Revisión bibliográfica de conceptos morfológicos en el desarrollo de Enfermedad de Hígado Graso no Alcohólico (EHGNA) y Esteatohepatitis no Alcohólica (EHNA)

dc.contributor.advisorArias López, Luz Amparospa
dc.contributor.authorGonzález Arias, Julián Enriquespa
dc.date.accessioned2024-12-11T15:07:57Z
dc.date.available2024-12-11T15:07:57Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa Enfermedad de Hígado Graso no Alcohólico (EHGNA), es un tipo de hepatopatía crónica que actualmente está en crecimiento e impacta la vida de pacientes con comorbilidades metabólicas como la obesidad y la Diabetes Mellitus tipo II, que con el tiempo pueden desarrollar Esteatohepatitis no Alcohólica (EHNA), en el contexto de inflamación crónica que los pone en riesgo de desarrollar cirrosis y finalmente Hepatocarcinoma. Este tipo de patologías afecta a nivel funcional al hígado, afecciones explicables por alteraciones a múltiples niveles -molecular, celular, tisular y macroscópico-. El objetivo del presente trabajo de grado es realizar una revisión bibliográfica sobre conceptos morfológicos -en cuanto a la embriología, anatomía e histología- del hígado normal y de cómo la comprensión de estos conceptos nos permite entender los cambios patológicos y fisiopatológicos que sufre el hígado en estas patologías. Se encontraron múltiples interacciones complejas en los múltiples niveles mencionados que explican lo que sucede en la enfermedad, permitiendo identificar posibles perspectivas futuras para impactar de forma positiva a los pacientes (Texto tomado de la fuente).spa
dc.description.abstractNon-Alcoholic Fatty Liver Disease (NAFLD) is a type of chronic liver disease that is currently growing and impacts the lives of patients with metabolic comorbidities such as obesity and Type II Diabetes Mellitus, who over time can develop Non-Alcoholic Steatohepatitis. (NASH), in the context of chronic inflammation that puts them at risk of developing cirrhosis and finally Hepatocarcinoma. This type of pathology affects the liver at a functional level, conditions that can be explained by alterations at multiple levels - molecular, cellular, tissue and macroscopic-. The objective of this tesis is to carry out a bibliographic review on morphological concepts - in terms of embryology, anatomy and histology - of the normal liver and how the understanding of these concepts allows us to understand the pathological and pathophysiological changes that the liver undergoes in these pathologies. Multiple complex interactions were found at the multiple levels mentioned, that explain what happens in the disease, allowing the identification of possible future perspectives to positively impact patients.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Morfología Humanaspa
dc.description.researchareaTrabajo de Grado de Profundizaciónspa
dc.format.extent153 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87290
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Morfología Humanaspa
dc.relation.referencesAbdelmalek, M. F. (2021). Nonalcoholic fatty liver disease: another leap forward. In Nature Reviews Gastroenterology and Hepatology (Vol. 18, Issue 2, pp. 85–86). Nature Research. https://doi.org/10.1038/s41575-020-00406-0spa
dc.relation.referencesAbdel-Misih, S. R. Z., & Bloomston, M. (2010). Liver Anatomy. In Surgical Clinics of North America (Vol. 90, Issue 4, pp. 643–653). W.B. Saunders. https://doi.org/10.1016/j.suc.2010.04.017spa
dc.relation.referencesAgur, A., Dalley, A., & Moore, K. (2019). 5 Abdomen . In Fundamentos de anatomía con orientación clínica (6th ed.). Wolters Kluwer.spa
dc.relation.referencesAl-Awad, Adel, Granados, ;, Sánchez, ;, Arleen, Fernández, &, & Ramón 2. (2012). VARIANTE ANATÓMICA EN EL ORIGEN DE LA VENA PORTA: A PROPÓSITO DE UN CASO. Anatomical Variation in the Origin of Portal Vein: Case Report. Reporte de Caso Resumen. In Revista Argentina de Anatomía Online (Vol. 3).spa
dc.relation.referencesAlves-Bezerra, M., & Cohen, D. E. (2018). Triglyceride metabolism in the liver. Comprehensive Physiology, 8(1), 1–22. https://doi.org/10.1002/cphy.c170012spa
dc.relation.referencesBarr, R. G., Ferraioli, G., Palmeri, M. L., Goodman, Z. D., Garcia-Tsao, G., Rubin, J., Garra, B., Myers, R. P., Wilson, S. R., Rubens, D., & Levine, D. (2015). Elastography assessment of liver fibrosis: Society of radiologists in ultrasound consensus conference statement. Radiology, 276(3), 845–861. https://doi.org/10.1148/radiol.2015150619spa
dc.relation.referencesBass, N. M. (1990). Fatty acid-binding protein expression in the liver: its regulation and relationship to the zonation of fatty acid metabolism. In Molecular and Cellular Biochemistry (Vol. 98).spa
dc.relation.referencesBedossa, P. (2017). Pathology of non-alcoholic fatty liver disease. In Liver International (Vol. 37, pp. 85–89). Blackwell Publishing Ltd. https://doi.org/10.1111/liv.13301spa
dc.relation.referencesBourebaba, N., & Marycz, K. (2021). Hepatic stellate cells role in the course of metabolic disorders development – A molecular overview. In Pharmacological Research (Vol. 170). Academic Press. https://doi.org/10.1016/j.phrs.2021.105739spa
dc.relation.referencesBoyer, J. L. (2013). Bile formation and secretion. Comprehensive Physiology, 3(3), 1035–1078. https://doi.org/10.1002/cphy.c120027spa
dc.relation.referencesBrown, G. T., & Kleiner, D. E. (2016). Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. In Metabolism: Clinical and Experimental (Vol. 65, Issue 8, pp. 1080–1086). W.B. Saunders. https://doi.org/10.1016/j.metabol.2015.11.008spa
dc.relation.referencesBrunt, E. M., Kleiner, D. E., Carpenter, D. H., Rinella, M., Harrison, S. A., Loomba, R., Younossi, Z., Neuschwander-Tetri, B. A., & Sanyal, A. J. (2021). NAFLD: Reporting Histologic Findings in Clinical Practice. In Hepatology (Vol. 73, Issue 5, pp. 2028–2038). John Wiley and Sons Inc. https://doi.org/10.1002/hep.31599spa
dc.relation.referencesBruzzì, S., Sutti, S., Giudici, G., Burlone, M. E., Ramavath, N. N., Toscani, A., Bozzola, C., Schneider, P., Morello, E., Parola, M., Pirisi, M., & Albano, E. (2018). B2-Lymphocyte responses to oxidative stress-derived antigens contribute to the evolution of nonalcoholic fatty liver disease (NAFLD). Free Radical Biology and Medicine, 124, 249–259. https://doi.org/10.1016/j.freeradbiomed.2018.06.015spa
dc.relation.referencesBuzzetti, E., Pinzani, M., & Tsochatzis, E. A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism: Clinical and Experimental, 65(8), 1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012spa
dc.relation.referencesCaldwell, S., & Lackner, C. (2017). Perspectives on NASH histology: Cellular ballooning. Annals of Hepatology, 16(2), 182–184. https://doi.org/10.5604/16652681.1231550spa
dc.relation.referencesChalasani, N., Younossi, Z., Lavine, J. E., Diehl, A. M., Brunt, E. M., Cusi, K., Charlton, M., & Sanyal, A. J. (2012). The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology, 55(6), 2005–2023. https://doi.org/10.1002/hep.25762spa
dc.relation.referencesChiva, L. M., & Magrina, J. (2018). Abdominal and Pelvic Anatomy. In Principles of Gynecologic Oncology Surgery (pp. 3–49). Elsevier. https://doi.org/10.1016/B978-0-323-42878-1.00002-Xspa
dc.relation.referencesCoulon, S., Heindryckx, F., Geerts, A., Van Steenkiste, C., Colle, I., & Van Vlierberghe, H. (2011). Angiogenesis in chronic liver disease and its complications. In Liver International (Vol. 31, Issue 2, pp. 146–162). https://doi.org/10.1111/j.1478-3231.2010.02369.xspa
dc.relation.referencesDe, A., & Duseja, A. (2020). Natural History of Simple Steatosis or Nonalcoholic Fatty Liver. In Journal of Clinical and Experimental Hepatology (Vol. 10, Issue 3, pp. 255–262). Elsevier B.V. https://doi.org/10.1016/j.jceh.2019.09.005spa
dc.relation.referencesDe Muynck, K., Vanderborght, B., Van Vlierberghe, H., & Devisscher, L. (2021). The gut–liver axis in chronic liver disease: A macrophage perspective. In Cells (Vol. 10, Issue 11). MDPI. https://doi.org/10.3390/cells10112959spa
dc.relation.referencesDi-Iacovo, N., Pieroni, S., Piobbico, D., Castelli, M., Scopetti, D., Ferracchiato, S., Della-Fazia, M. A., & Servillo, G. (2023). Liver Regeneration and Immunity: A Tale to Tell. In International Journal of Molecular Sciences (Vol. 24, Issue 2). MDPI. https://doi.org/10.3390/ijms24021176spa
dc.relation.referencesDixon, L. J., Barnes, M., Tang, H., Pritchard, M. T., & Nagy, L. E. (2013). Kupffer cells in the liver. Comprehensive Physiology, 3(2), 785–797. https://doi.org/10.1002/cphy.c120026spa
dc.relation.referencesDutta, S., Mishra, S. P., Sahu, A. K., Mishra, K., Kashyap, P., & Sahu, B. (2021). Hepatocytes and Their Role in Metabolism. www.intechopen.comspa
dc.relation.referencesElchaninov, A., Vishnyakova, P., Menyailo, E., Sukhikh, G., & Fatkhudinov, T. (2022). An Eye on Kupffer Cells: Development, Phenotype and the Macrophage Niche. In International Journal of Molecular Sciences (Vol. 23, Issue 17). MDPI. https://doi.org/10.3390/ijms23179868spa
dc.relation.referencesFilali-Mouncef, Y., Hunter, C., Roccio, F., Zagkou, S., Dupont, N., Primard, C., Proikas-Cezanne, T., & Reggiori, F. (2022). The ménage à trois of autophagy, lipid droplets and liver disease. In Autophagy (Vol. 18, Issue 1, pp. 50–72). Taylor and Francis Ltd. https://doi.org/10.1080/15548627.2021.1895658spa
dc.relation.referencesForbes, S. J., & Newsome, P. N. (2016). Liver regeneration-mechanisms and models to clinical application. In Nature Reviews Gastroenterology and Hepatology (Vol. 13, Issue 8, pp. 473–485). Nature Publishing Group. https://doi.org/10.1038/nrgastro.2016.97spa
dc.relation.referencesGartner, L. (2021). Aparato digestivo: Gándulas. In Texto de Histología Atlas a color (5th ed., pp. 517–530). Elsevier.spa
dc.relation.referencesGracia-Sancho, J., Caparrós, E., Fernández-Iglesias, A., & Francés, R. (2021). Role of liver sinusoidal endothelial cells in liver diseases. In Nature Reviews Gastroenterology and Hepatology (Vol. 18, Issue 6, pp. 411–431). Nature Research. https://doi.org/10.1038/s41575-020-00411-3spa
dc.relation.referencesGrigoraş, A., Giuşcă, S. E., Avădănei, E. R., Amălinei, C., & Căruntu, I.-D. (2016). Pointing at Ito cell, from structure to function (… or Cinderella story in liver histology). Rom J Morphol Embryol, 57(3), 915–923. http://www.rjme.ro/spa
dc.relation.referencesHammoutene, A., & Rautou, P.-E. (2019). Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. 1278–1291.spa
dc.relation.referencesHardy, T., Oakley, F., Anstee, Q. M., & Day, C. P. (2016). Nonalcoholic Fatty Liver Disease: Pathogenesis and Disease Spectrum. Annual Review of Pathology: Mechanisms of Disease, 11, 451–496. https://doi.org/10.1146/annurev-pathol-012615-044224spa
dc.relation.referencesHora, S., & Wuestefeld, T. (2023). Liver Injury and Regeneration: Current Understanding, New Approaches, and Future Perspectives. In Cells (Vol. 12, Issue 17). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/cells12172129spa
dc.relation.referencesHuang, T., Behary, J., & Zekry, A. (2020). Non-alcoholic fatty liver disease: a review of epidemiology, risk factors, diagnosis and management. In Internal Medicine Journal (Vol. 50, Issue 9, pp. 1038–1047). Blackwell Publishing. https://doi.org/10.1111/imj.14709spa
dc.relation.referencesHuang, W., Han, N., Du, L., Wang, M., Chen, L., & Tang, H. (2021). A narrative review of liver regeneration—from models to molecular basis. Annals of Translational Medicine, 9(22), 1705–1705. https://doi.org/10.21037/atm-21-5234spa
dc.relation.referencesHuby, T., & Gautier, E. L. (2022). Immune cell-mediated features of non-alcoholic steatohepatitis. In Nature Reviews Immunology (Vol. 22, Issue 7, pp. 429–443). Nature Research. https://doi.org/10.1038/s41577-021-00639-3spa
dc.relation.referencesIkura, Y. (2020, July 1). Nonalcoholic fatty liver disease / nonalcoholic steatohepatitis (NASH). Pathology Outlines . https://www.pathologyoutlines.com/topic/liverNASH.htmlspa
dc.relation.referencesIpsen, D. H., Lykkesfeldt, J., & Tveden-Nyborg, P. (2018). Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. In Cellular and Molecular Life Sciences (Vol. 75, Issue 18, pp. 3313–3327). Birkhauser Verlag AG. https://doi.org/10.1007/s00018-018-2860-6spa
dc.relation.referencesJang, W., & Song, J. S. (2023). Non-Invasive Imaging Methods to Evaluate Non-Alcoholic Fatty Liver Disease with Fat Quantification: A Review. In Diagnostics (Vol. 13, Issue 11). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/diagnostics13111852spa
dc.relation.referencesJung, Y., Witek, R. P., Syn, W. K., Choi, S. S., Omenetti, A., Premont, R., Guy, C. D., & Diehl, A. M. (2010). Signals from dying hepatocytes trigger growth of liver progenitors. Gut, 59(5), 655–665. https://doi.org/10.1136/gut.2009.204354spa
dc.relation.referencesJuza, R. M., & Pauli, E. M. (2014). Clinical and surgical anatomy of the liver: A review for clinicians. In Clinical Anatomy (Vol. 27, Issue 5, pp. 764–769). John Wiley and Sons Inc. https://doi.org/10.1002/ca.22350spa
dc.relation.referencesKamm, D. R., & McCommis, K. S. (2022). Hepatic stellate cells in physiology and pathology. The Journal of Physiology, 600(8), 1825–1837. https://doi.org/10.1113/JP281061spa
dc.relation.referencesKanamori, Y., Tanaka, M., Itoh, M., Ochi, K., Ito, A., Hidaka, I., Sakaida, I., Ogawa, Y., & Suganami, T. (2021). Iron-rich Kupffer cells exhibit phenotypic changes during the development of liver fibrosis in NASH. IScience, 24(2). https://doi.org/10.1016/j.isci.2020.102032spa
dc.relation.referencesKierszenbaum, A. L., & Tres, L. L. (2016). Chapter 17. Digestive Glands. In Histology and Cell Biology An introduction to Pathology (4th ed.). Elsevierspa
dc.relation.referencesKleiner, D. E., & Makhlouf, H. R. (2016). Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children. In Clinics in Liver Disease (Vol. 20, Issue 2, pp. 293–312). W.B. Saunders. https://doi.org/10.1016/j.cld.2015.10.011spa
dc.relation.referencesKordes, C., Sawitza, I., & Häussinger, D. (2008). Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells. Biochemical and Biophysical Research Communications, 367(1), 116–123. https://doi.org/10.1016/j.bbrc.2007.12.085spa
dc.relation.referencesKrenkel, O., & Tacke, F. (2017). Liver macrophages in tissue homeostasis and disease. In Nature Reviews Immunology (Vol. 17, Issue 5, pp. 306–321). Nature Publishing Group. https://doi.org/10.1038/nri.2017.11spa
dc.relation.referencesLatarjet, M., & Ruiz Liard, A. (2019). 109 Hígado . In Anatomía Humana (5th ed., Vol. 2). Panamericana.spa
dc.relation.referencesLau, C., Kalantari, B., Batts, K. P., Ferrell, L. D., Nyberg, S. L., Graham, R. P., & Moreira, R. K. (2021). The Voronoi theory of the normal liver lobular architecture and its applicability in hepatic zonation. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-88699-2spa
dc.relation.referencesLi, Q., Dhyani, M., Grajo, J. R., Sirlin, C., & Samir, A. E. (2018). Current status of imaging in nonalcoholic fatty liver disease. World Journal of Hepatology, 10(8), 530–542. https://doi.org/10.4254/wjh.v10.i8.530spa
dc.relation.referencesLlewellyn, J., Fede, C., Loneker, A. E., Friday, C. S., Hast, M. W., Theise, N. D., Furth, E. E., Guido, M., Stecco, C., & Wells, R. G. (2023). Glisson’s capsule matrix structure and function is altered in patients with cirrhosis irrespective of aetiology. JHEP Reports, 5(9). https://doi.org/10.1016/j.jhepr.2023.100760spa
dc.relation.referencesLua, I., & Asahina, K. (2016). The role of mesothelial cells in liver development, injury, and regeneration. In Gut and Liver (Vol. 10, Issue 2, pp. 166–176). Joe Bok Chung. https://doi.org/10.5009/gnl15226spa
dc.relation.referencesMahadevan,V. (2020). Anatomy of the liver. In Surgery (Oxford) (Vol. 38, Issue 8, pp.427- 431).https://doi.org/10.1016/j.mpsur.2014.10.004.spa
dc.relation.referencesMak, K. M., & Shin, D. W. (2021). Hepatic sinusoids versus central veins: Structures, markers, angiocrines, and roles in liver regeneration and homeostasis. In Anatomical Record (Vol. 304, Issue 8, pp. 1661–1691). John Wiley and Sons Inc. https://doi.org/10.1002/ar.24560spa
dc.relation.referencesMarzuillo, P., Grandone, A., Perrone, L., & Miraglia Del Giudice, E. (2015). Controversy in the diagnosis of pediatric non-alcoholic fatty liver disease. World Journal of Gastroenterology, 21(21), 6444–6450. https://doi.org/10.3748/wjg.v21.i21.6444spa
dc.relation.referencesMathew, R. P., & Venkatesh, S. K. (2018). Liver vascular anatomy: a refresher. Abdominal Radiology, 43(8), 1886–1895. https://doi.org/10.1007/s00261-018-1623-zspa
dc.relation.referencesMatsumoto, M., Zhang, J., Zhang, X., Liu, J., Jiang, J. X., Yamaguchi, K., Taruno, A., Katsuyama, M., Iwata, K., Ibi, M., Cui, W., Matsuno, K., Marunaka, Y., Itoh, Y., Torok, N. J., & Yabe-Nishimura, C. (2018). The NOX1 isoform of NADPH oxidase is involved in dysfunction of liver sinusoids in nonalcoholic fatty liver disease. Free Radical Biology and Medicine, 115, 412–420. https://doi.org/10.1016/j.freeradbiomed.2017.12.019spa
dc.relation.referencesMaurice J, Manousou P. (2018) Non-alcoholic fatty liver disease. In Clin Med (Lond) (Vol.18(3):245-250). https://doi.org/10.7861/clinmedicine.18-3-245.spa
dc.relation.referencesMichalopoulos, G. K. (2013). Principles of liver regeneration and growth homeostasis. Comprehensive Physiology, 3(1), 485–513. https://doi.org/10.1002/cphy.c120014spa
dc.relation.referencesMichalopoulos, G. K., & Bhushan, B. (2021). Liver regeneration: biological and pathological mechanisms and implications. In Nature Reviews Gastroenterology and Hepatology (Vol. 18, Issue 1, pp. 40–55). Nature Research. https://doi.org/10.1038/s41575-020-0342-4spa
dc.relation.referencesMooring, M., Fowl, B. H., Lum, S. Z. C., Liu, Y., Yao, K., Softic, S., Kirchner, R., Bernstein, A., Singhi, A. D., Jay, D. G., Kahn, C. R., Camargo, F. D., & Yimlamai, D. (2020). Hepatocyte Stress Increases Expression of Yes-Associated Protein and Transcriptional Coactivator With PDZ-Binding Motif in Hepatocytes to Promote Parenchymal Inflammation and Fibrosis. Hepatology, 71(5), 1813–1830. https://doi.org/10.1002/hep.30928spa
dc.relation.referencesNassir, F. (2022). NAFLD: Mechanisms, Treatments, and Biomarkers. In Biomolecules (Vol. 12, Issue 6). MDPI. https://doi.org/10.3390/biom12060824spa
dc.relation.referencesNassir, F., & Ibdah, J. A. (2014). Role of mitochondria in nonalcoholic fatty liver disease. In International Journal of Molecular Sciences (Vol. 15, Issue 5, pp. 8713–8742). MDPI. https://doi.org/10.3390/ijms15058713spa
dc.relation.referencesNetter, F. (2010). Atlas of Human Anatomy (J. Hansen, B. Benninger, J. Brueckner, S. Carmichael, N. Granger, & S. Tubbs, Eds.; 5th ed.). Elsevierspa
dc.relation.referencesOber, E. A., & Lemaigre, F. P. (2018). Development of the liver: Insights into organ and tissue morphogenesis. In Journal of Hepatology (Vol. 68, Issue 5, pp. 1049–1062). Elsevier B.V. https://doi.org/10.1016/j.jhep.2018.01.005spa
dc.relation.referencesPapatheodoridi, M., & Cholongitas, E. (2019). Diagnosis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Concepts. Current Pharmaceutical Design, 24(38), 4574–4586. https://doi.org/10.2174/1381612825666190117102111spa
dc.relation.referencesParanjpe, S., Bowen, W. C., Mars, W. M., Orr, A., Haynes, M. M., DeFrances, M. C., Liu, S., Tseng, G. C., Tsagianni, A., & Michalopoulos, G. K. (2016). Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation. Hepatology, 64(5), 1711–1724. https://doi.org/10.1002/hep.28721spa
dc.relation.referencesPark, S. W., Zhou, Y., Lee, J., Lu, A., Sun, C., Chung, J., Ueki, K., & Ozcan, U. (2010). The regulatory subunits of PI3K, p85α and p85Β, interact with XBP-1 and increase its nuclear translocation. Nature Medicine, 16(4), 429–437. https://doi.org/10.1038/nm.2099spa
dc.relation.referencesPawlina, W., & Ross, M. H. (2015). 18 SISTEMA DIGESTIVO III: HÍGADO, VESÍCULA BILIAR Y PÁNCREAS. In Ross Histología texto y Atlas (8th ed., pp. 666–680). Wolters Kliwer.spa
dc.relation.referencesPerin, S., McCann, C. J., Borrelli, O., De Coppi, P., & Thapar, N. (2017). Update on foregut molecular embryology and role of regenerative medicine therapies. In Frontiers in Pediatrics (Vol. 5). Frontiers Media S.A. https://doi.org/10.3389/fped.2017.00091spa
dc.relation.referencesPouwels, S., Sakran, N., Graham, Y., Leal, A., Pintar, T., Yang, W., Kassir, R., Singhal, R., Mahawar, K., & Ramnarain, D. (2022). Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. In BMC Endocrine Disorders (Vol. 22, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12902-022-00980-1spa
dc.relation.referencesPowell, E. E., Wong, V. W. S., & Rinella, M. (2021). Non-alcoholic fatty liver disease. In The Lancet (Vol. 397, Issue 10290, pp. 2212–2224). Elsevier B.V. https://doi.org/10.1016/S0140-6736(20)32511-3spa
dc.relation.referencesPrieto-Ortiz, J. E., Sánchez-Luque, C. B., & Ortega-Quiroz, R. (2022). Non-alcoholic fatty liver disease part 1: general aspects, epidemiology. pathophysiology and natural history. In Revista Colombiana de Gastroenterologia (Vol. 37, Issue 4, pp. 420–433). Asociacion Colombiana de Gastroenterologia. https://doi.org/10.22516/25007440.952spa
dc.relation.referencesPro, E. A. (2014). Abdomen . In Anatomía clinica (2nd ed., pp. 621–632). Panamericana.spa
dc.relation.referencesRada, P., González-Rodríguez, Á., García-Monzón, C., & Valverde, Á. M. (2020). Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? In Cell Death and Disease (Vol. 11, Issue 9). Springer Nature. https://doi.org/10.1038/s41419-020-03003-wspa
dc.relation.referencesRani, R., & Gandhi, C. R. (2023). Stellate cell in hepatic inflammation and acute injury. In Journal of Cellular Physiology (Vol. 238, Issue 6, pp. 1226–1236). John Wiley and Sons Inc. https://doi.org/10.1002/jcp.31029spa
dc.relation.referencesRibeiro, M. D. C., & Szabo, G. (2021). Role of the Inflammasome in Liver Disease. In Annual Review of Pathology: Mechanisms of Disease (Vol. 17, pp. 345–365). Annual Reviews Inc. https://doi.org/10.1146/annurev-pathmechdis-032521-102529spa
dc.relation.referencesRoss, M. A., Sander, C. M., Kleeb, T. B., Watkins, S. C., & Stolz, D. B. (2001). Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver. Hepatology, 34(6), 1135–1148. https://doi.org/10.1053/jhep.2001.29624spa
dc.relation.referencesSadler, T. W. (2019). 15 Sistema Digestivo . In Langman Embriología médica (14th ed., pp. 377–412). Wolters Kluwerspa
dc.relation.referencesSanders, F. W. B., & Griffin, J. L. (2016). De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose. Biological Reviews, 91(2), 452–468. https://doi.org/10.1111/brv.12178spa
dc.relation.referencesSchneider, J. L., Suh, Y., & Cuervo, A. M. (2014). Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metabolism, 20(3), 417–432. https://doi.org/10.1016/j.cmet.2014.06.009spa
dc.relation.referencesSchroeder, B., Schulze, R. J., Weller, S. G., Sletten, A. C., Casey, C. A., & McNiven, M. A. (2015). The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology, 61(6), 1896–1907. https://doi.org/10.1002/hep.27667spa
dc.relation.referencesSchulze, R. J., Schott, M. B., Casey, C. A., Tuma, P. L., & McNiven, M. A. (2019). The cell biology of the hepatocyte: A membrane trafficking machine. In Journal of Cell Biology (Vol. 218, Issue 7, pp. 2096–2112). Rockefeller University Press. https://doi.org/10.1083/jcb.201903090spa
dc.relation.referencesSchuster, S., Cabrera, D., Arrese, M., & Feldstein, A. E. (2018). Triggering and resolution of inflammation in NASH. In Nature Reviews Gastroenterology and Hepatology (Vol. 15, Issue 6, pp. 349–364). Nature Publishing Group. https://doi.org/10.1038/s41575-018-0009-6spa
dc.relation.referencesSerhan, C. N. (2017). Treating inflammation and infection in the 21st century: New hints from decoding resolution mediators and mechanisms. In FASEB Journal (Vol. 31, Issue 4, pp. 1273–1288). FASEB. https://doi.org/10.1096/fj.201601222Rspa
dc.relation.referencesSingh Monga, S. P., & Behari, J. (2010). Chapter 20 - Molecular Basis of Liver Disease. In W. B. Coleman & G. Tsongalis (Eds.), Essentials Concepts in Molecular Pathology (pp. 263–278). Elsevier. https://doi.org/10.1016/B978-0-12-374418-0.00029-3spa
dc.relation.referencesSoares-da-Silva, F., Peixoto, M., Cumano, A., & Pinto-do-Ó, P. (2020). Crosstalk Between the Hepatic and Hematopoietic Systems During Embryonic Development. In Frontiers in Cell and Developmental Biology (Vol. 8). Frontiers Media S.A. https://doi.org/10.3389/fcell.2020.00612spa
dc.relation.referencesSrimani, P., & Saha, A. (2020). Liver morphology: anatomical study about the outer aspects. Surgical and Radiologic Anatomy, 42(12), 1425–1434. https://doi.org/10.1007/s00276-020-02485-9spa
dc.relation.referencesSufleţel, R. T., Melincovici, C. S., Gheban, B. A., Toader, Z., & Mihu, C. M. (2020). Hepatic stellate cells - from past till present: Morphology, human markers, human cell lines, behavior in normal and liver pathology. Romanian Journal of Morphology and Embryology, 61(3), 615–642. https://doi.org/10.47162/RJME.61.3.01spa
dc.relation.referencesSunny, N. E., Bril, F., & Cusi, K. (2017). Mitochondrial Adaptation in Nonalcoholic Fatty Liver Disease: Novel Mechanisms and Treatment Strategies. In Trends in Endocrinology and Metabolism (Vol. 28, Issue 4, pp. 250–260). Elsevier Inc. https://doi.org/10.1016/j.tem.2016.11.006spa
dc.relation.referencesTakahashi, Y., & Fukusato, T. (2014). Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World Journal of Gastroenterology, 20(42), 15539–15548. https://doi.org/10.3748/wjg.v20.i42.15539spa
dc.relation.referencesTamaki, N., Ajmera, V., & Loomba, R. (2022). Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD. In Nature Reviews Endocrinology (Vol. 18, Issue 1, pp. 55–66). Nature Research. https://doi.org/10.1038/s41574-021-00584-0spa
dc.relation.referencesTanimizu, N. (2022). The neonatal liver: Normal development and response to injury and disease. Seminars in Fetal and Neonatal Medicine, 27(1). https://doi.org/10.1016/j.siny.2021.101229spa
dc.relation.referencesTateya, S., Rizzo, N. O., Handa, P., Cheng, A. M., Morgan-Stevenson, V., Daum, G., Clowes, A. W., Morton, G. J., Schwartz, M. W., & Kim, F. (2011). Endothelial NO/cGMP/VASP signaling attenuates kupffer cell activation and hepatic insulin resistance induced by high-fat feeding. Diabetes, 60(11), 2792–2801. https://doi.org/10.2337/db11-0255spa
dc.relation.referencesTheise, N. D. (2021). Hígado y Vesícula Biliar. In V. Kumar, A. Abbas, & J. Aster (Eds.), Robbins Y Cotran Patología Estructural Y Funcional (10th ed., pp. 821–895). Elsevier.spa
dc.relation.referencesTiniakos, D. G., Vos, M. B., & Brunt, E. M. (2010). Nonalcoholic fatty liver disease: Pathology and pathogenesis. In Annual Review of Pathology: Mechanisms of Disease (Vol. 5, pp. 145–171). https://doi.org/10.1146/annurev-pathol-121808-102132spa
dc.relation.referencesTrefts, E., Gannon, M., & Wasserman, D. H. (2017). The liver. Current Biology, 27(21), R1147–R1151. https://doi.org/10.1016/j.cub.2017.09.019spa
dc.relation.referencesValenti, L., Mendoza, R. M., Rametta, R., Maggioni, M., Kitajewski, C., Shawber, C. J., & Pajvani, U. B. (2013). Hepatic notch signaling correlates with insulin resistance and nonalcoholic fatty liver disease. Diabetes, 62(12), 4052–4062. https://doi.org/10.2337/db13-0769spa
dc.relation.referencesWallace, S. J., Tacke, F., Schwabe, R. F., & Henderson, N. C. (2022). Understanding the cellular interactome of non-alcoholic fatty liver disease. In JHEP Reports (Vol. 4, Issue 8). Elsevier B.V. https://doi.org/10.1016/j.jhepr.2022.100524spa
dc.relation.referencesWolf, M. J., Adili, A., Piotrowitz, K., Abdullah, Z., Boege, Y., Stemmer, K., Ringelhan, M., Simonavicius, N., Egger, M., Wohlleber, D., Lorentzen, A., Einer, C., Schulz, S., Clavel, T., Protzer, U., Thiele, C., Zischka, H., Moch, H., Tschöp, M., … Heikenwalder, M. (2014). Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell, 26(4), 549–564. https://doi.org/10.1016/j.ccell.2014.09.003spa
dc.relation.referencesXu, G. X., Wei, S., Yu, C., Zhao, S. Q., Yang, W. J., Feng, Y. H., Pan, C., Yang, K. X., & Ma, Y. (2023). Activation of Kupffer cells in NAFLD and NASH: mechanisms and therapeutic interventions. In Frontiers in Cell and Developmental Biology (Vol. 11). Frontiers Media SA. https://doi.org/10.3389/fcell.2023.1199519spa
dc.relation.referencesXu, R., Huang, H., Zhang, Z., & Wang, F. S. (2014). The role of neutrophils in the development of liver diseases. In Cellular and Molecular Immunology (Vol. 11, Issue 3, pp. 224–231). Chinese Soc Immunology. https://doi.org/10.1038/cmi.2014.2spa
dc.relation.referencesYoo, K. S., Lim, W. T., & Choi, H. S. (2016). Biology of cholangiocytes: From bench to bedside. In Gut and Liver (Vol. 10, Issue 5, pp. 687–698). Joe Bok Chung. https://doi.org/10.5009/gnl16033spa
dc.relation.referencesYounossi, Z. M. (2019). Non-alcoholic fatty liver disease – A global public health perspective. In Journal of Hepatology (Vol. 70, Issue 3, pp. 531–544). Elsevier B.V. https://doi.org/10.1016/j.jhep.2018.10.033spa
dc.relation.referencesYounossi, Z. M., Loomba, R., Anstee, Q. M., Rinella, M. E., Bugianesi, E., Marchesini, G., Neuschwander-Tetri, B. A., Serfaty, L., Negro, F., Caldwell, S. H., Ratziu, V., Corey, K. E., Friedman, S. L., Abdelmalek, M. F., Harrison, S. A., Sanyal, A. J., Lavine, J. E., Mathurin, P., Charlton, M. R., … Lindor, K. (2018). Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. In Hepatology (Vol. 68, Issue 1, pp. 349–360). John Wiley and Sons Inc. https://doi.org/10.1002/hep.29721spa
dc.relation.referencesZhang, H., Liu, M., Zhong, W., Zheng, Y., Li, Y., Guo, L., Zhang, Y., Ran, Y., Zhao, J., Zhou, L., & Wang, B. (2021). Leaky Gut Driven by Dysbiosis Augments Activation and Accumulation of Liver Macrophages via RIP3 Signaling Pathway in Autoimmune Hepatitis. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.624360spa
dc.relation.referencesZhu, C., Tabas, I., Schwabe, R. F., & Pajvani, U. B. (2021). Maladaptive regeneration — the reawakening of developmental pathways in NASH and fibrosis. In Nature Reviews Gastroenterology and Hepatology (Vol. 18, Issue 2, pp. 131–142). Nature Research. https://doi.org/10.1038/s41575-020-00365-6spa
dc.relation.referencesZhu, L., Baker, S. S., Liu, W., Tao, M. H., Patel, R., Nowak, N. J., & Baker, R. D. (2011). Lipid in the livers of adolescents with nonalcoholic steatohepatitis: Combined effects of pathways on steatosis. Metabolism: Clinical and Experimental, 60(7), 1001–1011. https://doi.org/10.1016/j.metabol.2010.10.003spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsEnfermedad del Hígado Graso no Alcohólicospa
dc.subject.decsNon-alcoholic Fatty Liver Diseaseeng
dc.subject.decsCarcinoma Hepatocelularspa
dc.subject.decsCarcinoma, Hepatocellulareng
dc.subject.decsEnfermedades del Sistema Digestivospa
dc.subject.decsDigestive System Diseaseseng
dc.subject.proposalEnfermedad por Hígado Graso No Alcohólicospa
dc.subject.proposalEsteatohepatitis no Alcohólicaspa
dc.subject.proposalAnatomíaspa
dc.subject.proposalEmbriologíaspa
dc.subject.proposalHistologíaspa
dc.subject.proposalNon-alcoholic Fatty Liver Diseaseeng
dc.subject.proposalNon-alcoholic Steatohepatitiseng
dc.subject.proposalAnatomyeng
dc.subject.proposalEmbryologyeng
dc.subject.proposalHistologyeng
dc.titleRevisión bibliográfica de conceptos morfológicos en el desarrollo de Enfermedad de Hígado Graso no Alcohólico (EHGNA) y Esteatohepatitis no Alcohólica (EHNA)spa
dc.title.translatedBibliographic review of morphological concepts in the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014290376.2024.pdf
Tamaño:
4.43 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Morfología Humana

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: