabolites from phytopathogenic bacteria and plants. In B. T.-S. in N. P. C. Atta-ur-Rahman (Ed.), Bioactive Natural Products (Vol. 26, pp. 581–628). https://doi.org/https://doi.org/10.1016/S1572-5995(02)80015spa
dc.relation.referencesFAOFAST. (2019). Retrieved from http://www.fao.org/news/archive/news-by-spa
dc.relation.referencesFINAGRO. (2014). Perspectiva del sector agropecuario.spa
dc.relation.referencesForero, A., Escobar, H., Medina, A., y Monsavel, O. (2010). Uso de materiales 0rgánicos en el manejo del suelo en cultivos de hortalizas (Primera). Bogotá.spa
dc.relation.referencesFritze, D. (2004). Taxonomy of the Genus Bacillus and Related Genera: The Aerobic Endospore-Forming Bacteria. In Phytopathology (Vol. 94). https://doi.org/10.1094/PHYTO.2004.94.11.1245spa
dc.relation.referencesG Santos, B., Lobato, A., Silva, R., Schimidt, D., C L Costa, R., A R Alves, G., y Neto, C. F. (2009). Growth of Lettuce (Lactuca sativa L.) In Protected Cultivation and Open Field. In Journal of Applied Sciences Research (Vol. 5).spa
dc.relation.referencesGalelli, M. E., Sarti, G. C., y Miyazaki, S. S. (2015). Lactuca sativa biofertilization using biofilm from Bacillus with PGPR activity. In Journal of Applied Horticulture (Vol. 17).spa
dc.relation.referencesGalieni, A., Di Mattia, C., De Gregorio, M., Speca, S., Mastrocola, D., Pisante, M., y Stagnari, F. (2015). Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Scientia Horticulturae, 187, 93–101. https://doi.org/10.1016/j.scienta.2015.02.036spa
dc.relation.referencesGardener, B. (2004). Ecology of Bacillus and Paenibacillus spp. in Agricultural Systems. In Phytopathology (Vol. 94). https://doi.org/10.1094/PHYTO.2004.94.11.1252 Garrity, G.,spa
dc.relation.referencesGent, M. (2017). Factors Affecting Relative Growth Rate of Lettuce and Spinach in Hydroponics in a Greenhouse. In HortScience (Vol. 52). https://doi.org/10.21273/HORTSCI12477-17spa
dc.relation.referencesGoto, L. S., Vessoni Alexandrino, A., Malvessi Pereira, C., Silva Martins, C., D’Muniz Pereira, H., Brandão-Neto, J., y Marques Novo-Mansur, M. T. (2016). Structural and functional characterization of the phosphoglucomutase from Xanthomonas citri subsp. citri. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1864(12), 1658– 1666. https://doi.org/http://dx.doi.org/10.1016/j.bbapap.2016.08.014spa
dc.relation.referencesGray, E. J., y Smith, D. L. (2005). Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry, 37(3), 395–412. https://doi.org/https://doi.org/10.1016/j.soilbio.2004.08.030spa
dc.relation.referencesGurdon, C., Poulev, A., Armas, I., Satorov, S., Tsai, M., y Raskin, I. (2019). Genetic and Phytochemical Characterization of Lettuce Flavonoid Biosynthesis Mutants. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39287-yspa
dc.relation.referencesGuzman Rodriguez, L. (2007). Presencia de bacterias fitopatógenas en hortalizas y su relación con la inocuidad alimentaria (Universidad veracruzana). Retrieved from http://cdigital.uv.mx/handle/123456789/46912spa
dc.relation.referencesHan, H. S., y Lee, K. D. (2006). Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. In Plant, Soil and Environment (Vol. 52). https://doi.org/10.17221/3356-PSEspa
dc.relation.referencesHayes, R. J., Trent, M. A., Truco, M. J., Antonise, R., Michelmore, R. W., y Bull, C. T. (2014). The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars. Horticulture Research, 1, 14066. https://doi.org/10.1038/hortres.2014.66spa
dc.relation.referencesHe, P., Shan, L., y Sheen, J. (2007). Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant–microbe interactions. Cellular Microbiology, 9(6), 1385–1396. https://doi.org/10.1111/j.1462-5822.2007.00944.xspa
dc.relation.referencesHeidel, A. J., Clarke, J. D., Antonovics, J., y Dong, X. (2004). Fitness Costs of Mutations Affecting the Systemic Acquired Resistance Pathway in Arabidopsis thaliana Genetics, 168(4), 2197 LP – 2206. https://doi.org/10.1534/genetics.104.032193spa
dc.relation.referencesHeil, M. (2001). The Ecological Concept of Costs of Induced Systemic Resistance (ISR). European Journal of Plant Pathology, 107, 137–146. https://doi.org/10.1023/A:1008793009517spa
dc.relation.referencesHeil, M., Hilpert, A., Kaiser, W., y Linsenmair, K. E. (2000). Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? Journal of Ecology, 88(4), 645–654. https://doi.org/10.1046/j.1365-2745.2000.00479.xspa
dc.relation.referencesHenry, G., Thonart, P., y Ongena, M. (2012). PAMPs, MAMPs, DAMPs and others: An update on the diversity of plant immunity elicitors. Biotechnology, Agronomy and Society and Environment, 16, 257–268.spa
dc.relation.referencesHernández, T., Chocano, C., Moreno, J.-L., y García, C. (2016). Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops—Effects on soil and plant. Soil and Tillage Research, 160, 14–22. https://doi.org/https://doi.org/10.1016/j.still.2016.02.005spa
dc.relation.referencesHoang, L., Joo, G.-J., Kim, W.-C., Jeon, S.-Y., Choi, S.-H., Kim, J.-W., Song, K.-S. (2005). Growth Inhibitors of Lettuce Seedlings From Bacillus cereus EJ-121. In Plant Growth Regulation (Vol. 47). https://doi.org/10.1007/s10725-005-3217-3spa
dc.relation.referencesHuot, B., Yao, J., Montgomery, B. L., & He, S. Y. (2014). Growth–Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness. Molecular Plant, 7(8), 1267–1287.spa
dc.relation.referencesJaramillo Noreña, J., Aguilar Aguilar, P. A., Tamayo Molano, P. J., Agropecuaria., C. C. de I., (Colombia)., A., y Rural., S. de A. y D. (2016). Modelo tecnológico para el cultivo de lechuga bajo buenas prácticas agrícolas en el Oriente Antioqueño.spa
dc.relation.referencesJorquera, M. A., Crowley, D. E., Marschner, P., Greiner, R., Fernández, M. T., Romero, D, De La Luz Mora, M. (2011). Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiology Ecology, 75(1), 163–172. https://doi.org/10.1111/j.1574-6941.2010.00995.xspa
dc.relation.referencesKanwa, S. (2011). Aerobic composting of water lettuce for preparation of phosphorus enriched organic manure. In African Journal of Microbiology Research (Vol. 5). https://doi.org/10.5897/AJMR11.053spa
dc.relation.referencesKushima, M., Kakuta, H., Kosemura, S., Yamamura, S., Yamada, K., Yokotani-Tomita, K., y Hasegawa, K. (1998). An allelopathic substance exuded from germinating watermelon seeds. In Plant Growth Regulation (Vol. 25). https://doi.org/10.1023/A:1005907101778spa
dc.relation.referencesLebeda, A., Křístková, E., Kitner, M., Mieslerová, B., Jemelková, M., y Pink, D. A. C. (2014). Wild Lactuca species, their genetic diversity, resistance to diseases and pests, and exploitation in lettuce breeding. European Journal of Plant Pathology, 138(3), 597–640. https://doi.org/10.1007/s10658-013-0254-zspa
dc.relation.referencesLópez Cruz, I. L., van Willigenburg, L. G., y van Straten, G. (2003). Optimal control of nitrate in lettuce by a hybrid approach: differential evolution and adjustable control weight gradient algorithms. Computers and Electronics in Agriculture, 40(1), 179– 197. https://doi.org/https://doi.org/10.1016/S0168-1699(03)00019-Xspa
dc.relation.referencesLugtenberg, B., y Kamilova, F. (2009). Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology, 63(1), 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918spa
dc.relation.referencesMartinez F., Garcés, G. (2012). Crecimiento y producción de lechuga (Lactuca sativa L.var. romana) bajo diferentes niveles de potasio. Revista Colombiana de Ciencias Hortícolas, 4(2 SE-SECCION DE HORTALIZAS).spa
dc.relation.referencesMarschner, P., y Rengel, Z. (2012). Chapter 12 - Nutrient Availability in Soils (P. B. T.-M. M. N. of H. P. (Third E. Marschner, Ed.). https://doi.org/https://doi.org/10.1016/B978- 0-12-384905-2.00012-1spa
dc.relation.referencesMartínez, O., Jorquera, M., Crowley, D. E., Gajardo, G., y Mora, M. L. (2010).spa
dc.relation.referencesMechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. In Journal of Soil Science and Plant Nutrition (Vol. 10). https://doi.org/10.4067/S0718-95162010000100006spa
dc.relation.referencesMassomo, S., N. Mortensen, C., B. Mabagala, R., Newman, M.-A., y Hockenhull, J. (2004). Biological Control of Black Rot (Xanthomonas campestris pv. campestris) of Cabbage in Tanzania with Bacillus strains. In Journal of Phytopathology (Vol. 152). https://doi.org/10.1111/j.1439-0434.2003.00808.xspa
dc.relation.referencesMolinaro, A., Evidente, A., Lanzetta, R., Parrilli, M., y Zoina, A. (2000). O-specific polysaccharide structure of the aqueous lipopolysaccharide fraction from Xanthomonas campestris pv. vitians strain 1839. Carbohydrate Research, 328(3), 435–439. https://doi.org/ http://dx.doi.org/10.1016/S0008-6215(00)00112-9spa
dc.relation.referencesMoss, W. P., Byrne, J. M., Campbell, H. L., Ji, P., Bonas, U., Jones, J. B., y Wilson, M. (2007). Biological control of bacterial spot of tomato using hrp mutants of Xanthomonas campestris pv. vesicatoria. Biological Control, 41(2), 199–206. https://doi.org/ http://dx.doi.org/10.1016/j.biocontrol.2007.01.008spa
dc.relation.referencesNadeem, S., Naveed, M., Zahir, Z., y Hafi z Naeem Asghar, and. (2013). Plant–Microbe Interactions for Sustainable Agriculture: Fundamentals and Recent Advances. In Plant Microbe Symbiosis: Fundamentals and Advances (pp. 51–103). https://doi.org/10.1007/978-81-322-1287-4_2spa
dc.relation.referencesNavarrete, F., y De La Fuente, L. (2015). Zinc detoxification is required for full virulence and modification of the host leaf ionome by Xylella fastidiosa. Molecular Plant- Microbe Interactions, 28(4), 497–507. https://doi.org/10.1094/MPMI-07-14-0221-Rspa
dc.relation.referencesNeocleous, D., y Savvas, D. (2019). The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce grown in a recirculating nutrient solution. Scientia Horticulturae, 252, 379– 387. https://doi.org/10.1016/j.scienta.2019.04.007spa
dc.relation.referencesNicolas, O, Charles, M. T., Jenni, S., Toussaint, V., Parent, S.-É., y Beaulieu, C. (2019). The ionomics of lettuce infected by Xanthomonas campestris pv. vitians. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00351spa
dc.relation.referencesNicolas, Olbert, Charles, M., Jenni, S., Toussaint, V., & Beaulieu, C. (2018). Relationships between Xanthomonas campestris pv. vitians population sizes, stomatal density and lettuce resistance to bacterial leaf spot. In Canadian Journal of Plant Pathology.spa
dc.relation.referencesNoumedem, J. A. K., Djeussi, D. E., Hritcu, L., Mihasan, M., y Kuete, V. (2017). Chapter 20 - Lactuca sativa (V. B. T.-M. S. and V. from A. Kuete, Ed.). https://doi.org/https://doi.org/10.1016/B978-0-12-809286-6.00020-0spa
dc.relation.referencesOgugua, U., Ntushelo, K., Makungu, M. C., y Kanu, S. (2018). Effect of Bacillus subtilis BD233 on seedlings growth of sweet pepper (Capsicum annuum), Swiss chard (Beta vulgaris) and lettuce (Lactuca sativa). In Acta Horticulturae. https://doi.org/10.17660/ActaHortic.2018.1204.26spa
dc.relation.referencesPanhwar, Q., Othman, R., A Rahman, Z., Meon, S., y Mohd Razi, I. (2011). Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice. In Journal of environmental biology / Academy of Environmental Biology, India (Vol. 32).spa
dc.relation.referencesPatten, C., & Glick, B. (1996). Bacterial biosynthesis of indole-3-acetic acid. In Canadian journal of microbiology (Vol. 42). https://doi.org/10.1139/m96-032spa
dc.relation.referencesPearson, S., Wheeler, T. R., Hadley, P., y Wheldon, A. E. (1997). A validated model to predict the effects of environment on the growth of lettuce (Lactuca sativa L.): Implications for climate change. In Journal of Horticultural Science (Vol. 72). https://doi.org/10.1080/14620316.1997.11515538spa
dc.relation.referencesPernezny, K., Nagata, R., Havranek, N., y Sanchez, J. (2008). Comparison of two culture media for determination of the copper resistance of Xanthomonas strains and their usefulness for prediction of control with copper bactericides. Crop Protection, 27(2), 256–262. https://doi.org/ http://dx.doi.org/10.1016/j.cropro.2007.05.012spa
dc.relation.referencesPeyraud, R., Dubiella, U., Barbacci, A., Genin, S., Raffaele, S., y Roby, D. (2017). Advances on plant-pathogen interactions from molecular toward systems biology perspectives. The Plant Journal: For Cell and Molecular Biology, 90(4), 720–737. https://doi.org/10.1111/tpj.13429spa
dc.relation.referencesPishchik, V. N., Vorobyov, N. I., Walsh, O. S., Surin, V. G., y Khomyakov, Y. V. (2016). Estimation of synergistic effect of humic fertilizer and Bacillus subtilis on lettuce plants by reflectance measurements. Journal of Plant Nutrition, 39(8), 1074–1086. https://doi.org/10.1080/01904167.2015.1061551spa
dc.relation.referencesRadhakrishnan, R., Hashem, A., y Abd Allah, E. F. (2017). Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Frontiers in Physiology, 8, 667. https://doi.org/10.3389/fphys.2017.00667spa
dc.relation.referencesR., & Lee, I.-J. (2016). Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiology and Biochemistry, 109, 181–189. https://doi.org/https://doi.org/10.1016/j.plaphy.2016.09.018spa
dc.relation.referencesRamesh, A., Sharma, S., Yadav, N., y Joshi, O. (2014). Phosphorus Mobilization from Native Soil P-Pool upon Inoculation with Phytate-Mineralizing and Phosphate- Solubilizing Bacillus aryabhattai Isolates for Improved P-Acquisition and Growth of Soybean and Wheat Crops in Microcosm Conditions. In Agricultural Research (Vol. 3). https://doi.org/10.1007/s40003-014-0105-yspa
dc.relation.referencesRobinson, P. E., Jones, J. B., y Pernezny, K. (2006). Bacterial leaf spot of lettuce: Relationship of temperature to infection and potential host range of Xanthomonas campestris pv. vitians. Plant Disease, 90(4), 465–470. https://doi.org/10.1094/PD-90- 0465spa
dc.relation.referencesRosseto, F. R., Manzine, L. R., de Oliveira Neto, M., y Polikarpov, I. (2016). Biophysical and biochemical studies of a major endoglucanase secreted by Xanthomonas campestris pv. campestris. Enzyme and Microbial Technology, 91, 1–7. https://doi.org/ http://dx.doi.org/10.1016/j.enzmictec.2016.05.007spa
dc.relation.referencesSahin, F., & Miller, S. A. (1997). Identification of the bacterial leaf spot pathogen of lettuce, Xanthomonas campestris pv. vitians, in Ohio, and assessment of cultivar resistance and seed treatment. Plant Disease, 81(12), 1443–1446. https://doi.org/10.1094/PDIS.1997.81.12.1443spa
dc.relation.referencesSahoo, R., Ansari, M., Pradhan, M., Dangar, T., Mohanty, S., y Tuteja, N. (2014).spa
dc.relation.referencesPhenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. In Protoplasma. https://doi.org/10.1007/s00709- 013-0607-7spa
dc.relation.referencesSánchez López, D. B., García Hoyos, A. M., Romero Perdomo, F. A., y Bonilla Buitrago, R. R. (2014). Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras de fosfato en Lactuca sativa cultivar White Boston TT - Effect of plant growth promoting rhizobacteria phosate solubilizing Lactuca sativa cultivar White Boston. Revista Colombiana de Biotecnología, 16(2), 122–128. https://doi.org/10.15446/rev.colomb.biote.v16n2.41077spa
dc.relation.referencesScala, F., Evidente, A., Coppola, L., Capasso, R., Lorito, M., y Zoina, A. (1996) Identification and phytotoxicity of 3-methylthiopropanoic and trans-3- methylthiopropenoic acids produced in culture by Xanthomonas campestris pv. vitians. Journal of Phytopathology, 144(6), 325–329. https://doi.org/10.1111/j.1439- 0434.spa
dc.relation.referencesSharma, A., Gautam, S., y Wadhawan, S. (2014). Xanthomonas A2 - Batt, Carl A. (M. L. B. T.-E. of F. M. (Second E. Tortorello, Ed.). https://doi.org/ http://dx.doi.org/10.1016/B978- 0-12-384730-0.00359-1spa
dc.relation.referencesSharma, S. B., Sayyed, R. Z., Trivedi, M. H., y Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587spa
dc.relation.referencesShukla, A. K. (2019). Chapter One - Ecology and Diversity of Plant Growth Promoting Rhizobacteria in Agricultural Landscape (A. K. Singh, A. Kumar, y P. K. B. T.-P. A. in S. A. Singh, Eds.). https://doi.org/https://doi.org/10.1016/B978-0-12-815879- 1.00001- Xspa
dc.relation.referencesSingh, R. (2019). Chapter 8 - Microbial Biotechnology: A Promising Implement for Sustainable Agriculture (J. S. Singh & D. P. B. T.-N. and F. D. in M. B. and B. Singh, Eds.). https://doi.org/https://doi.org/10.1016/B978-0-444-64191-5.00008-0spa
dc.relation.referencesSzczech, M., Szafirowska, A., Kowalczyk, W., Szwejda-Grzybowska, J., Włodarek, A., y Maciorowski, R. (2016). The Effect of Plant Growth Promoting Bacteria on Transplants Growth and Lettuce Yield in Organic Production. In Journal of Horticultural Research (Vol. 24). https://doi.org/10.1515/johr-2016-0026spa
dc.relation.referencesT P Ferreira, J., Santos, T. M., S Albuquerque, L., Santos, J., Cardoso Filho, J., y E Ramalho Neto, C. (2011). Isolation and selection of growth-promoting bacteria of the genus Bacillus and its effect on two varieties of lettuce (Lactuca sativa L.).spa
dc.relation.referencesTHEODORACOPOULOS, M., LARDIZABAL, R., & ARIAS, S. (2009). MANUAL DE PRODUCCIÓN - PRODUCCIÓN DE LECHUGA. Honduras.spa
dc.relation.referencesTiwari, S., Prasad, V., y Lata, C. (2019). Chapter 3 - Bacillus: Plant Growth Promoting Bacteria for Sustainable Agriculture and Environment (J. S. Singh & D. P. B. T.-N. and F. D. in M. B. and B. Singh, Eds.). https://doi.org/https://doi.org/10.1016/B978-0- 444- 64191-5.00003-1spa
dc.relation.referencesToussaint, V, Benoit, D. L., y Carisse, O. (2012). Potential of weed species to serve as a reservoir for Xanthomonas campestris pv. vitians, the causal agent of bacterial leaf spot of lettuce. Crop Protection, 41, 64–70.spa
dc.relation.referencesToussaint, V, Morris, C. E., y Carisse, O. (2001). A new semi-selective medium for Xanthomonas campestris pv. vitians, the causal agent of bacterial leaf spot of lettuce. Plant Disease, 85(2), 131–136.spa
dc.relation.referencesToussaint, Vicky. (2019). Ecology of Xanthomonas campestris pv. vitians in relation to development of bacterial leaf spot of lettuce by Vicky Toussaint.spa
dc.relation.referencesUchida, R. S. (2000). Essential nutrients for plant growth: Nutrient functions and deficiency symptoms. In Plant Nutr Manag Hawaii’s Soils (Vol. 3).spa
dc.relation.referencesVallad, G., y M. Goodman, R. (2004). Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. In Crop Science - CROP SCI (Vol. 44). https://doi.org/10.2135/cropsci2004.1920spa
dc.relation.referencesVan Henten, E. J. (1994). Validation of a dynamic lettuce growth model for greenhouse climate control. Agricultural Systems, 45(1), 55–72. https://doi.org/https://doi.org/10.1016/S0308-521X(94)90280-1spa
dc.relation.referencesVan Wees, S. C. M., Van der Ent, S., & Pieterse, C. M. J. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11(4), 443–448. https://doi.org/https://doi.org/10.1016/j.pbi.2008.05.005spa
dc.relation.referencesVauterin, L., Rademaker, J., y Swings, J. (2000). Synopsis on the Taxonomy of the Genus Xanthomonas. In Phytopathology (Vol. 90). https://doi.org/10.1094/PHYTO.2000.90.7.677spa
dc.relation.referencesVelásquez V, P., Ruíz E, H., Chaves J, G., y Luna C, C. (2014). Productividad de Lechuga Lactuca Sativa en condiciones de Macrotúnel en suelo Vitric Haplustands . Revista de Ciencias Agrícolas, Vol. 31, pp. 93–105. scieloco.spa
dc.relation.referencesVelázquez, M. S., Cabello, M. N., Elíades, L. A., Russo, M. L., Allegrucci, N., y Schalamuk, S. (2017). Combinación de hongos movilizadores y solubilizadores de fósforo con rocas fosfóricas y materiales volcánicos para la promoción del crecimiento de plantas de lechuga (Lactuca sativa L.). Revista Argentina de Microbiología, 49(4), 347–355. https://doi.org/https://doi.org/10.1016/j.ram.2016.07.005spa
dc.relation.referencesWheeler, T. R., Hadley, P., Morison, J. I. L., y Ellis, R. H. (1993). Effects of temperature on the growth of lettuce (Lactuca sativa L.) and the implications for assessing the impacts of potential climate change. European Journal of Agronomy, 2(4), 305–311. https://doi.org/https://doi.org/10.1016/S1161-0301(14)80178-0spa
dc.relation.referencesYobo, K. S., Laing, M. D., y Hunter, C. H. (2004). Effect of commercially available rhizobacteria strains on growth and production of lettuce, tomato and pepper. South African Journal of Plant and Soil, 21(4), 230–235. https://doi.org/10.1080/02571862.2004.10635054spa
dc.relation.referencesZłotek, U., Gawlik-Dziki, U. (2015). Selected biochemical properties of polyphenol oxidase in butter lettuce leaves (Lactuca sativa L. var. capitata) elicited with dl-β- amino-n-butyric acid. Food Chemistry, 168, 423–429. https://doi.org/https://doi.org/10.1016/j.foodchem.2014.07.033spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc080 - Colecciones generalesspa
dc.subject.proposallettuceeng
dc.subject.proposallechugaspa
dc.subject.proposalroca fosfóricaspa
dc.subject.proposalphosphoric rockeng
dc.subject.proposalBAFEseng
dc.subject.proposalBAFEsspa
dc.subject.proposalXanthomonas campestris pv. vitianseng
dc.subject.proposalXanthomonas campestris pv. vitiansspa
dc.subject.proposalpromociónspa
dc.subject.proposalpromotioneng
dc.subject.proposalantagonismospa
dc.subject.proposalantagonismeng
dc.titleSelección de cepas nativas de bacterias aerobias formadoras de endospora como promotoras de crecimiento vegetal con enfasis en su capacidad antagonista contra Xanthomonas campestris pv. vitians del cultivo de lechugaspa
dc.title.alternativeSelection of native strains aerobic endospore-forming bacteria as plant growth promoters with emphasis in his capacity antagonists against Xanthomonas campestris pv. vitians of lettuce cultivationspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032451242.2020.pdf
Tamaño:
2.64 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: