Identificación de la expresión génica en mango (Mangifera indica L. cultivar Azúcar) que favorece la patogenicidad del endófito Colletotrichum tropicale en frutos

dc.contributor.advisorGarcía Domínguez, Celsaspa
dc.contributor.advisorPáez Redondo, Alberto Rafaelspa
dc.contributor.authorQuintero Mercado, Andrés Felipespa
dc.date.accessioned2025-10-20T22:07:54Z
dc.date.available2025-10-20T22:07:54Z
dc.date.issued2025
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl hongo endófito Colletotrichum tropicale se torna patógeno en frutos maduros de mango cv. Azúcar, generando síntomas típicos de antracnosis, enfermedad más limitante en poscosecha en el Magdalena (Colombia); sin embargo, no se tiene claridad de la estrategia infectiva intracelular y la expresión génica del hospedante que permite su transición de estilo de vida. Se planteó caracterizar el proceso histopatológico del endófito C. tropicale en fruto maduro de mango cv. Azúcar e identificar la expresión génica diferencial del hospedante que favorece dicha patogenicidad. Para esto, se realizó un estudio histológico con Astra blue-fucsina en los tiempos 0, 12, 24 y 36 hpi. Asimismo, un estudio por RNA-seq, análisis funcional y predicción de efectores. El estudio histopatológico reveló que el endófito 12 hpi sufre una fase quiescente corta, que 24 hpi finaliza para dar paso a la colonización por hifas secundarias en el parénquima e inicio de la fase necrotrófica evidente con sintomatología típica de antracnosis. El análisis transcriptómico se hizo a las 12 hpi y se logró identificar 5435 genes expresados diferencialmente en la interacción, evidenciándose genes reprimidos del fruto relacionados con funciones moleculares de la defensa por estallido oxidativo de ROS. El endófito sobreexpresó genes involucrados con procesos metabólicos y biosintéticos, secreción alta de efectores y CAZymes. Estos resultados sugieren que C. tropicale usa la estrategia patogénica de un hemibiótro mediante una fase de quiescencia y el fruto maduro de mango favorece su establecimiento en dicha fase por disminuir su defensa relacionada con el estallido oxidativo por ROS. (Texto tomado de la fuente).spa
dc.description.abstractThe endophytic fungus Colletotrichum tropicale becomes pathogenic in ripe mango fruits (cv. Azúcar), causing typical anthracnose symptoms, the most limiting postharvest disease in the Magdalena region (Colombia). However, the intracellular infection strategy and the host gene expression enabling this lifestyle transition remain unclear. This study aimed to characterize the histopathological process of C. tropicale in ripe mango fruit (cv. Azúcar) and identify differential host gene expression that favors its pathogenicity. A histological analysis using Astra blue-fuchsin staining was conducted at 0, 12, 24, and 36 hours post-inoculation (hpi). Additionally, an RNA-seq study, functional analysis, and effector prediction were performed. The histopathological assessment revealed that at 12 hpi, the endophyte undergoes a short quiescent phase, which ends at 24 hpi, giving way to colonization by secondary hyphae in the parenchyma and the onset of the necrotrophic phase, evident through typical anthracnose symptoms. Transcriptomic analysis at 12 hpi identified 5,435 differentially expressed genes in the interaction, including repressed host genes associated with molecular defense functions related to reactive oxygen species (ROS) burst. The endophyte overexpressed genes involved in metabolic and biosynthetic processes, along with high secretion of effectors and CAZymes. These results suggest that C. tropicale employs a hemibiotrophic pathogenic strategy through a quiescent phase, and that ripe mango fruit facilitates its establishment during this phase by downregulating ROS-related oxidative burst defense mechanisms.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Agrariasspa
dc.description.researchareaFitopatologíaspa
dc.format.extentxii, 138 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89047
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Doctorado en Ciencias Agrariasspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAdame-Álvarez, R.-M., Mendiola-Soto, J., & Heil, M. (2014). Order of arrival shifts endophyte-pathogen interactions in bean from resistance induction to disease facilitation. FEMS Microbiology Letters, 355(2). https://doi.org/10.1111/1574-6968.12454
dc.relation.referencesÁlvarez-Loayza, P., White, J. F., Torres, M. S., Balslev, H., Kristiansen, T., Svenning, J.-C., & Gil, N. (2011). Light Converts Endosymbiotic Fungus to Pathogen, Influencing Seedling Survival and Niche-Space Filling of a Common Tropical Tree, Iriartea deltoidea. PLoS ONE, 6(1), e16386. https://doi.org/10.1371/journal.pone.0016386
dc.relation.referencesAndrews, J. H. (1983). Microbial Antagonism to the Imperfect Stage of the Apple Scab Pathogen, Venturia inaequalis. Phytopathology, 73(2). https://doi.org/10.1094/Phyto-73-228
dc.relation.referencesArechavaleta, M., Bacon, CW., Hoveland, CS., & Radcliffe, DE. (1989). Effect of the tall fescue endophyte on plant response to environmental stress. . Agronomy Journal, 81, 83–90.
dc.relation.referencesArnold, A. E., & Engelbrecht, B. M. J. (2007). Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. Journal of Tropical Ecology, 23(3). https://doi.org/10.1017/S0266467407004038
dc.relation.referencesArnold, A. E., & Herre, E. A. (2003). Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia, 95(3). https://doi.org/10.1080/15572536.2004.11833083
dc.relation.referencesArnold, AE. (2002). Fungal endophytes in neotropical trees: abundance, diversity, and ecological interactions.
dc.relation.referencesArnold, AE. (2008). Endophytic fungi: hidden components of tropical community ecology. In: Schnitzer S, Carson W, eds. Tropical forest community ecology. Blackwell Scientific, Inc.
dc.relation.referencesBacon CW, & White JFJ. (2000). Physiological adaptations in the evolution of endophytism in the Clavicipitaceae. (W. J. Bacon CW, Ed.; Marcel Dekker Inc.).
dc.relation.referencesBailey, B. A., Bae, H., Strem, M. D., Crozier, J., Thomas, S. E., Samuels, G. J., Vinyard, B. T., & Holmes, K. A. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46(1). https://doi.org/10.1016/j.biocontrol.2008.01.003
dc.relation.referencesBaltruschat, H., Fodor, J., Harrach, BD., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A., Kogel, KH., Schäfer, P., & Schwarczinger, I. (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist , 180, 501–510.
dc.relation.referencesBary, A. de. (1866). Morphologie und Physiologie der Pilze, Flechten und Myxomyceten /. W. Engelmann,. https://doi.org/10.5962/bhl.title.120970
dc.relation.referencesBautista-Rosales, P. U., Calderon-Santoyo, M., Servín-Villegas, R., Ochoa-Álvarez, N. A., & Ragazzo-Sánchez, J. A. (2013). Action mechanisms of the yeast Meyerozyma caribbica for the control of the phytopathogen Colletotrichum gloeosporioides in mangoes. Biological Control, 65(3). https://doi.org/10.1016/j.biocontrol.2013.03.010
dc.relation.referencesBautista-Rosales, P. U., Calderon-Santoyo, M., Servín-Villegas, R., Ochoa-Álvarez, N. A., Vázquez-Juárez, R., & Ragazzo-Sánchez, J. A. (2014). Biocontrol action mechanisms of Cryptococcus laurentii on Colletotrichum gloeosporioides of mango. Crop Protection, 65. https://doi.org/10.1016/j.cropro.2014.07.019
dc.relation.referencesBing, L. A., & Lewis, L. C. (1991). Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) by Endophytic Beauveria bassiana (Balsamo) Vuillemin. Environmental Entomology, 20(4). https://doi.org/10.1093/ee/20.4.1207
dc.relation.referencesBonos, S. A., Wilson, M. M., Meyer, W. A., & Reed Funk, C. (2005). Suppression of Red Thread in Fine Fescues Through Endophyte-Mediated Resistance. Ats, 2(1). https://doi.org/10.1094/ATS-2005-0725-01-RS
dc.relation.referencesBorges, Á. v., Saraiva, R. M., & Maffia, L. A. (2015a). Biocontrol of gray mold in tomato plants by Clonostachys rosea. Tropical Plant Pathology, 40(2). https://doi.org/10.1007/s40858-015-0010-3
dc.relation.referencesBorges, Á. v., Saraiva, R. M., & Maffia, L. A. (2015a). Biocontrol of gray mold in tomato plants by Clonostachys rosea. Tropical Plant Pathology, 40(2). https://doi.org/10.1007/s40858-015-0010-3
dc.relation.referencesBrame, C., & Flood, J. (1983). Antagonism of Aureobasidium pullulans towards Alternaria solani. Transactions of the British Mycological Society, 81(3). https://doi.org/10.1016/S0007-1536(83)80135-1
dc.relation.referencesBusby, P. E., Peay, K. G., & Newcombe, G. (2016). Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytologist, 209(4). https://doi.org/10.1111/nph.13742
dc.relation.referencesBusby, P. E., Ridout, M., & Newcombe, G. (2016). Fungal endophytes: modifiers of plant disease. Plant Molecular Biology, 90(6), 645–655. https://doi.org/10.1007/s11103-015-0412-0
dc.relation.referencesCampanile, G., Ruscelli, A., & Luisi, N. (2007). Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, 117, 237–246.
dc.relation.referencesCapdeville, G. de, Souza Júnior, M. T., Santos, J. R. P., Miranda, S. P., Caetano, A. R., Falcão, R., & Gomes, A. C. M. M. (2007). Scanning electron microscopy of the interaction between Cryptococcus magnus and Colletotrichum gloeosporioides on papaya fruit. Pesquisa Agropecuária Brasileira, 42(11). https://doi.org/10.1590/S0100-204X2007001100004
dc.relation.referencesCarisse, O., Philion, V., Rolland, D., & Bernier, J. (2000). Effect of Fall Application of Fungal Antagonists on Spring Ascospore Production of the Apple Scab Pathogen, Venturia inaequalis. Phytopathology®, 90(1). https://doi.org/10.1094/PHYTO.2000.90.1.31
dc.relation.referencesChang, J. K., Boer, R. D., Crous, P. W., & Taylor, P. W. (2014). Biology of foliar and root infection of potato plants by Colletotrichum coccodes in Australia. Phytopathology, 104.
dc.relation.referencesChethana, K. W. T., Jayawardena, R. S., Chen, Y. J., Konta, S., Tibpromma, S., Phukhamsakda, C., Abeywickrama, P. D., Samarakoon, M. C., Senwanna, C., Mapook, A., Tang, X., Gomdola, D., Marasinghe, D. S., Padaruth, O. D., Balasuriya, A., Xu, J., Lumyong, S., & Hyde, K. D. (2021). Appressorial interactions with host and their evolution. In Fungal Diversity. Springer Science and Business Media B.V. https://doi.org/10.1007/s13225-021-00487-5
dc.relation.referencesClarke, B. B., White, J. F., Hurley, R. H., Torres, M. S., Sun, S., & Huff, D. R. (2006). Endophyte-Mediated Suppression of Dollar Spot Disease in Fine Fescues. Plant Disease, 90(8). https://doi.org/10.1094/PD-90-0994
dc.relation.referencesCota, L. v., Maffia, L. A., Mizubuti, E. S. G., Macedo, P. E. F., & Antunes, R. F. (2008). Biological control of strawberry gray mold by Clonostachys rosea under field conditions. Biological Control, 46(3). https://doi.org/10.1016/j.biocontrol.2008.04.023
dc.relation.referencesCunha, T. da, Ferraz, L. P., Sousa, G. da S. de, & Kupper, K. C. (2020). The action of yeast strains as biocontrol agents against Penicillium digitatum in Lima sweet oranges. Citrus Research & Technology, 41. https://doi.org/10.4322/crt.18819
dc.relation.referencesda Silva, L. L., Moreno, H. L. A., Correia, H. L. N., Santana, M. F., & de Queiroz, M. V. (2020). Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. In Applied Microbiology and Biotechnology (Vol. 104, Issue 5, pp. 1891–1904). Springer. https://doi.org/10.1007/s00253-020-10363-y
dc.relation.referencesDamm, U., Cannon, P. F., Woudenberg, J. H. C., Johnston, P. R., Weir, B. S., Tan, Y. P., Shivas, R. G., & Crous, P. W. (2012). The Colletotrichum boninense species complex. Studies in Mycology, 73. https://doi.org/10.3114/sim0002
dc.relation.referencesanielsen, S., & Jensen, D. F. (1999a). Fungal Endophytes from Stalks of Tropical Maize and Grasses: Isolation, Identification, and Screening for Antagonism against Fusarium verticillioides in Maize Stalks. Biocontrol Science and Technology, 9(4). https://doi.org/10.1080/09583159929505
dc.relation.referencesDanielsen, S., & Jensen, D. F. (1999b). Fungal Endophytes from Stalks of Tropical Maize and Grasses: Isolation, Identification, and Screening for Antagonism against Fusarium verticillioides in Maize Stalks. Biocontrol Science and Technology, 9(4). https://doi.org/10.1080/09583159929505
dc.relation.referencesDas, A., and V. A. (2009). Symbiotic Fungi (A. Varma & A. C. Kharkwal, Eds.; Vol. 18). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-95894-9
dc.relation.referencesde Melo, E. A., de Lima R. Mariano, R., Laranjeira, D., dos Santos, L. A., de Omena Gusmão, L., & Barbosa de Souza, E. (2015a). Efficacy of Yeast in the Biocontrol of Bacterial Fruit Blotch in Melon Plants. Tropical Plant Pathology, 40(1). https://doi.org/10.1007/s40858-015-0008-x
dc.relation.referencesde Melo, E. A., de Lima R. Mariano, R., Laranjeira, D., dos Santos, L. A., de Omena Gusmão, L., & Barbosa de Souza, E. (2015b). Efficacy of Yeast in the Biocontrol of Bacterial Fruit Blotch in Melon Plants. Tropical Plant Pathology, 40(1). https://doi.org/10.1007/s40858-015-0008-x
dc.relation.referencesDelaye, L., García-Guzmán, G., & Heil, M. (2013). Endophytes versus biotrophic and necrotrophic pathogens-are fungal lifestyles evolutionarily stable traits? Fungal Diversity, 60(1), 125–135. https://doi.org/10.1007/s13225-013-0240-y
dc.relation.referencesDruzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., Mukherjee, P. K., Zeilinger, S., Grigoriev, I. v., & Kubicek, C. P. (2011). Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 9(10). https://doi.org/10.1038/nrmicro2637
dc.relation.referencesElad, Y. (1980). Trichoderma harzianum:A Biocontrol Agent Effective Against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology, 70(2). https://doi.org/10.1094/Phyto-70-119
dc.relation.referencesErnst, M., Mendgen, K., & Wirsel, SGR. (2003). Endophytic fungal mutualists: seed-borne Stagonospora spp. Enhance reed biomass production in axenic microcosms. . Molecular Plant–Microbe Interactions, 16, 580–587.
dc.relation.referencesEaton, C. J., Cox, M. P., & Scott, B. (2011). What triggers grass endophytes to switch from mutualism to pathogenism? Plant Science, 180(2), 190–195. https://doi.org/10.1016/j.plantsci.2010.10.002
dc.relation.referencesFreeman, S., Horowitz, S., & Sharon, A. (2001). Pathogenic and Nonpathogenic Lifestyles in Colletotrichum acutatum from Strawberry and Other Plants. Phytopathology®, 91(10). https://doi.org/10.1094/PHYTO.2001.91.10.986
dc.relation.referencesGamboa, MA., & Bayman, P. (2001). Communities of endophytic fungi in leaves of a tropical timber tree (Guarea guidonia: Meliaceae). Biotropica, 33, 352–360.
dc.relation.referencesGamboa-Gaitán, M. A. (2006). HONGOS ENDÓFITOS TROPICALES: CONOCIMIENTO ACTUAL Y PERSPECTIVAS Tropical Endophytic Fungi: Current Knowledge and Perspectives. In Acta Biológica Colombiana (Vol. 11).
dc.relation.referencesGao, KX., & Mendgen, K. (2006). Seed-transmitted beneficial endophytic Stagonospora sp. can penetrate the walls of the root epidermis, but does not proliferate in the cortex, of Phragmites australis. Canadian Journal of Botany-Revue Canadienne De Botanique, 84, 981–988.
dc.relation.referencesGriffin, E. A. , and C. W. P. (2015). The ecology and natu- ral history of foliar bacteria with a focus on tropical forests and agroecosystems. Bot Rev , 81, 105–149.
dc.relation.referencesGrosch, R., Scherwinski, K., Lottmann, J., & Berg, G. (2006). Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycological Research, 110(12). https://doi.org/10.1016/j.mycres.2006.09.014
dc.relation.referencesGuerin, D. (1898). Sur la presence d’un champignon dans l’lvraie. . Journal Botany , 12, 230–238.
dc.relation.referencesHanada, R. E., de Jorge Souza, T., Pomella, A. W. V., Hebbar, K. P., Pereira, J. O., Ismaiel, A., & Samuels, G. J. (2008). Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycological Research, 112(11). https://doi.org/10.1016/j.mycres.2008.06.022
dc.relation.referencesHanada, R. E., Pomella, A. W. v., Costa, H. S., Bezerra, J. L., Loguercio, L. L., & Pereira, J. O. (2010). Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biology, 114(11–12). https://doi.org/10.1016/j.funbio.2010.08.006
dc.relation.referencesHanausek, TF. (1898). Vorlaufige mittheilung uber den von a vogl in der frucht von lolium temulentum entdeckten pilz. Berichte Der Deutschen Botanischen Gesellschaft , 16, 203.
dc.relation.referencesHardoim, P. R., Hardoim, C. C. P., van Overbeek, L. S., & van Elsas, J. D. (2012). Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0030438
dc.relation.referencesHardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M., & Sessitsch, A. (2015). The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews, 79(3). https://doi.org/10.1128/MMBR.00050-14
dc.relation.referencesHardoim, P. R., van Overbeek, L. S., & Elsas, J. D. van. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16(10). https://doi.org/10.1016/j.tim.2008.07.008
dc.relation.referencesHarrison, J. G., & Griffin, E. A. (2020). The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environmental Microbiology, 22(6), 2107–2123. https://doi.org/10.1111/1462-2920.14968
dc.relation.referencesHerre, E. A., van Bael, S. A., Maynard, Z., Robbins, N., Bischoff, J., Arnold, A. E., Rojas, E., Mejia, L. C., Cordero, R. A., Woodward, C., & Kyllo, D. A. (2005). Tropical plants as chimera: some implications of foliar endophytic fungi for the study of host-plant defense, physiology and genetics. In Biotic Interactions in the Tropics. Cambridge University Press. https://doi.org/10.1017/CBO9780511541971.010
dc.relation.referencesHiggins, K. L., Arnold, A. E., Miadlikowska, J., Sarvate, S. D., & Lutzoni, F. (2007). Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Molecular Phylogenetics and Evolution, 42(2). https://doi.org/10.1016/j.ympev.2006.07.012
dc.relation.referencesHiggins, KL., Arnold, AE., Miadlikowska, J., Sarvate, SD., & Lutzoni, F. (2007). Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Molecular Phylogenetics and Evolution, 42, 543–555.
dc.relation.referencesHirsch, G., & Braun, U. (1992). Communities of parasitic microfungi. In Handbook of vegetative science Volume 19. Fungi in vegetation science (pp. 225–250). Kluwer Academic Publishers.
dc.relation.referencesHiruma, K., Gerlach, N., Sacristán, S., Nakano, R. T., Hacquard, S., Kracher, B., Neumann, U., Ramírez, D., Bucher, M., O’Connell, R. J., & Schulze-Lefert, P. (2016). Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell, 165(2). https://doi.org/10.1016/j.cell.2016.02.028
dc.relation.referencesHyde, K. D., Bussaban, B., Paulus, B., Crous, P. W., Lee, S., Mckenzie, E. H. C., Photita, W., & Lumyong, S. (2007). Diversity of saprobic microfungi. Biodiversity and Conservation, 16(1). https://doi.org/10.1007/s10531-006-9119-5
dc.relation.referencesJayawardena, R. (2016). Notes on currently accepted species of Colletotrichum. Mycosphere, 7(8). https://doi.org/10.5943/mycosphere/si/2c/9
dc.relation.referencesJohnson, N. C., Graham, J. H., & Smith, F. A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist, 135(4). https://doi.org/10.1046/j.1469-8137.1997.00729.x
dc.relation.referencesJones, E. E., Bienkowski, D. A., & Stewart, A. (2016). The importance of water potential range tolerance as a limiting factor on Trichoderma spp. biocontrol of Sclerotinia sclerotiorum. Annals of Applied Biology, 168(1). https://doi.org/10.1111/aab.12240
dc.relation.referencesJr WJ, T. M. S. R. J. R. C. Q. T. M. (2014). Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids. Microsc Res Techniq , 77, 874–885.
dc.relation.referencesJumpponen, A. (2001). Dark septate endophytes - are they mycorrhizal? Mycorrhiza, 11(4). https://doi.org/10.1007/s005720100112
dc.relation.referencesJumpponen, A., & Trappe, J. M. (1998). Dark septate endophytes: a review of facultative biotrophic root‐colonizing fungi. New Phytologist, 140(2). https://doi.org/10.1046/j.1469-8137.1998.00265.x
dc.relation.referencesKandula, D. R. W., Jones, E. E., Stewart, A., McLean, K. L., & Hampton, J. G. (2015). Trichoderma species for biocontrol of soil-borne plant pathogens of pasture species. Biocontrol Science and Technology, 25(9). https://doi.org/10.1080/09583157.2015.1028892
dc.relation.referencesKaul, S., Sharma, T., & Dhar, M. K. (2016). “Omics” tools for better understanding the plant–endophyte interactions. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00955
dc.relation.referencesKefialew, Y., & Ayalew, A. (2008). Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biology and Technology, 50(1). https://doi.org/10.1016/j.postharvbio.2008.03.007
dc.relation.referencesKhare, E., Mishra, J., & Arora, N. K. (2018). Multifaceted interactions between endophytes and plant: Developments and Prospects. In Frontiers in Microbiology (Vol. 9, Issue NOV). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2018.02732
dc.relation.referencesKhastini, R. O., Ogawara, T., Sato, Y., & Narisawa, K. (2014). Control of Fusarium wilt in melon by the fungal endophyte, Cadophora sp. European Journal of Plant Pathology, 139(2). https://doi.org/10.1007/s10658-014-0389-6
dc.relation.referencesKhastini, R. O., Ohta, H., & Narisawa, K. (2012). The role of a dark septate endophytic fungus, Veronaeopsis simplex Y34, in Fusarium disease suppression in Chinese cabbage. Journal of Microbiology, 50(4). https://doi.org/10.1007/s12275-012-2105-6
dc.relation.referencesKiss, L. (2003). A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Management Science, 59(4). https://doi.org/10.1002/ps.689
dc.relation.referencesKogel, K. H., Franken, P., & Hückelhoven, R. (2006). Endophyte or parasite - what decides? In Current Opinion in Plant Biology (Vol. 9, Issue 4, pp. 358–363). https://doi.org/10.1016/j.pbi.2006.05.001
dc.relation.referencesKurose, D., Furuya, N., Tsuchiya, K., Tsushima, S., & Evans, H. C. (2012). Endophytic fungi associated with Fallopia japonica (Polygonaceae) in Japan and their interactions with Puccinia polygoni-amphibii var. tovariae, a candidate for classical biological control. Fungal Biology, 116(7). https://doi.org/10.1016/j.funbio.2012.04.011
dc.relation.referencesLarkin, R. P., & Fravel, D. R. (1998a). Efficacy of Various Fungal and Bacterial Biocontrol Organisms for Control of Fusarium Wilt of Tomato. Plant Disease, 82(9). https://doi.org/10.1094/PDIS.1998.82.9.1022
dc.relation.referencesLarkin, R. P., & Fravel, D. R. (1998b). Efficacy of Various Fungal and Bacterial Biocontrol Organisms for Control of Fusarium Wilt of Tomato. Plant Disease, 82(9). https://doi.org/10.1094/PDIS.1998.82.9.1022
dc.relation.referencesLarran, S., Simón, M. R., Moreno, M. V., Siurana, M. P. S., & Perelló, A. (2016). Endophytes from wheat as biocontrol agents against tan spot disease. Biological Control, 92. https://doi.org/10.1016/j.biocontrol.2015.09.002
dc.relation.referencesLopes, M. R., Klein, M. N., Ferraz, L. P., da Silva, A. C., & Kupper, K. C. (2015). Saccharomyces cerevisiae: A novel and efficient biological control agent for Colletotrichum acutatum during pre-harvest. Microbiological Research, 175. https://doi.org/10.1016/j.micres.2015.04.003
dc.relation.referencesMalinowski DP, & Belesky DP. (2000). Adaptations of endophtye-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Science, 40, 923–940.
dc.relation.referencesMandyam, K., & Jumpponen, A. (2005). Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology, 53. https://doi.org/10.3114/sim.53.1.173
dc.relation.referencesMartínez-Medina, A., del Mar Alguacil, M., Pascual, J. A., & van Wees, S. C. M. (2014a). Phytohormone Profiles Induced by Trichoderma Isolates Correspond with Their Biocontrol and Plant Growth-Promoting Activity on Melon Plants. Journal of Chemical Ecology, 40(7). https://doi.org/10.1007/s10886-014-0478-1
dc.relation.referencesMartínez-Medina, A., del Mar Alguacil, M., Pascual, J. A., & van Wees, S. C. M. (2014b). Phytohormone Profiles Induced by Trichoderma Isolates Correspond with Their Biocontrol and Plant Growth-Promoting Activity on Melon Plants. Journal of Chemical Ecology, 40(7). https://doi.org/10.1007/s10886-014-0478-1
dc.relation.referencesMasih, E. I., & Paul, B. (2002). Secretion of β-1,3-Glucanases by the Yeast Pichia membranifaciens and Its Possible Role in the Biocontrol of Botrytis cinerea Causing Grey Mold Disease of the Grapevine. Current Microbiology, 44(6). https://doi.org/10.1007/s00284-001-0011-y
dc.relation.referencesMejia, L. C., Herre, E. A., Sparks, J. P., Winter, K., Garcia, M. N., van Bael, S. A., Stitt, J., Shi, Z., Zhang, Y., Guiltinan, M. J., & Maximova, S. N. (2014). Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00479
dc.relation.referencesMelin, E. (1922). On the Mycorrhizas of Pinus Silvestris L. and Picea Abies Karst: A Preliminary Note. The Journal of Ecology, 9(2). https://doi.org/10.2307/2255406
dc.relation.referencesMoissl-Eichinger, C. , P. M. , T. J. , B. G. , B. C. , and S. R. A. (2018). Archaea
dc.relation.referencesMonk, K. A., & Samuels, G. J. (1990). Mycophagy in Grasshoppers (Orthoptera: Acrididae) in Indo-Malayan Rain Forests. Biotropica, 22(1). https://doi.org/10.2307/2388715
dc.relation.referencesMoraga, J., Gomes, W., Pinedo, C., Cantoral, J. M., Hanson, J. R., Carbú, M., Garrido, C., Durán-Patrón, R., & Collado, I. G. (2019). The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochemistry Reviews, 18(1). https://doi.org/10.1007/s11101-018-9590-0
dc.relation.referencesNarisawa, K., Kawamata, H., Currah, R. S., & Hashiba, T. (2002). Suppression of Verticillium wilt in eggplant by some fungal root endophytes. European Journal of Plant Pathology, 108(2). https://doi.org/10.1023/A:1015080311041
dc.relation.referencesPandey, R. R., Arora, D. K., & Dubey, R. C. (1993). Antagonistic interactions between fungal pathogens and phylloplane fungi of guava. Mycopathologia, 124(1). https://doi.org/10.1007/BF01103054
dc.relation.referencesParniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology, 6(10). https://doi.org/10.1038/nrmicro1987
dc.relation.referencesPeyronel, B. (1924). Prime ricerche sulla micorizae endotrofiche e sulla microflora radicola normalle della fanerograme. Revista Biologia, 6, 17–53.
dc.relation.referencesPromputtha, I., Lumyong, S., Dhanasekaran, V., McKenzie, E. H. C., Hyde, K. D., & Jeewon, R. (2007). A Phylogenetic Evaluation of Whether Endophytes Become Saprotrophs at Host Senescence. Microbial Ecology, 53(4). https://doi.org/10.1007/s00248-006-9117-x
dc.relation.referencesQuintero-Mercado, A., Dangon-Bernier, F., y Páez-Redondo, A. (2019). Aislamientos endofíticos de Colletotrichum spp. a partir de hojas y ramas de mango (Mangifera indica L.) cultivar Azúcar en el municipio de Ciénaga, Magdalena, Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166). https://doi.org/10.18257/raccefyn.788
dc.relation.referencesRaghavendra, A. K. H., & Newcombe, G. (2013). The contribution of foliar endophytes to quantitative resistance to Melampsora rust. New Phytologist, 197(3). https://doi.org/10.1111/nph.12066
dc.relation.referencesRedman, R. S., Dunigan, D. D., & Rodriguez, R. J. (2001). Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytologist, 151(3). https://doi.org/10.1046/j.0028-646x.2001.00210.x
dc.relation.referencesRedman, RS., Sheehan, KB., Stout, RG., Rodriguez, RJ., & Henson, JM. (2002). Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science , 298, 1581.
dc.relation.referencesRichard, C., & Fortin, JA. (1974). Distribution geographique, ecologie, physiologie, pathogenicite et sporulation du mycelium radicus atrovirens. Phytoprotection, 55, 67–88.
dc.relation.referencesRidout, M., & Newcombe, G. (2015). The frequency of modification of Dothistroma pine needle blight severity by fungi within the native range. Forest Ecology and Management, 337. https://doi.org/10.1016/j.foreco.2014.11.010
dc.relation.referencesRodriguez Estrada, A. E., Jonkers, W., Corby Kistler, H., & May, G. (2012). Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: An endophyte, a pathogen, and their shared plant host. Fungal Genetics and Biology, 49(7). https://doi.org/10.1016/j.fgb.2012.05.001
dc.relation.referencesRodríguez, M. A., Rothen, C., Lo, T. E., Cabrera, G. M., & Godeas, A. M. (2015). Suppressive soil against Sclerotinia sclerotiorum as a source of potential biocontrol agents: selection and evaluation of Clonostachys rosea BAFC1646. Biocontrol Science and Technology, 25(12). https://doi.org/10.1080/09583157.2015.1052372
dc.relation.referencesRodriguez, R. J., White, J. F., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: Diversity and functional roles: Tansley review. In New Phytologist (Vol. 182, Issue 2, pp. 314–330). https://doi.org/10.1111/j.1469-8137.2009.02773.x
dc.relation.referencesRodriguez-Galvez, E., & Mendgen, K. (1995). The infection process of Fusarium oxysporum in cotton root tips. Protoplasma, 189, 61–72.
dc.relation.referencesRomeralo, C., Santamaría, O., Pando, V., & Diez, J. J. (2015). Fungal endophytes reduce necrosis length produced by Gremmeniella abietina in Pinus halepensis seedlings. Biological Control, 80. https://doi.org/10.1016/j.biocontrol.2014.09.010
dc.relation.referencesSaikkonen, K., Wäli, P. R., & Helander, M. (2010). Genetic Compatibility Determines Endophyte-Grass Combinations. PLoS ONE, 5(6). https://doi.org/10.1371/journal.pone.0011395
dc.relation.referencesSchardl, C. L., Leuchtmann, A., & Spiering, M. J. (2004). SYMBIOSES OF GRASSES WITH SEEDBORNE FUNGAL ENDOPHYTES. Annual Review of Plant Biology, 55(1). https://doi.org/10.1146/annurev.arplant.55.031903.141735
dc.relation.referencesSchulz, B., Guske, S., Dammann, U., & Boyle, C. (1998). Endophyte-host interactions. II. Defining symbiosis of the endophyte-host interaction. Symbiosis, 25, 213–227.
dc.relation.referencesSchulz, B., Rommert, AK., Dammann, U., Aust, HJ., & Strack, D. (1999). The endophyte-host interaction: a balanced antagonism? Mycological Research., 10, 1275–1283.
dc.relation.referencesSingh, J., & Faull, L. (1988). Antagonism and Biological Control. In K. G. Mukerji & K. L. Garg (Eds.), Biocontrol of Plant Diseases (1st Edition). 30 April 2020.
dc.relation.referencesTao, G., Liu, Z.-Y., Liu, F., Gao, Y.-H., & Cai, L. (2013). Endophytic Colletotrichum species from Bletilla ochracea (Orchidaceae), with descriptions of seven new speices. Fungal Diversity, 61(1). https://doi.org/10.1007/s13225-013-0254-5
dc.relation.referencesTintjer, T., & Rudgers, JA. (2006). Grass-herbivore interactions altered by strains of a native endophyte. New Phytologist., 170, 513–521.
dc.relation.referencesTudzynski, B., & Sharon, A. (2002). Biosynthesis, biological role and application of fungal phyto-hormones.
dc.relation.referencesUsall, J., Teixidó, N., Fons, E., & Viñas, I. (2000). Biological control of blue mould on apple by a strain of Candida sake under several controlled atmosphere conditions. International Journal of Food Microbiology, 58(1–2). https://doi.org/10.1016/S0168-1605(00)00285-3
dc.relation.referencesVieira, W. A. S., Michereff, S. J., de Morais, M. A., Hyde, K. D., & Câmara, M. P. S. (2014). Endophytic species of Colletotrichum associated with mango in northeastern Brazil. Fungal Diversity, 67(1). https://doi.org/10.1007/s13225-014-0293-6
dc.relation.referencesVogl, A. (1898). Zeitschrift Nahrungsmittle Untersuchung Hyg Warenkunde Mehl und die anderen mehlprodukte der cerealien und leguminosen. Zeitschrift Nahrungsmittle Untersuchung Hyg Warenkunde , 12, 25–29.
dc.relation.referencesVu, T., Hauschild, R., & Sikora, RA. (2006). Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. . Nematology, 8, 847–852.
dc.relation.referencesWachowska, U., & Głowacka, K. (2014). Antagonistic interactions between Aureobasidium pullulans and Fusarium culmorum, a fungal pathogen of winter wheat. BioControl, 59(5). https://doi.org/10.1007/s10526-014-9596-5
dc.relation.referencesWani, Z. A., Ashraf, N., Mohiuddin, T., & Riyaz-Ul-Hassan, S. (2015). Plant-endophyte symbiosis, an ecological perspective. In Applied Microbiology and Biotechnology (Vol. 99, Issue 7, pp. 2955–2965). Springer Verlag. https://doi.org/10.1007/s00253-015-6487-3
dc.relation.referencesWicklow DT, Roth S, Deyrup ST, & Gloer JB. (2005). A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res , 109, 610–618.
dc.relation.referencesYOHALEM, D. S. (2004). Evaluation of fungal antagonists for grey mould management in early growth of pot roses. Annals of Applied Biology, 144(1). https://doi.org/10.1111/j.1744-7348.2004.tb00311.x
dc.relation.referencesZhang, Y., Yu, X., Zhang, W., Lang, D., Zhang, X., Cui, G., & Zhang, X. (2019). Interactions between Endophytes and Plants: Beneficial Effect of Endophytes to Ameliorate Biotic and Abiotic Stresses in Plants. In Journal of Plant Biology (Vol. 62, Issue 1). Springer New York LLC. https://doi.org/10.1007/s12374-018-0274-5
dc.relation.referencesAGRONET. (2025, January). Red de información y comunicación del sector Agropecuario Colombiano. Https://Www.Agronet.Gov.Co/Paginas/Inicio.Aspx.
dc.relation.referencesAlkan, N., Friedlander, G., Ment, D., Prusky, D., & Fluhr, R. (2015). Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytologist, 205(2), 801–815. https://doi.org/10.1111/nph.13087
dc.relation.referencesArauz, L. F. (2000). Mango Anthracnose: Economic Impact and Current Options For Integrated Managaement. Plant Disease, 84(6), 600–611. https://doi.org/10.1094/PDIS.2000.84.6.600
dc.relation.referencesChethana, K. W. T., Jayawardena, R. S., Chen, Y. J., Konta, S., Tibpromma, S., Phukhamsakda, C., Abeywickrama, P. D., Samarakoon, M. C., Senwanna, C., Mapook, A., Tang, X., Gomdola, D., Marasinghe, D. S., Padaruth, O. D., Balasuriya, A., Xu, J., Lumyong, S., & Hyde, K. D. (2021). Appressorial interactions with host and their evolution. In Fungal Diversity. Springer Science and Business Media B.V. https://doi.org/10.1007/s13225-021-00487-5
dc.relation.referencesCrouch, J., O’Connell, R., Gan, P., Buiate, E., Torres, M. F., Beirn, L., Shirasu, K., & Vaillancourt, L. (2014). The Genomics of Colletotrichum. In Genomics of Plant-Associated Fungi: Monocot Pathogens. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-44053-7_3
dc.relation.referencesda Silva, L. L., Moreno, H. L. A., Correia, H. L. N., Santana, M. F., & de Queiroz, M. V. (2020). Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. In Applied Microbiology and Biotechnology (Vol. 104, Issue 5, pp. 1891–1904). Springer. https://doi.org/10.1007/s00253-020-10363-y
dc.relation.referencesDe Silva, D. D., Crous, P. W., Ades, P. K., Hyde, K. D., & Taylor, P. W. J. (2017). Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biology Reviews, 31(3). https://doi.org/10.1016/j.fbr.2017.05.001
dc.relation.referencesde Souza, A., Delphino Carboni, R. C., Wickert, E., de Macedo Lemos, E. G., & de Goes, A. (2013). Lack of host specificity of Colletotrichum spp. isolates associated with anthracnose symptoms on mango in Brazil. Plant Pathology, 62(5), 1038–1047. https://doi.org/10.1111/ppa.12021
dc.relation.referencesDean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond‐Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
dc.relation.referencesFang, H., Liu, X., Dong, Y., Feng, S., Zhou, R., Wang, C., Ma, X., Liu, J., & Yang, K. Q. (2021). Transcriptome and proteome analysis of walnut (Juglans regia L.) fruit in response to infection by Colletotrichum gloeosporioides. BMC Plant Biology, 21(1). https://doi.org/10.1186/s12870-021-03042-1
dc.relation.referencesHardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M., & Sessitsch, A. (2015). The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews, 79(3), 293–320. https://doi.org/10.1128/MMBR.00050-14
dc.relation.referencesHiggins, KL., Arnold, AE., Miadlikowska, J., Sarvate, SD., & Lutzoni, F. (2007). Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Molecular Phylogenetics and Evolution, 42, 543–555.
dc.relation.referencesKamle, M. (2013). A Species-Specific PCR Based Assay for Rapid Detection of Mango Anthracnose Pathogen Colletotrichum gloeosporioides Penz. and Sacc. Journal of Plant Pathology & Microbiology, 04(06). https://doi.org/10.4172/2157-7471.1000184
dc.relation.referencesKim, K.-H., Yoon, J.-B., Park, H.-G., Park, E. W., & Kim, Y. H. (2004). Structural Modifications and Programmed Cell Death of Chili Pepper Fruit Related to Resistance Responses to Colletotrichum gloeosporioides Infection. Phytopathology®, 94(12), 1295–1304. https://doi.org/10.1094/PHYTO.2004.94.12.1295
dc.relation.referencesKleemann, J., Takahara, H., Stüber, K., & O’Connell, R. (2008). Identification of soluble secreted proteins from appressoria of Colletotrichum higginsianum by analysis of expressed sequence tags. Microbiology, 154(4). https://doi.org/10.1099/mic.0.2007/014944-0
dc.relation.referencesKogel, K. H., Franken, P., & Hückelhoven, R. (2006). Endophyte or parasite - what decides? In Current Opinion in Plant Biology (Vol. 9, Issue 4, pp. 358–363). https://doi.org/10.1016/j.pbi.2006.05.001
dc.relation.referencesKubo, Y., & Furusawa, I. (1991). Melanin Biosynthesis. In The Fungal Spore and Disease Initiation in Plants and Animals. Springer US. https://doi.org/10.1007/978-1-4899-2635-7_9
dc.relation.referencesKubo, Y., & Takano, Y. (2013). Dynamics of infection-related morphogenesis and pathogenesis in Colletotrichum orbiculare. Journal of General Plant Pathology, 79(4). https://doi.org/10.1007/s10327-013-0451-9
dc.relation.referencesLedesma, N., & Campbell, R. J. (2019). The status of mango cultivars, market perspectives and mango cultivar improvement for the future. Acta Horticulturae, 1244, 23–28. https://doi.org/10.17660/ActaHortic.2019.1244.3
dc.relation.referencesMims, C. W., & Vaillancourt, L. J. (2002). Ultrastructural Characterization of Infection and Colonization of Maize Leaves by Colletotrichum graminicola, and by a C. graminicola Pathogenicity Mutant. Phytopathology®, 92(7). https://doi.org/10.1094/PHYTO.2002.92.7.803
dc.relation.referencesMoraes, S. R. G., Escanferla, M. E., & Massola, N. S. (2015). Prepenetration and Penetration of Colletotrichum gloeosporioides into Guava Fruit (Psidium guajava L.): Effects of Temperature, Wetness Period and Fruit Age. Journal of Phytopathology, 163(3), 149–159. https://doi.org/10.1111/jph.12294
dc.relation.referencesO’Connell, R. J., Thon, M. R., Hacquard, S., Amyotte, S. G., Kleemann, J., Torres, M. F., Damm, U., Buiate, E. A., Epstein, L., Alkan, N., Altmüller, J., Alvarado-Balderrama, L., Bauser, C. A., Becker, C., Birren, B. W., Chen, Z., Choi, J., Crouch, J. A., Duvick, J. P., … Vaillancourt, L. J. (2012). Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 44(9), 1060–1065. https://doi.org/10.1038/ng.2372
dc.relation.referencesOrtiz, E., Cruz, M., Melgarejo, L. M., Marquínez, X., & Hoyos-Carvajal, L. (2014). Histopathological features of infections caused by Fusarium oxysporum and F. solani in purple passionfruit plants (Passiflora edulis Sims). Summa Phytopathologica, 40(2), 134–140. https://doi.org/10.1590/0100-5405/1910
dc.relation.referencesPáez, A. (2003). Tecnologías sostenibles para el manejo de la Antracnosis en papaya y mango. . In G. Gómez Gámez (Ed.), [Boletín técnico n.o 8]. Corporación Colombiana de Investigación Agropecuaria (Corpoica (Produmedios, pp. 1–18). Corpoica Regional 3 / C.l. Motiloniam Codazzi, Cesar. https://bibliotecadigital.agronet.gov.co/handle/11348/6459
dc.relation.referencesPáez- Redondo, A. R. (2020). Biología y manejo de estados quiescentes de Colletotrichum spp. en mango cultivar Azúcar, en el departamento del Magdalena, Colombia [Tesis]. Universidad Nacional de Colombia.
dc.relation.referencesPáez-Redondo, A. R., García-Merchán, V. H., Rincón, J. D., Rodríguez, H. A., Morales, J. G., & Hoyos-Carvajal, L. M. (2024). Colletotrichum species associated with anthracnose disease on mango ( Mangifera indica L.) cv. Azúcar in Colombia. Canadian Journal of Plant Pathology, 46(6), 616–631. https://doi.org/10.1080/07060661.2024.2402719
dc.relation.referencesPerfect, S. E., Green, J. R., & O’Connell, R. J. (2001). Surface characteristics of necrotrophic secondary hyphae produced by the bean anthracnose fungus, Colletotrichum lindemuthianum. European Journal of Plant Pathology, 107(8). https://doi.org/10.1023/A:1012473823851
dc.relation.referencesPhotita, W., Lumyong, S., Lumyong, P., Mckenzie, E. H. C., Hyde, K. D., Photita, W., Lumyong, S., Lumyong, P., & Hyde, M. E. H. C. (2004). Fungal Diversity Are some endophytes of Musa acuminata latent pathogens? Fungal Diversity , 16, 131–140.
dc.relation.referencesPloetz, R. C. (2007). Diseases of Tropical Perennial Crops: Challenging Problems in Diverse Environments. Plant Disease, 91(6), 644–663. https://doi.org/10.1094/PDIS-91-6-0644
dc.relation.referencesPromputtha, I., Lumyong, S., Dhanasekaran, V., McKenzie, E. H. C., Hyde, K. D., & Jeewon, R. (2007). A Phylogenetic Evaluation of Whether Endophytes Become Saprotrophs at Host Senescence. Microbial Ecology, 53(4), 579–590. https://doi.org/10.1007/s00248-006-9117-x
dc.relation.referencesPrusky, D., Alkan, N., Mengiste, T., & Fluhr, R. (2013). Quiescent and Necrotrophic Lifestyle Choice During Postharvest Disease Development. Annual Review of Phytopathology, 51(1), 155–176. https://doi.org/10.1146/annurev-phyto-082712-102349
dc.relation.referencesQuintero-Mercado, A., Dangon-Bernier, F., y Páez-Redondo, A. (2019). Aislamientos endofíticos de Colletotrichum spp. a partir de hojas y ramas de mango (Mangifera indica L.) cultivar Azúcar en el municipio de Ciénaga, Magdalena, Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166). https://doi.org/10.18257/raccefyn.788
dc.relation.referencesRajan, S., Tiwari, D., Singh, V. K., Saxena, P., Y.T.N. Reddy, S. S., Upreti, K. K., Burondkar, M. M., Bhagwan, A., & Kennedy, R. (2011). Application of extended BBCH Scale for phenological studies in mango (Mangifera indica L.). Journal of Applied Horticulture, 13(02), 108–114. https://doi.org/10.37855/jah.2011.v13i02.25
dc.relation.referencesRodríguez, R. J., White, J. F., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: Diversity and functional roles: Tansley review. In New Phytologist (Vol. 182, Issue 2, pp. 314–330). https://doi.org/10.1111/j.1469-8137.2009.02773.x
dc.relation.referencesSalcedo, R. (2018). Revista de la asociación hortifrutícola de Colombia, ASOHOFRUCOL- FNFH. No. 57. Magdalena Fortalece Su Potencial Exportador de Frutas y Hortalizas, 27.
dc.relation.referencesSavi, D. C., Rossi, B. J., Rossi, G. R., Ferreira-Maba, L. S., Bini, I. H., Trindade, E. da S., Goulin, E. H., Machado, M. A., & Glienke, C. (2019). Microscopic analysis of colonization of Colletotrichum abscissum in citrus tissues. Microbiological Research, 226, 27–33. https://doi.org/10.1016/j.micres.2019.05.005
dc.relation.referencesVargas, W. A., Martín, J. M. S., Rech, G. E., Rivera, L. P., Benito, E. P., Díaz-Mínguez, J. M., Thon, M. R., & Sukno, S. A. (2012). Plant Defense Mechanisms Are Activated during Biotrophic and Necrotrophic Development of Colletotricum graminicola in Maize . Plant Physiology, 158(3). https://doi.org/10.1104/pp.111.190397
dc.relation.referencesVieira, W. A. S., Michereff, S. J., de Morais, M. A., Hyde, K. D., & Câmara, M. P. S. (2014). Endophytic species of Colletotrichum associated with mango in northeastern Brazil. Fungal Diversity, 67(1), 181–202. https://doi.org/10.1007/s13225-014-0293-6
dc.relation.referencesWharton, P. S., Julian, A. M., & O’Connell, R. J. (2001). Ultrastructure of the Infection of Sorghum bicolor by Colletotrichum sublineolum. Phytopathology®, 91(2). https://doi.org/10.1094/PHYTO.2001.91.2.149
dc.relation.referencesAgrios. (2024). Agrios’ Plant Pathology (R. P. Oliver, Ed.). Elsevier. https://doi.org/10.1016/C2019-0-04179-9
dc.relation.referencesAkashi, K., Nishimura, N., Ishida, Y., & Yokota, A. (2004). Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochemical and Biophysical Research Communications, 323(1), 72–78. https://doi.org/10.1016/j.bbrc.2004.08.056
dc.relation.referencesAlkan, N., Friedlander, G., Ment, D., Prusky, D., & Fluhr, R. (2015). Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytologist, 205(2), 801–815. https://doi.org/10.1111/nph.13087
dc.relation.referencesAlmagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G., & Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37(4), 420–423. https://doi.org/10.1038/s41587-019-0036-z
dc.relation.referencesAltschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
dc.relation.referencesAmbrose, K. V., & Belanger, F. C. (2012). SOLiD-SAGE of Endophyte-Infected Red Fescue Reveals Numerous Effects on Host Transcriptome and an Abundance of Highly Expressed Fungal Secreted Proteins. PLoS ONE, 7(12), e53214. https://doi.org/10.1371/journal.pone.0053214
dc.relation.referencesArauz, L. F. (2000). Mango Anthracnose: Economic Impact and Current Options For Integrated Managaement. Plant Disease, 84(6), 600–611. https://doi.org/10.1094/PDIS.2000.84.6.600
dc.relation.referencesArcila Cardona, Á. M., Castillo Urquiza, G. P., Pérez Artiles, L., Abaunza González, C. A., Yacomelo Hernández, M. J., y León Pacheco, R. I. (2022). Modelo productivo de mango de azúcar (Mangifera indica L.) para el departamento del Magdalena. Corporación colombiana de investigación agropecuaria - AGROSAVIA. https://doi.org/10.21930/agrosavia.model.7405170
dc.relation.referencesBaxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229–1240. https://doi.org/10.1093/jxb/ert375
dc.relation.referencesBreton, C., Šnajdrová, L., Jeanneau, C., Koča, J., & Imberty, A. (2006). Structures and mechanisms of glycosyltransferases. Glycobiology, 16(2), 29R-37R. https://doi.org/10.1093/glycob/cwj016
dc.relation.referencesBuchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1), 59–60. https://doi.org/10.1038/nmeth.3176
dc.relation.referencesCamilios-Neto, D., Bonato, P., Wassem, R., Tadra-Sfeir, M. Z., Brusamarello-Santos, L. C., Valdameri, G., Donatti, L., Faoro, H., Weiss, V. A., Chubatsu, L. S., Pedrosa, F. O., & Souza, E. M. (2014). Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genomics, 15(1), 378. https://doi.org/10.1186/1471-2164-15-378
dc.relation.referencesChen, Y., Liu, J., Jiang, S., Li, H., & Zhou, G. (2020). Colletotrichum fructicola STE50 is required for vegetative growth, asexual reproduction, appressorium formation, pathogenicity and the response to external stress. Journal of Plant Pathology, 102(2), 335–342. https://doi.org/10.1007/s42161-019-00422-3
dc.relation.referencesChubatsu, L. S., & Meneghini, R. (1993). Metallothionein protects DNA from oxidative damage. Biochemical Journal, 291(1), 193–198. https://doi.org/10.1042/bj2910193
dc.relation.referencesCroft, KPC., Juttner, F., & Slusarenko, A. J. (1993). Volatile Products of the Lipoxygenase Pathway Evolved from Phaseolus vulgaris (L.) Leaves Inoculated with Pseudomonas syringae pv. phaseolicola. Plant Physiology, 101(1), 13–24. https://doi.org/10.1104/pp.101.1.13
dc.relation.referencesCrouch, J., O’Connell, R., Gan, P., Buiate, E., Torres, M. F., Beirn, L., Shirasu, K., & Vaillancourt, L. (2014). The Genomics of Colletotrichum. In Genomics of Plant-Associated Fungi: Monocot Pathogens. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-44053-7_3
dc.relation.referencesda Silva, L. L., Moreno, H. L. A., Correia, H. L. N., Santana, M. F., & de Queiroz, M. V. (2020). Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. In Applied Microbiology and Biotechnology (Vol. 104, Issue 5, pp. 1891–1904). Springer. https://doi.org/10.1007/s00253-020-10363-y
dc.relation.referencesDauch, A. L., & Jabaji-Hare, S. H. (2006). Metallothionein and bZIP Transcription Factor Genes from Velvetleaf and Their Differential Expression Following Colletotrichum coccodes Infection. Phytopathology®, 96(10), 1116–1123. https://doi.org/10.1094/PHYTO-96-1116
dc.relation.referencesDe Silva, D. D., Crous, P. W., Ades, P. K., Hyde, K. D., & Taylor, P. W. J. (2017). Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biology Reviews, 31(3). https://doi.org/10.1016/j.fbr.2017.05.001
dc.relation.referencesde Souza, A., Delphino Carboni, R. C., Wickert, E., de Macedo Lemos, E. G., & de Goes, A. (2013). Lack of host specificity of Colletotrichum spp. isolates associated with anthracnose symptoms on mango in Brazil. Plant Pathology, 62(5), 1038–1047. https://doi.org/10.1111/ppa.12021
dc.relation.referencesDelaye, L., García-Guzmán, G., & Heil, M. (2013). Endophytes versus biotrophic and necrotrophic pathogens-are fungal lifestyles evolutionarily stable traits? Fungal Diversity, 60(1), 125–135. https://doi.org/10.1007/s13225-013-0240-y
dc.relation.referencesDinkins, R. D., Barnes, A., & Waters, W. (2010). Microarray analysis of endophyte-infected and endophyte-free tall fescue. Journal of Plant Physiology, 167(14), 1197–1203. https://doi.org/10.1016/j.jplph.2010.04.002
dc.relation.referencesDinkins, R. D., Nagabhyru, P., Graham, M. A., Boykin, D., & Schardl, C. L. (2017). Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. New Phytologist, 213(1), 324–337. https://doi.org/10.1111/nph.14103
dc.relation.referencesdos Santos, C., & Franco, O. L. (2023). Pathogenesis-Related Proteins (PRs) with Enzyme Activity Activating Plant Defense Responses. Plants, 12(11), 2226. https://doi.org/10.3390/plants12112226
dc.relation.referencesDuplessis, S., Cuomo, C. A., Lin, Y.-C., Aerts, A., Tisserant, E., Veneault-Fourrey, C., Joly, D. L., Hacquard, S., Amselem, J., Cantarel, B. L., Chiu, R., Coutinho, P. M., Feau, N., Field, M., Frey, P., Gelhaye, E., Goldberg, J., Grabherr, M. G., Kodira, C. D., … Martin, F. (2011). Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences, 108(22), 9166–9171. https://doi.org/10.1073/pnas.1019315108
dc.relation.referencesEaton, C. J., Cox, M. P., & Scott, B. (2011). What triggers grass endophytes to switch from mutualism to pathogenism? Plant Science, 180(2), 190–195. https://doi.org/10.1016/j.plantsci.2010.10.002
dc.relation.referencesEloy, Y. R. G., Vasconcelos, I. M., Barreto, A. L. H., Freire-Filho, F. R., & Oliveira, J. T. A. (2015). H2O2 plays an important role in the lifestyle of Colletotrichum gloeosporioides during interaction with cowpea [Vigna unguiculata (L.) Walp.]. Fungal Biology, 119(8), 747–757. https://doi.org/10.1016/j.funbio.2015.05.001
dc.relation.referencesFeussner, I., & Wasternack, C. (2002). The Lipoxygenase Pathway. Annual Review of Plant Biology, 53(1), 275–297. https://doi.org/10.1146/annurev.arplant.53.100301.135248
dc.relation.referencesFinn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: interactive sequence similarity searching. Nucleic Acids Research, 39(suppl), W29–W37. https://doi.org/10.1093/nar/gkr367
dc.relation.referencesFreeman, S., Horowitz, S., & Sharon, A. (2001). Pathogenic and Nonpathogenic Lifestyles in Colletotrichum acutatum from Strawberry and Other Plants. Phytopathology®, 91(10). https://doi.org/10.1094/PHYTO.2001.91.10.986
dc.relation.referencesGan, P., Ikeda, K., Irieda, H., Narusaka, M., O’Connell, R. J., Narusaka, Y., Takano, Y., Kubo, Y., & Shirasu, K. (2013). Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytologist, 197(4), 1236–1249. https://doi.org/10.1111/nph.12085
dc.relation.referencesGao, Y., Zhang, S., Sheng, S., & Li, H. (2024). A Colletotrichum fructicola dual specificity phosphatase CfMsg5 is regulated by the CfAp1 transcription factor during oxidative stress and promotes virulence on Camellia oleifera. Virulence, 15(1). https://doi.org/10.1080/21505594.2024.2413851
dc.relation.referencesGarcía Lozano, J., Gómez Barros, G. de J., Forero Longas, F., Sandoval, A., Vásquez, L., Bernal Estrada, J., Corredor, J., y Floriano Q., J. (2025, May 20). Descripción de las variedades de mango criollo colombiano: boletín técnico. Corporación Colombiana de Investigación Agropecuaria (Corpoica. Http://Hdl.Handle.Net/20.500.12324/1239.
dc.relation.referencesGiraldo, M. C., Dagdas, Y. F., Gupta, Y. K., Mentlak, T. A., Yi, M., Martinez-Rocha, A. L., Saitoh, H., Terauchi, R., Talbot, N. J., & Valent, B. (2013). Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Communications, 4(1), 1996. https://doi.org/10.1038/ncomms2996
dc.relation.referencesGotz, S., Garcia-Gomez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., Robles, M., Talon, M., Dopazo, J., & Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36(10), 3420–3435. https://doi.org/10.1093/nar/gkn176
dc.relation.referencesGrabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883
dc.relation.referencesGroß, F., Durner, J., & Gaupels, F. (2013). Nitric oxide, antioxidants and prooxidants in plant defence responses. Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00419
dc.relation.referencesHallgren, J., Tsirigos, K. D., Pedersen, M. D., Almagro Armenteros, J. J., Marcatili, P., Nielsen, H., Krogh, A., & Winther, O. (2022). DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. In bioRxiv. https://doi.org/10.1101/2022.04.08.487609
dc.relation.referencesHasanuzzaman, M., Nahar, K., Hossain, Md., Mahmud, J., Rahman, A., Inafuku, M., Oku, H., & Fujita, M. (2017). Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants. International Journal of Molecular Sciences, 18(1), 200. https://doi.org/10.3390/ijms18010200
dc.relation.referencesHeller, J., & Tudzynski, P. (2011). Reactive Oxygen Species in Phytopathogenic Fungi: Signaling, Development, and Disease. Annual Review of Phytopathology, 49(1), 369–390. https://doi.org/10.1146/annurev-phyto-072910-095355
dc.relation.referencesHogenhout, S. A., Van der Hoorn, R. A. L., Terauchi, R., & Kamoun, S. (2009). Emerging Concepts in Effector Biology of Plant-Associated Organisms. Molecular Plant-Microbe Interactions®, 22(2), 115–122. https://doi.org/10.1094/MPMI-22-2-0115
dc.relation.referencesHong, K., Gong, D., Zhang, L., Hu, H., Jia, Z., Gu, H., & Song, K. (2016). Transcriptome characterization and expression profiles of the related defense genes in postharvest mango fruit against Colletotrichum gloeosporioides. Gene, 576(1), 275–283. https://doi.org/10.1016/j.gene.2015.10.041
dc.relation.referencesHorton, P., Park, K.-J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Research, 35(Web Server), W585–W587. https://doi.org/10.1093/nar/gkm259
dc.relation.referencesHou, Y., Ban, Q., Meng, K., He, Y., Han, S., Jin, M., & Rao, J. (2018). Overexpression of persimmon 9-lipoxygenase DkLOX3 confers resistance to Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea in Arabidopsis. Plant Growth Regulation, 84(1), 179–189. https://doi.org/10.1007/s10725-017-0331-y
dc.relation.referencesHwang, I. S., & Hwang, B. K. (2010). The Pepper 9-Lipoxygenase Gene CaLOX1 Functions in Defense and Cell Death Responses to Microbial Pathogens. Plant Physiology, 152(2), 948–967. https://doi.org/10.1104/pp.109.147827
dc.relation.referencesJohnson, L. J., Johnson, R. D., Schardl, C. L., & Panaccione, D. G. (2003). Identification of differentially expressed genes in the mutualistic association of tall fescue with Neotyphodium coenophialum. Physiological and Molecular Plant Pathology, 63(6), 305–317. https://doi.org/10.1016/j.pmpp.2004.04.001
dc.relation.referencesJoshi, J., Beaudoin, G. A. W., Patterson, J. A., García-García, J. D., Belisle, C. E., Chang, L.-Y., Li, L., Duncan, O., Millar, A. H., & Hanson, A. D. (2020). Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s. Biochemical Journal, 477(11), 2055–2069. https://doi.org/10.1042/BCJ20200297
dc.relation.referencesJwa, N.-S., & Hwang, B. K. (2017). Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01687
dc.relation.referencesKámán‐Tóth, E., Dankó, T., Gullner, G., Bozsó, Z., Palkovics, L., & Pogány, M. (2019). Contribution of cell wall peroxidase‐ and NADPH oxidase‐derived reactive oxygen species to Alternaria brassicicol ‐induced oxidative burst in Arabidopsis. Molecular Plant Pathology, 20(4), 485–499. https://doi.org/10.1111/mpp.12769
dc.relation.referencesKamle, M. (2013). A Species-Specific PCR Based Assay for Rapid Detection of Mango Anthracnose Pathogen Colletotrichum gloeosporioides Penz. and Sacc. Journal of Plant Pathology & Microbiology, 04(06). https://doi.org/10.4172/2157-7471.1000184
dc.relation.referencesKanehisa, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Research, 32(90001), 277D – 280. https://doi.org/10.1093/nar/gkh063
dc.relation.referencesKärkönen, A., & Kuchitsu, K. (2015). Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry, 112, 22–32. https://doi.org/10.1016/j.phytochem.2014.09.016
dc.relation.referencesKaul, S., Sharma, T., & Dhar, M. K. (2016). “Omics” tools for better understanding the plant–endophyte interactions. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00955
dc.relation.referencesKhare, E., Mishra, J., & Arora, N. K. (2018). Multifaceted interactions between endophytes and plant: Developments and Prospects. In Frontiers in Microbiology (Vol. 9, Issue NOV). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2018.02732
dc.relation.referencesKleemann, J., Rincon-Rivera, L. J., Takahara, H., Neumann, U., van Themaat, E. V. L., van der Does, H. C., Hacquard, S., Stüber, K., Will, I., Schmalenbach, W., Schmelzer, E., & O’Connell, R. J. (2012). Sequential Delivery of Host-Induced Virulence Effectors by Appressoria and Intracellular Hyphae of the Phytopathogen Colletotrichum higginsianum. PLoS Pathogens, 8(4), e1002643. https://doi.org/10.1371/journal.ppat.1002643
dc.relation.referencesKogel, K. H., Franken, P., & Hückelhoven, R. (2006). Endophyte or parasite - what decides? In Current Opinion in Plant Biology (Vol. 9, Issue 4, pp. 358–363). https://doi.org/10.1016/j.pbi.2006.05.001
dc.relation.referencesLangmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923
dc.relation.referencesLedesma, N., & Campbell, R. J. (2019). The status of mango cultivars, market perspectives and mango cultivar improvement for the future. Acta Horticulturae, 1244, 23–28. https://doi.org/10.17660/ActaHortic.2019.1244.3
dc.relation.referencesLevasseur, A., Drula, E., Lombard, V., Coutinho, P. M., & Henrissat, B. (2013). Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnology for Biofuels, 6(1), 41. https://doi.org/10.1186/1754-6834-6-41
dc.relation.referencesLi, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 323. https://doi.org/10.1186/1471-2105-12-323
dc.relation.referencesLi, C.-L., Wang, M., Wu, X.-M., Chen, D.-H., Lv, H.-J., Shen, J.-L., Qiao, Z., & Zhang, W. (2016). THI1, a Thiamine Thiazole Synthase, Interacts with Ca2+-Dependent Protein Kinase CPK33 and Modulates the S-Type Anion Channels and Stomatal Closure in Arabidopsis . Plant Physiology, 170(2), 1090–1104. https://doi.org/10.1104/pp.15.01649
dc.relation.referencesLi, X., Wu, Y., Liu, Z., & Zhang, C. (2017). The function and transcriptome analysis of a bZIP transcription factor CgAP1 in Colletotrichum gloeosporioides. Microbiological Research, 197, 39–48. https://doi.org/10.1016/j.micres.2017.01.006
dc.relation.referencesLi, Y., Lee, S. H., Piao, M., Kim, H. S., & Lee, K. Y. (2023). Metallothionein 3 Inhibits 3T3-L1 Adipocyte Differentiation via Reduction of Reactive Oxygen Species. Antioxidants, 12(3), 640. https://doi.org/10.3390/antiox12030640
dc.relation.referencesLiu, C., Talbot, N. J., & Chen, X. (2021). Protein glycosylation during infection by plant pathogenic fungi. New Phytologist, 230(4), 1329–1335. https://doi.org/10.1111/nph.17207
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8
dc.relation.referencesMacho, A. P., & Zipfel, C. (2015). Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Current Opinion in Microbiology, 23, 14–22. https://doi.org/10.1016/j.mib.2014.10.009
dc.relation.referencesMarino, D., Dunand, C., Puppo, A., & Pauly, N. (2012). A burst of plant NADPH oxidases. Trends in Plant Science, 17(1), 9–15. https://doi.org/10.1016/j.tplants.2011.10.001
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2025, April 13). Base agrícola eva 2020. Biblioteca Digital Agronet. Https://Www.Agronet.Gov.Co/Estadistica/Paginas/Home.Aspx?Cod=59), .
dc.relation.referencesMiura, T., Muraoka, S., & Ogiso, T. (1997). Antioxidant activity of metallothionein compared with reduced glutathione. Life Sciences, 60(21), 301–309. https://doi.org/10.1016/S0024-3205(97)00156-2
dc.relation.referencesMolina, L. G., Cordenonsi da Fonseca, G., Morais, G. L. de, de Oliveira, L. F. V., Carvalho, J. B. de, Kulcheski, F. R., & Margis, R. (2012). Metatranscriptomic analysis of small RNAs present in soybean deep sequencing libraries. Genetics and Molecular Biology, 35(1 suppl 1), 292–303. https://doi.org/10.1590/S1415-47572012000200010
dc.relation.referencesO’Connell, R. J., Thon, M. R., Hacquard, S., Amyotte, S. G., Kleemann, J., Torres, M. F., Damm, U., Buiate, E. A., Epstein, L., Alkan, N., Altmüller, J., Alvarado-Balderrama, L., Bauser, C. A., Becker, C., Birren, B. W., Chen, Z., Choi, J., Crouch, J. A., Duvick, J. P., … Vaillancourt, L. J. (2012). Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 44(9), 1060–1065. https://doi.org/10.1038/ng.2372
dc.relation.referencesOzbudak, E., Carrillo-Tarazona, Y., Diaz, E. A., Zambon, F. T., Rossi, L., Peres, N. A., Raffaele, S., & Cano, L. M. (2025). Transcriptome analysis of Colletotrichum nymphaeae-Strawberry interaction reveals in planta expressed genes associated with virulence. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1390926
dc.relation.referencesPáez, A. (2003). Tecnologías sostenibles para el manejo de la Antracnosis en papaya y mango. . In G. Gómez Gámez (Ed.), [Boletín técnico n.o 8]. Corporación Colombiana de Investigación Agropecuaria (Corpoica (Produmedios, pp. 1–18). Corpoica Regional 3 / C.l. Motiloniam Codazzi, Cesar. https://bibliotecadigital.agronet.gov.co/handle/11348/6459
dc.relation.referencesPáez-Redondo, A. R., García-Merchán, V. H., Rincón, J. D., Rodríguez, H. A., Morales, J. G., & Hoyos-Carvajal, L. M. (2024). Colletotrichum species associated with anthracnose disease on mango (Mangifera indica L.) cv. Azúcar in Colombia. Canadian Journal of Plant Pathology, 46(6), 616–631. https://doi.org/10.1080/07060661.2024.2402719
dc.relation.referencesPeng, Y. L., Shirano, Y., Ohta, H., Hibino, T., Tanaka, K., & Shibata, D. (1994). A novel lipoxygenase from rice. Primary structure and specific expression upon incompatible infection with rice blast fungus. The Journal of Biological Chemistry, 269(5), 3755–3761.
dc.relation.referencesPierleoni, A., Martelli, P. L., & Casadio, R. (2008). PredGPI: a GPI-anchor predictor. BMC Bioinformatics, 9(1), 392. https://doi.org/10.1186/1471-2105-9-392
dc.relation.referencesPlett, J. M., & Martin, F. M. (2018). Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. Plant Journal, 93(4), 729–746. https://doi.org/10.1111/tpj.13802
dc.relation.referencesPloetz, R. C. (2007). Diseases of Tropical Perennial Crops: Challenging Problems in Diverse Environments. Plant Disease, 91(6), 644–663. https://doi.org/10.1094/PDIS-91-6-0644
dc.relation.referencesPrusky, D., Alkan, N., Mengiste, T., & Fluhr, R. (2013). Quiescent and Necrotrophic Lifestyle Choice During Postharvest Disease Development. Annual Review of Phytopathology, 51(1), 155–176. https://doi.org/10.1146/annurev-phyto-082712-102349
dc.relation.referencesQuintero Mercado, A., Dangon-Bernier, F., y Páez-Redondo, A. (2019). Aislamientos endofíticos de Colletotrichum spp. a partir de hojas y ramas de mango (Mangifera indica L.) cultivar Azúcar en el municipio de Ciénaga, Magdalena, Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 65. https://doi.org/10.18257/raccefyn.788
dc.relation.referencesRafiei, V., Vélëz, H., & Tzelepis, G. (2021). The Role of Glycoside Hydrolases in Phytopathogenic Fungi and Oomycetes Virulence. International Journal of Molecular Sciences, 22(17), 9359. https://doi.org/10.3390/ijms22179359
dc.relation.referencesRajan, S., Tiwari, D., Singh, V. K., Saxena, P., Y.T.N. Reddy, S. S., Upreti, K. K., Burondkar, M. M., Bhagwan, A., & Kennedy, R. (2011). Application of extended BBCH Scale for phenological studies in mango (Mangifera indica L.). Journal of Applied Horticulture, 13(02), 108–114. https://doi.org/10.37855/jah.2011.v13i02.25
dc.relation.referencesRustérucci, C., Montillet, J.-L., Agnel, J.-P., Battesti, C., Alonso, B., Knoll, A., Bessoule, J.-J., Etienne, P., Suty, L., Blein, J.-P., & Triantaphylidès, C. (1999). Involvement of Lipoxygenase-dependent Production of Fatty Acid Hydroperoxides in the Development of the Hypersensitive Cell Death induced by Cryptogein on Tobacco Leaves. Journal of Biological Chemistry, 274(51), 36446–36455. https://doi.org/10.1074/jbc.274.51.36446
dc.relation.referencesSaitoh, H., Fujisawa, S., Mitsuoka, C., Ito, A., Hirabuchi, A., Ikeda, K., Irieda, H., Yoshino, K., Yoshida, K., Matsumura, H., Tosa, Y., Win, J., Kamoun, S., Takano, Y., & Terauchi, R. (2012). Large-Scale Gene Disruption in Magnaporthe oryzae Identifies MC69, a Secreted Protein Required for Infection by Monocot and Dicot Fungal Pathogens. PLoS Pathogens, 8(5), e1002711. https://doi.org/10.1371/journal.ppat.1002711
dc.relation.referencesSalcedo, R. (2018). Revista de la asociación hortifrutícola de Colombia, ASOHOFRUCOL- FNFH. No. 57. Magdalena Fortalece Su Potencial Exportador de Frutas y Hortalizas, 27.
dc.relation.referencesSánchez-Vallet, A., Mesters, J. R., & Thomma, B. P. H. J. (2015). The battle for chitin recognition in plant-microbe interactions. FEMS Microbiology Reviews, 39(2), 171–183. https://doi.org/10.1093/femsre/fuu003
dc.relation.referencesSegal, L. M., & Wilson, R. A. (2018). Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genetics and Biology, 110, 1–9. https://doi.org/10.1016/j.fgb.2017.12.003
dc.relation.referencesShetty, N. P., Jørgensen, H. J. L., Jensen, J. D., Collinge, D. B., & Shetty, H. S. (2008). Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology, 121(3), 267–280. https://doi.org/10.1007/s10658-008-9302-5
dc.relation.referencesSingh, R., Dangol, S., Chen, Y., Choi, J., Cho, Y.-S., Lee, J.-E., Choi, M.-O., & Jwa, N.-S. (2016). Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity. Molecules and Cells, 39(5), 426–438. https://doi.org/10.14348/molcells.2016.0094
dc.relation.referencesSoto, J., y López, C. (2012). RNA-seq: herramienta transcriptómica útil para el estudio de interacciones planta-patógeno. In Fitosanidad (Vol. 16, Issue 2).
dc.relation.referencesSperschneider, J., & Dodds, P. N. (2022). EffectorP 3.0: Prediction of Apoplastic and Cytoplasmic Effectors in Fungi and Oomycetes. Molecular Plant-Microbe Interactions®, 35(2), 146–156. https://doi.org/10.1094/MPMI-08-21-0201-R
dc.relation.referencesSun, Y., Wang, Y., & Tian, C. (2016). bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides. Fungal Genetics and Biology, 95, 58–66. https://doi.org/10.1016/j.fgb.2016.08.006
dc.relation.referencesTang, D., Chen, M., Huang, X., Zhang, G., Zeng, L., Zhang, G., Wu, S., & Wang, Y. (2023). SRplot: A free online platform for data visualization and graphing. PLOS ONE, 18(11), e0294236. https://doi.org/10.1371/journal.pone.0294236
dc.relation.referencesTariqjaveed, M., Mateen, A., Wang, S., Qiu, S., Zheng, X., Zhang, J., Bhadauria, V., & Sun, W. (2021). Versatile effectors of phytopathogenic fungi target host immunity. Journal of Integrative Plant Biology, 63(11), 1856–1873. https://doi.org/10.1111/jipb.13162
dc.relation.referencesTodd, J. N. A., Carreón-Anguiano, K. G., Couoh-Dzul, O. J., de los Santos-Briones, C., & Canto-Canché, B. (2023). Effectors: key actors in phytopathology. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 41(2). https://doi.org/10.18781/R.MEX.FIT.2210-4
dc.relation.referencesUntergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3—new capabilities and interfaces. Nucleic Acids Research, 40(15), e115–e115. https://doi.org/10.1093/nar/gks596
dc.relation.referencesUrban, M., Cuzick, A., Seager, J., Wood, V., Rutherford, K., Venkatesh, S. Y., De Silva, N., Martinez, M. C., Pedro, H., Yates, A. D., Hassani-Pak, K., & Hammond-Kosack, K. E. (2019). PHI-base: the pathogen–host interactions database. Nucleic Acids Research. https://doi.org/10.1093/nar/gkz904
dc.relation.referencesVieira, W. A. S., Michereff, S. J., de Morais, M. A., Hyde, K. D., & Câmara, M. P. S. (2014b). Endophytic species of Colletotrichum associated with mango in northeastern Brazil. Fungal Diversity, 67(1), 181–202. https://doi.org/10.1007/s13225-014-0293-6
dc.relation.referencesViswanath, K. K., Varakumar, P., Pamuru, R. R., Basha, S. J., Mehta, S., & Rao, A. D. (2020). Plant Lipoxygenases and Their Role in Plant Physiology. Journal of Plant Biology, 63(2), 83–95. https://doi.org/10.1007/s12374-020-09241-x
dc.relation.referencesWang, C.-F., Huang, L.-L., Zhang, H.-C., Han, Q.-M., Buchenauer, H., & Kang, Z.-S. (2010). Cytochemical localization of reactive oxygen species (O2− and H2O2) and peroxidase in the incompatible and compatible interaction of wheat – Puccinia striiformis f. sp. tritici. Physiological and Molecular Plant Pathology, 74(3–4), 221–229. https://doi.org/10.1016/j.pmpp.2010.02.002
dc.relation.referencesWang, X., Lu, D., & Tian, C. (2021). Mitogen-activated protein kinase cascade CgSte50-Ste11-Ste7-Mk1 regulates infection-related morphogenesis in the poplar anthracnose fungus Colletotrichum gloeosporioides. Microbiological Research, 248, 126748. https://doi.org/10.1016/j.micres.2021.126748
dc.relation.referencesWang, Y., Li, H., Chang, J., Zhang, Y., Li, J., Jia, S., & Shi, Y. (2024). Genome-Wide Identification and Analysis of Glycosyltransferases in Colletotrichum graminicola. Microorganisms, 12(12), 2551. https://doi.org/10.3390/microorganisms12122551
dc.relation.referencesWeber, H., Chételat, A., Caldelari, D., & Farmer, E. E. (1999). Divinyl Ether Fatty Acid Synthesis in Late Blight–Diseased Potato Leaves. The Plant Cell, 11(3), 485–493. https://doi.org/10.1105/tpc.11.3.485
dc.relation.referencesWinnenburg, R. (2006). PHI-base: a new database for pathogen host interactions. Nucleic Acids Research, 34(90001), D459–D464. https://doi.org/10.1093/nar/gkj047
dc.relation.referencesWong, H. L., Sakamoto, T., Kawasaki, T., Umemura, K., & Shimamoto, K. (2004). Down-Regulation of Metallothionein, a Reactive Oxygen Scavenger, by the Small GTPase OsRac1 in Rice. Plant Physiology, 135(3), 1447–1456. https://doi.org/10.1104/pp.103.036384
dc.relation.referencesYang, J., Chen, L., Zhang, J., Liu, P., Chen, M., Chen, Z., Zhong, K., Liu, J., Chen, J., & Yang, J. (2024). TaTHI2 interacts with Ca2+ -dependent protein kinase TaCPK5 to suppress virus infection by regulating ROS accumulation. Plant Biotechnology Journal, 22(5), 1335–1351. https://doi.org/10.1111/pbi.14270
dc.relation.referencesYang, M., Zhang, F., Wang, F., Dong, Z., Cao, Q., & Chen, M. (2015). Characterization of a Type 1 Metallothionein Gene from the Stresses-Tolerant Plant Ziziphus jujuba. International Journal of Molecular Sciences, 16(8), 16750–16762. https://doi.org/10.3390/ijms160816750
dc.relation.referencesYin, H., Wang, Z., Li, H., Zhang, Y., Yang, M., Cui, G., & Zhang, P. (2022). MsTHI1 overexpression improves drought tolerance in transgenic alfalfa (Medicago sativa L.). Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.992024
dc.relation.referencesYoshino, K., Irieda, H., Sugimoto, F., Yoshioka, H., Okuno, T., & Takano, Y. (2012). Cell Death of Nicotiana benthamiana Is Induced by Secreted Protein NIS1 of Colletotrichum orbiculare and Is Suppressed by a Homologue of CgDN3. Molecular Plant-Microbe Interactions®, 25(5), 625–636. https://doi.org/10.1094/MPMI-12-11-0316
dc.relation.referencesZhang, R., Isozumi, N., Mori, M., Okuta, R., Singkaravanit-Ogawa, S., Imamura, T., Kurita, J.-I., Gan, P., Shirasu, K., Ohki, S., & Takano, Y. (2021). Fungal effector SIB1 of Colletotrichum orbiculare has unique structural features and can suppress plant immunity in Nicotiana benthamiana. Journal of Biological Chemistry, 297(6), 101370. https://doi.org/10.1016/j.jbc.2021.101370
dc.relation.referencesZheng, J., Ge, Q., Yan, Y., Zhang, X., Huang, L., & Yin, Y. (2023). dbCAN3: automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Research, 51(W1), W115–W121. https://doi.org/10.1093/nar/gkad328
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.agrovocHongo patógenospa
dc.subject.agrovocpathogenic fungieng
dc.subject.agrovocProceso genéticospa
dc.subject.agrovocgenetic processeseng
dc.subject.agrovocPhyllachoralesspa
dc.subject.agrovocPhyllachoraleseng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.proposalHistologíaspa
dc.subject.proposalHemibiótrofospa
dc.subject.proposalQuiescenciaspa
dc.subject.proposalRNA-seqspa
dc.subject.proposalEstallido oxidativospa
dc.subject.proposalColletotrichum tropicalelat
dc.subject.proposalMango cv Azúcarspa
dc.subject.proposalEndófitospa
dc.subject.proposalHistologyeng
dc.subject.proposalHemibiotropheng
dc.subject.proposalQuiescenceeng
dc.subject.proposalRNA-seqeng
dc.subject.proposalOxidative bursteng
dc.titleIdentificación de la expresión génica en mango (Mangifera indica L. cultivar Azúcar) que favorece la patogenicidad del endófito Colletotrichum tropicale en frutosspa
dc.title.translatedIdentification of gene expression in mango (Mangifera indica L. cultivar Azúcar) that promotes the pathogenicity of the endophyte Colletotrichum tropicale in fruitseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_PhD_Andrés Felipe Quintero Mercado_2025.pdf
Tamaño:
19.93 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: