Influencia de las anomalías genéticas de buen y mal pronóstico en LLA-B sobre la modulación de las células stem mesenquimales en un modelo in vitro de nicho leucémico
| dc.contributor.advisor | Vernot, Jean Paul | |
| dc.contributor.author | Ángel Cortés, Santiago | |
| dc.contributor.orcid | Ángel Cortés, Santiago [0009-0005-4664-8237] | |
| dc.contributor.researchgroup | Grupo de Fisiología Celular y Molecular (FCM) | |
| dc.date.accessioned | 2026-02-02T20:31:28Z | |
| dc.date.available | 2026-02-02T20:31:28Z | |
| dc.date.issued | 2025 | |
| dc.description | Ilustraciones, gráficos | spa |
| dc.description.abstract | Las células stem mesenquimales (MSC) de médula ósea (MO) poseen gran relevancia en el establecimiento, desarrollo y progresión de la leucemia linfoide aguda de precursores de células B (LLA-B). Las interacciones de las MSC con las células de LLA-B establecen un nicho leucémico (LN) que modifica las propiedades stem, el secretoma y la expresión génica de las MSC, favoreciendo la proliferación y la quimioresistencia de las células leucémicas. Los subtipos de LLA-B presentan alteraciones genómicas asociadas al desenlace clínico, por ejemplo la fusión ETV6-RUNX1 (t(12;21), de buen pronóstico) o BCR-ABL1 (t(9;22), de mal pronóstico). Sin embargo, se desconoce si estas células con anomalias genéticas distintas alteran diferencialmente las funciones stem o inducen una reprogramación celular particular. En el presente trabajo, se demostró que dos líneas celulares de LLA-B diferentes genéticamente, REH (t(12;21)) y SUP-B15 (t(9;22)), asociadas con un pronóstico favorable y adverso, respectivamente, modulan sus capacidades de proliferación, adhesión y migración durante su interacción con las MSC y, además, alteran diferencialmente el secretoma y las propiedades stem de las MSC durante su interacción. Se destaca que las células SUP-B15 tuvieron una adhesión a las MSC mayor y más rápida, una menor proliferación y una mayor migración hacía CXCL12 que las células REH. Se encontró que el medio condicionado (CM) del LN de SUP-B15 estaba más enriquecido en citoquinas proinflamatorias (en particular IL-6, IL-8 y CCL2) que el del LN de REH. Además, las células SUP-B15 indujeron una mayor adipogénesis en las MSC e interesantemente, preservaron mejor su capacidad de autorrenovación y clonogenicidad, en contraste con las MSC del LN de REH. Se observó que la interacción tanto de SUP-B15 como de REH con las MSC indujo en estas últimas un aumento significativo de la senescencia celular, sin diferencias entre estos subtipos. Adicionalmente, se estudió el impacto de alteraciones mencionadas del secretoma, la senescencia y las propiedades stem de las MSC sobre las propiedades de las células leucémicas, así como la modulación de su quimioresistencia hacía distintos fármacos. Las MSC protegieron de manera significativa a las células SUP-B15 y REH contra tres tratamientos farmacológicos. Los CM de los LN de SUP-B15 y de REH indujeron la senescencia celular de las MSC, pero solo el del LN de SUP-B15 logró consolidar dicha senescencia. También, el tratamiento con las citoquinas más relevantes de estos CM (IL-6, IL-8 y CCL2) indujeron la senescencia de las MSC pero sin alterar la quimioprotección de las MSC. Por otra parte, el tratamiento con IL-6 potenció la autorrenovación de las MSC; además, se evidenció que la inducción de senescencia con IL-6 en las MSC con mayor autorrenovación no afectó su capacidad de quimioprotección, debido a que estas células fueron más eficientes revirtiendo la senescencia. Debido a que las células SUP-B15 indujeron una mayor adipogénesis, se establecieron y evaluaron LN con adipocitos (AD) derivados de MSC. El CM del LN con AD de SUP-B15 expresó más citoquinas proinflamatorias (IL-6, CCL2, MIF y G-CSF) que el LN de REH con AD. De forma interesante, los AD y sus CM protegieron mejor que las MSC a las células SUP-B15, pero no a las REH del efecto citotóxico de los fármacos. Además, los AD también modularon diferencialmente la adhesión y la proliferación, SUP-B15 siendo más adherente y entrando en quiescencia, cambios favorables para la quimioresistencia. En conclusión, la mayor agresividad de las células SUP-B15 se explica de forma multifactorial. Por un lado, durante su interacción con las MSC y los AD presentaron mayor adhesión y modularon de forma dinámica su proliferación y migración; por otro lado, las SUP-B15 reprogramaron a las MSC, generando un LN más adipogénico que, a su vez, favoreció su quimioresistencia contra distintos fármacos. Además, indujeron la senescencia de las MSC sin afectar su capacidad de autorrenovación y clonogenicidad; aumentaron la secreción de citoquinas proinflamatorias, las cuales incrementaron la senescencia, la quimioprotección y la autorrenovación de las MSC. (Texto tomado de la fuente) | spa |
| dc.description.abstract | Bone marrow (BM) mesenchymal stem cells (MSC) are highly relevant to the development, development, and progression of B-cell acute lymphocytic leukemia (B-ALL). Interactions between MSCs and B-ALL cells establish a leukemic niche (LN) that modifies MSC stem cell properties, secretome, and gene expression, promoting proliferation and chemoresistance. B-ALL subtypes exhibit genomic alterations associated with clinical outcome, such as the ETV6-RUNX1 fusion (t(12;21), favorable prognosis) or BCR-ABL1 fusion (t(9;22), poor prognosis). However, it is unknown whether these genetic abnormalities differentially induce MSC reprogramming and function. In the present work, we demonstrated how two genetically distinct B-ALL cell lines, REH (t(12;21)) and SUP-B15 (t(9;22)), which are also associated with favorable and adverse prognoses, respectively, modulate their proliferation, adhesion, and migration capacities during their interaction with MSC and, in addition, differentially alter the secretome and stem properties of MSC during their interaction. It is notable that SUP-B15 cells had higher and faster adhesion to MSC, lower proliferation, and higher migration toward CXCL12 than REH cells. Furthermore, the conditioned medium (CM) of SUP-B15 LN was found to be more enriched in proinflammatory cytokines (particularly IL-6, IL-8, and CCL2) than that of REH LN. SUP-B15 cells induced greater adipogenesis in MSC and better preserved their self-renewal and clonogenicity capacity, in contrast to MSC from REH LN. It was observed that the interaction of both SUP-B15 and REH with MSC induced a significant increase in cellular senescence in the latter. Additionally, we studied the impact of the aforementioned alterations in the MSC’s secretome and stem functions on the properties of leukemic cells, as well as the modulation of their chemoresistance to different drugs. MSC significantly protected SUP-B15 and REH cells against three drug treatments. CM from SUP-B15 and REH LN induced cellular senescence in MSC, but only the CM from SUP-B15 LN managed to consolidate said senescence. Furthermore, treatment with the most relevant cytokines of these CM (IL-6, IL-8, and CCL2) induced MSC senescence without altering MSC chemoprotection. Treatment with IL-6 enhanced MSC self-renewal; furthermore, it was shown that inducing senescence with IL-6 in MSC with greater self-renewal did not affect their chemoprotection capacity, because these cells were more efficient in reversing senescence. Furthermore, since SUP-B15 cells induced greater adipogenesis, LN with MSC-derived adipocytes (AD) were established, and their secretome, their ability to modulate the properties of B-ALL cells, and their ability to protect them against the cytotoxic effect of different drugs were evaluated. The CM of SUP-B15 LN with AD also expressed more proinflammatory cytokines (IL-6, CCL2, MIF, and G-CSF) than the LNs of REH with AD. Interestingly, AD and their CMs protected SUP-B15 cells, but not REH cells, better than MSC from the drugs’ cytotoxic effects. Furthermore, AD also differentially modulated the proliferation and adhesion of the cell lines, causing SUP-B15 to increase its adhesion and enter a process of cellular quiescence beneficial to its chemoresistance. In conclusion, the greater aggressiveness of SUP-B15 cells was explained by several factors. On one hand, during their interaction with MSC and AD, they exhibited greater adhesion and dynamically modulated their proliferation and migration. On the other hand, they reprogrammed the MSC, generating a more adipogenic LN, which, in turn, favored their chemoresistance against various drugs. Furthermore, they induced MSC senescence without affecting their self-renewal and clonogenicity; they increased the secretion of proinflammatory cytokines, which enhanced MSC senescence, chemoprotection, and self-renewal. | eng |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magister en Inmunología | |
| dc.format.extent | xix, 113 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89367 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Medicina | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Medicina - Maestría en Inmunología | |
| dc.relation.references | Acosta, J. C., A. Banito, T. Wuestefeld, A. Georgilis, P. Janich, J. P. Morton, D. Athineos, et al. (2013). A Complex Secretory Program Orchestrated by the Inflammasome Controls Paracrine Senescence. Nature Cell Biology 15(8): 978–90. https://doi.org/10.1038/ncb2784. | |
| dc.relation.references | Aldoss, I., Capelletti, M., Park, J., Pistofidis, R. S., Pillai, R., Stiller, T., Sanchez, J. F., Forman, S. J., Ghobrial, I. M., & Krishnan, A. (2019). Acute lymphoblastic leukemia as a clonally unrelated second primary malignancy after multiple myeloma. Leukemia, 33(1), 266–270. https://doi.org/10.1038/s41375-018-0213-y | |
| dc.relation.references | Allan, E., Sison, R., Magoon, D., Li, L., Annesley, C. E., Rau, R. E., Small, D., & Brown, P. (2014). Plerixafor as a chemosensitizing agent in pediatric acute lymphoblastic leukemia: efficacy and potential mechanisms of resistance to CXCR4 inhibition. Oncotarget, 5(19), 8947–8958. https://doi.org/https://doi.org/10.18632/oncotarget.2407 | |
| dc.relation.references | Anderson, N. M., & Simon, M. C. (2020). The tumor microenvironment. Curr Biol, 30, 905– 931. https://doi.org/https://doi.org/10.1016/j.cub.2020.06.081 | |
| dc.relation.references | André, T., N. Meuleman, B. Stamatopoulos, C. De Bruyn, K. Pieters, D. Bron, and L. Lagneaux. (2013). Evidences of Early Senescence in Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells. PloS One 8(3): e59756. https://doi.org/10.1371/journal.pone.0059756 | |
| dc.relation.references | Astudillo, P., Ríos, S., Pastenes, L., Pino, A. M., & Rodríguez, J. P. (2008). Increased adipogenesis of osteoporotic human‐mesenchymal stem cells (MSCs) characterizes by impaired leptin action. Journal of cellular biochemistry, 103(4), 1054-1065. | |
| dc.relation.references | Atashi, F., Modarressi, A., & Pepper, M. S. (2015). The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem cells and development, 24(10), 1150-1163. | |
| dc.relation.references | Azadniv, M., Myers, J. R., McMurray, H. R., Guo, N., Rock, P., Coppage, M. L., & Liesveld, J. L. (2020). Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support. Leukemia, 34(2), 391-403. https://doi.org/10.1038/s41375-019-0568-8 | |
| dc.relation.references | Azevedo, P. L., Oliveira, N. C. A., Corrêa, S., Castelo-Branco, M. T. L., Abdelhay, E., & Binato, R. (2019). Canonical WNT Signaling Pathway is Altered in Mesenchymal Stromal Cells From Acute Myeloid Leukemia Patients And Is Implicated in BMP4 Down-Regulation. Transl Oncol, 12(4), 614–625. https://doi.org/10.1016/j.tranon.2019.01.003 | |
| dc.relation.references | Bailey, L. C., B. J. Lange, S. R. Rheingold, and N. J. Bunin. (2008). Bone marrow Relapse in Paediatric Acute Lymphoblastic Leukaemia. The Lancet Oncology 9: 873–83. https://doi.org/10.1016/s1470‐2045(08)70229‐8. | |
| dc.relation.references | Bateman, M. E., Strong, A. L., McLachlan, J. A., Burow, M. E., & Bunnell, B. A. (2017). The effects of endocrine disruptors on adipogenesis and osteogenesis in mesenchymal stem cells: a review. Frontiers in endocrinology, 7, 171. | |
| dc.relation.references | Batsali, A. K., Kastrinaki, M. C., Papadaki, H. A., & Pontikoglou, C. (2013). Mesenchymal stem cells derived from Wharton’s jelly of the umbilical cord: Biological properties and emerging clinical applications. Current Stem Cell Research & Therapy, 8(2), 144–155. https://doi.org/10.2174/1574888X11308020005 | |
| dc.relation.references | Behan, J. W., Yun, J. P., Proektor, M. P., Ehsanipour, E. A., Arutyunyan, A., Moses, A. S., & Mittelman, S. D. (2009). Adipocytes impair leukemia treatment in mice. Cancer research, 69(19), 7867-7874. https://doi.org/10.1158/0008-5472.CAN-09-0800 | |
| dc.relation.references | Bharti, R., Dey, G., & Mandal, M. (2016). Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: A snapshot of IL-6 mediated involvement. Cancer letters, 375(1), 51-61. https://doi.org/10.1016/j.canlet.2016.02.048 | |
| dc.relation.references | Bharti, D., Shivakumar, S. B., Park, J. K., Ullah, I., Subbarao, R. B., Park, J. S., & Rho, G. J. (2018). Comparative analysis of human Wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell and tissue research, 372(1), 51-65. https://doi.org/10.1007/s00441-017-2699-4 | |
| dc.relation.references | Bhojwani, D., & Pui, C.-H. (2013). Relapsed childhood acute lymphoblastic leukaemia. The Lancet Oncology, 14(6), e205– e217. https:// doi. org/ 10. 1016/ S1470- 2045(12) 70580-6 | |
| dc.relation.references | Berlier, J. L., Rethnam, M., Banu Binte Abdul Majeed, A. Q., & Suda, T. (2019). Modification of the bone marrow MSC population in a xenograft model of early multiple myeloma. Biochem Biophys Res Commun, 508(4), 1175–1181. https://doi.org/10.1016/j.bbrc.2018.11.178 | |
| dc.relation.references | Bernt, K. M., & Hunger, S. P. (2014). Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol, 4(54). https://doi.org/10.3389/fonc.2014.00054 | |
| dc.relation.references | Bhojwani, D., & Pui, C. H. (2013). Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol, 14(6), 205–217. https://doi.org/10.1016/S1470-2045(12)70580-6 | |
| dc.relation.references | Boyerinas, B., Zafrir, M., Yesilkanal, A. E., Price, T. T., Hyjek,E. M., & Sipkins, D. A. (2013). Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood, 121(24), 4821–4831. https:// doi. org/ 10. 1182/blood- 2012- 12- 475483 | |
| dc.relation.references | Bonilla, X., Vanegas, N. D. P., & Vernot, J. P. (2019). Acute leukemia induces senescence and impaired osteogenic differentiation in mesenchymal stem cells endowing leukemic cells with functional advantages. Stem Cells Int, 2019, 16. https://doi.org/10.1155/2019/3864948 | |
| dc.relation.references | Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6), 394–424. https://doi.org/10.3322/caac.21492 | |
| dc.relation.references | Cahu, X., Calvo, J., Poglio, S., Prade, N., Colsch, B., Arcangeli, M. L., ... & Pflumio, F. (2017). Bone marrow sites differently imprint dormancy and chemoresistance to T-cell acute lymphoblastic leukemia. Blood advances, 1(20), 1760-1772. https://doi.org/10.1182/bloodadvances.2017004960 | |
| dc.relation.references | Campisi, J., & d'Adda di Fagagna, F. (2007). Cellular senescence: when bad things happen to good cells. Nature reviews Molecular cell biology, 8(9), 729-740. https://doi.org/10.1038/nrm2233 | |
| dc.relation.references | Campisi, J. (2013). Aging, Cellular Senescence, and Cancer. Annual Review of Physiology 75(1): 685–705. https://doi.org/10.1146/annurev‐physiol‐030212‐183653. | |
| dc.relation.references | Chen, Y.-L., Tang, C., Zhang, M.-Y., Huang, W.-L., Xu, Y., Sun, H.-Y., et al. (2019). Blocking ATM-dependent NF-κB pathway overcomes niche protection and improves chemotherapy response in acute lymphoblastic leukemia. Leukemia, 33(10), 2365–2378. https:// doi. org/ 10. 1038/ s41375- 019- 0458-0 | |
| dc.relation.references | Chiarini, F., Lonetti, A., Evangelisti, C., Buontempo, F., Orsini, E., Evangelisti, C., Cappellini, A., Neri, L. M., McCubrey, J. A., & Martelli, A. M. (2016). Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim Biophys Acta Mol Cell Res, 1863(3), 449–463. https://doi.org/10.1016/j.bbamcr.2015.08.015 | |
| dc.relation.references | Choi, J., Cha, Y. J., & Koo, J. S. (2018). Adipocyte biology in breast cancer: From silent bystander to active facilitator. Progress in lipid research, 69, 11-20. | |
| dc.relation.references | Choo, A. B. H., Tan, H. L., Ang, S. N., Fong, W. J., Chin, A., Looi, L. S., & Yap, M. (2014). Immortalized mesenchymal stem cell lines: an invaluable tool for MSC biology. Stem Cell Research, 12(3), 387–398. https://doi.org/10.1016/j.scr.2013.12.001 | |
| dc.relation.references | Civini, S., Jin, P., Ren, J., Sabatino, M., Castiello, L., Jin, J., Wang, H., Zhao, Y., Marincola, F., & Stroncek, D. (2013). Leukemia cells induce changes in human bone marrow stromal cells. J Transl Med , 11, 298. https://doi.org/https://doi.org/10.1186/1479-5876-11-298 | |
| dc.relation.references | Dander, E., Fallati, A., Gulić, T., Pagni, F., Gaspari, S., Silvestri, D., Cricrì, G., Bedini, G., Portale, F., Buracchi, C., Starace, R., Pasqualini, F., D’Angiò, M., Brizzolara, L., Maglia, O., Mantovani, A., Garlanda, C., Valsecchi, M. G., Locatelli, F., ... D’Amico, G. (2021). Monocyte–macrophage polarization and recruitment pathways in the tumour microenvironment of B-cell acute lymphoblastic leukaemia. Br J Haematol, 193(6), 1157– 1171. https://doi.org/10.1111/bjh.17330 | |
| dc.relation.references | De Vasconcellos, J.F.; Laranjeira, A.B.A.; Zanchin, N.I.T.; Otubo, R.; Vaz, T.H.; Cardoso, A.A.; Brandalise, S.R.; Yunes, J.A. (2011) Increased CCL2 and IL-8 in the bone marrow microenvironment in acute lymphoblastic leukemia. Pediatr. Blood Cancer, 56, 568–577. https://doi.org/10.1002/pbc.22941 | |
| dc.relation.references | Dehghan-Nayeri, N., Rezaei-Tavirani, M., Omrani, M. D., Gharehbaghian, A., Goudarzi Pour, K., & Eshghi, P. (2017). Identification of potential predictive markers of dexamethasone resistance in childhood acute lymphoblastic leukemia. J. Cell Commun. Signal, 11(2), 137– 145. https://doi.org/10.1007/s12079-016-0357-3 | |
| dc.relation.references | Dominici, M. L. B. K., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., ... & Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317 | |
| dc.relation.references | Duan, C. W., Shi, J., Chen, J., Wang, B., Yu, Y. H., Qin, X., Zhou, X. C., Cai, Y. J., Li, Z. Q., Zhang, F., Yin, M. Z., Tao, Y., Mi, J. Q., Li, L. H., Enver, T., Chen, G. Q., & Hong, D. L. (2014). Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell, 25(6), 778–793. https://doi.org/10.1016/j.ccr.2014.04.015 | |
| dc.relation.references | Ehsanipour, E. A., Sheng, X., Behan, J. W., Wang, X., Butturini, A., Avramis, V. I., & Mittelman, S. D. (2013). Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine. Cancer research, 73(10), 2998-3006. | |
| dc.relation.references | Enciso, J., Mayani, H., Mendoza, L., & Pelayo, R. (2016). Modeling the pro-inflammatory tumor microenvironment in acute lymphoblastic leukemia predicts a breakdown of hematopoietic-mesenchymal communication networks. Front Physiol, 7(349). https://doi.org/10.3389/fphys.2016.00349 | |
| dc.relation.references | Faget, D. V., Ren, Q., & Stewart, S. A. (2019). Unmasking senescence: context-dependent effects of SASP in cancer. Nature Reviews Cancer, 19(8), 439-453. https://doi.org/10.1038/s41568-019-0156-2 | |
| dc.relation.references | Fallati, A., Di Marzo, N., D’Amico, G., & Dander, E. (2022). Mesenchymal Stromal Cells (MSCs): An Ally of B-Cell Acute Lymphoblastic Leukemia (B-ALL) Cells in Disease Maintenance and Progression within the Bone Marrow Hematopoietic Niche. Cancers, 14(14), 3303. https://doi.org/10.3390/cancers14143303 | |
| dc.relation.references | Forte, D., Krause, D. S., Andreeff, M., Bonnet, D., & Méndez-Ferrer, S. (2019). Updates on the hematologic tumor microenvironment and its therapeutic targeting. Haematologica, 104(10), 1928–1934. https://doi.org/10.3324/haematol.2018.195396 | |
| dc.relation.references | Gazdar, A. F., Gao, B., & Minna, J. D. (2010). Lung cancer cell lines: Useless artifacts or invaluable tools for medical science? Lung Cancer, 68(3), 309–318. https://doi.org/10.1016/j.lungcan.2009.12.005 | |
| dc.relation.references | Gillet, J. P., Varma, S., & Gottesman, M. M. (2013). The clinical relevance of cancer cell lines. J Natl Cancer Inst, 105(7), 452–458. https://doi.org/10.1093/jnci/djt007 | |
| dc.relation.references | Giordano, P.; Molinari, A.C.; del Vecchio, G.C.; Saracco, P.; Russo, G.; Altomare, M.; Perutelli, P.;Crescenzio, N.; Santoro, N.; Marchetti, M.; et al. Prospective study of hemostatic alterations in children with acute lymphoblastic leukemia. Am. J. Hematol. 2010, 85, 325–330. https://doi.org/10.1002/ajh.21665 | |
| dc.relation.references | Hass, R., & Otte, A. (2012). Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Commun Signal, 10(26). https://doi.org/10.1186/1478-811X-10-26 | |
| dc.relation.references | Hao, H., Chen, G., Liu, J., Ti, D., Zhao, Y., Xu, S., ... & Fu, X. (2013). Culturing on Wharton’s jelly extract delays mesenchymal stem cell senescence through p53 and p16INK4a/pRb pathways. PLoS ONE, 8(3), e58314. https://doi.org/10.1371/journal.pone.0058314 | |
| dc.relation.references | Hao, Q., Vadgama, J. v., & Wang, P. (2020). CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signal, 18(82). https://doi.org/10.1186/s12964-020-00589-8 | |
| dc.relation.references | Harris, N. L., Jaffe, E. S., Diebold, J., Flandrin, G., Konrad Muller-Hermelink, H., Vardiman, J., Lister, T. A., & Bloomfield, C. D. (2000). The World Health Organization Classification of Hematological Malignancies Report of the Clinical Advisory Committee Meeting. Mod Pathol, 13(2), 193–207 | |
| dc.relation.references | Heydt, Q., Xintaropoulou, C., Clear, A., Austin, M., Pislariu, I., Miraki-Moud, F., et al. (2021). Adipocytes disrupt the translational programme of acute lymphoblastic leukaemia to favour tumour survival and persistence. Nature Communications, 12(1), 5507. https:// doi. org/ 10. 1038/ s41467- 021- 25540-4 | |
| dc.relation.references | Hiraga, T., Ito, S., & Mizoguchi, T. (2021). Opposing effects of granulocyte colony-stimulating factor on the initiation and progression of breast cancer bone metastases. Molecular Cancer Research, 19(12), 2110-2119. https://doi.org/10.1158/1541-7786.MCR-21-0243 | |
| dc.relation.references | Hong, Z., Wei, Z., Xie, T., Fu, L., Sun, J., Zhou, F., Jamal, M., Zhang, Q., & Shao, L. (2021). Targeting chemokines for acute lymphoblastic leukemia therapy. J Hematol Oncol , 14(48). https://doi.org/10.1186/s13045-021-01060-y | |
| dc.relation.references | Homann, L., Rentschler, M., Brenner, E., Böhm, K., Röcken, M., & Wieder, T. (2022). IFN-γ and TNF induce senescence and a distinct senescence-associated secretory phenotype in melanoma. Cells, 11(9), 1514. https://doi.org/10.3390/cancers14061364 | |
| dc.relation.references | Hsieh, Y.-T., Gang, E. J., Geng, H., Park, E., Huantes, S., Chudziak, D., et al. (2013). Integrin alpha4 blockade sensitizes drug resistant pre-B acute lymphoblastic leukemia to chemotherapy. Blood, 121(10), 1814–1818. https:// doi. org/ 10. 1182/ blood- 2012- 01- 406272 | |
| dc.relation.references | Hughes, A. M., V. Kuek, R. S. Kotecha, and L. C. Cheung. (2022). The Bone Marrow Microenvironment in B‐Cell Development and Malignancy.” Cancers 14(9): 2089. https://doi.org/10.3390/cancers14092089 | |
| dc.relation.references | Hughes, A. M., Kuek, V., Oommen, J., Chua, G. A., van Loenhout, M., Malinge, S., & Cheung, L. C. (2023). Characterization of mesenchymal stem cells in pre-B acute lymphoblastic leukemia. Frontiers in cell and developmental biology, 11, 1005494. https://doi.org/10.3389/fcell.2023.1005494 | |
| dc.relation.references | Hunger, S. P., & Mullighan, C. G. (2015). Review Series ACUTE LYMPHOBLASTIC LEUKEMIA Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood, 125(26), 3977–3987. https://doi.org/10.1182/blood-2015-02 | |
| dc.relation.references | Inaba, H., Greaves, M., & Mullighan, C. G. (2013). Acute lymphoblastic leukaemia. Lancet, 381(9881), 1943–1955. https://doi.org/10.1016/S0140-6736(12)62187-4 | |
| dc.relation.references | Inaba, H., & Pui, C. H. (2021). Advances in the diagnosis and treatment of pediatric acute lymphoblastic leukemia. J. Clin. Med, 10(9), 1926. https://doi.org/10.3390/jcm10091926 | |
| dc.relation.references | Jacamo, R., Chen, Y., Wang, Z., Ma, W., Zhang, M., Spaeth, E. L., et al. (2014). Reciprocal leukemia-stroma VCAM-1/ VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood, 123(17), 2691–2702. https:// doi. org/ 10. 1182/blood- 2013- 06- 511527 | |
| dc.relation.references | Jin, H. J., Bae, Y. K., Kim, M., Kwon, S. J., Jeon, H. B., Choi, S. J.,x & Kim, S. W. (2013). Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. International Journal of Molecular Sciences, 14(9), 17986–18001. https://doi.org/10.3390/ijms140917986 | |
| dc.relation.references | Karantanou, C., Godavarthy, P. S., & Krause, D. S. (2018). Targeting the bone marrow microenvironment in acute leukemia. Leuk Lymphoma, 59(11), 2535–2545. https://doi.org/10.1080/10428194.2018.1434886 | |
| dc.relation.references | Kerr, M. W. A., Magalhães-Gama, F., Ibiapina, H. N. S., Hanna, F. S. A., Xabregas, L. A., Alves, E. B., & Malheiro, A. (2021). Bone marrow soluble immunological mediators as clinical prognosis biomarkers in B-cell acute lymphoblastic leukemia patients undergoing induction therapy. Frontiers in Oncology, 11, 696032 | |
| dc.relation.references | Kfoury, Y., & Scadden, D. T. (2015). Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell, 16(3), 239–253. https://doi.org/10.1016/j.stem.2015.02.019 | |
| dc.relation.references | Kim, J., Denu, R. A., Dollar, B. A., Escalante, L. E., Kuether, J. P., Callander, N. S., Asimakopoulos, F., & Hematti, P. (2012). Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells. Br J Haematol, 158(3), 336– 346. https://doi.org/10.1111/j.1365-2141.2012.09154.x | |
| dc.relation.references | Kim, J.‐A., J.‐S. Shim, G.‐Y. Lee, H. W. Yim, T.‐M. Kim, M. Kim, S.‐H. Leem, J.‐W. Lee, C.‐K. Min, and I.‐H. Oh. (2015). Microenvironmental Remodeling as a Parameter and Prognostic Factor of Heterogeneous Leukemogenesis in Acute Myelogenous Leukemia.” Cancer Research 75(11): 2222–31. https://doi.org/10.1158/0008‐5472.can‐14‐3379 | |
| dc.relation.references | Kolonin, M. G., & DiGiovanni, J. (2019). The role of adipose stroma in prostate cancer aggressiveness. Translational Andrology and Urology, 8(3), 348. 10.21037/tau.2019.04.07 | |
| dc.relation.references | Konopleva, M. Y., & Jordan, C. T. (2011). Leukemia stem cells and microenvironment: Biology and therapeutic targeting. J Clin Oncol, 29(5), 591–599. https://doi.org/10.1200/JCO.2010.31.0904 | |
| dc.relation.references | Kumagai, M., A. Manabe, C. H. Pui, F. G. Behm, S. C. Raimondi, M. L. Hancock, H. Mahmoud, W. M. Crist, and D. Campana. (1996). Stroma‐supported Culture in Childhood B‐Lineage Acute Lymphoblastic Leukemia Cells Predicts Treatment Outcome. Journal of Clinical Investigation 97(3): 755–60. https://doi.org/10.1172/jci118474 | |
| dc.relation.references | Kumar, A., Anand, T., Bhattacharyya, J., Sharma, A., & Jaganathan, B. G. (2018). K562 chronic myeloid leukemia cells modify osteogenic differentiation and gene expression of bone marrow stromal cells. J Cell Commun Signal, 12(2), 441–450. https://doi.org/10.1007/s12079-017-0412-8 | |
| dc.relation.references | Küppers, R. (2005). Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer, 5(4), 251–262. https://doi.org/10.1038/nrc1589 | |
| dc.relation.references | Lee, M. W., Ryu, S., Kim, D. S., Lee, J. W., Sung, K. W., Koo, H. H., & Yoo, K. H. (2019). Mesenchymal stem cells in suppression or progression of hematologic malignancy: current status and challenges. Leukemia, 33(3), 597–611. https://doi.org/10.1038/s41375-018-0373-9 | |
| dc.relation.references | Li, J.-H., Fan, W.-S., Wang, M.-M., Wang, Y.-H., & Ren, Z.-G.(2018). Effects of mesenchymal stem cells on solid tumor metastasis in experimental cancer models: A systematic review and meta-analysis. Journal of Translational Medicine, 16(1), 113. https:// doi. org/ 10. 1186/ s12967- 018- 1484-9 | |
| dc.relation.references | Lim, M., Pang, Y., Ma, S., Hao, S., Shi, H., Zheng, Y., Hua, C., Gu, X., Yang, F., Yuan, W., & Cheng, T. (2016). Altered mesenchymal niche cells impede generation of normal hematopoietic progenitor cells in leukemic bone marrow. Leukemia, 30(1), 154–162. https://doi.org/10.1038/leu.2015.210 | |
| dc.relation.references | Linares Ballesteros, A., Yunis, L. K., García, J., Aponte, N., Flechas, J., Martinez, C., Uribe, G., Quintero, E., Díaz, A., Pardo, C., Sarmiento, I. C., Contreras, A., & Yunis, J. J. (2022). Philadelphia-like acute lymphoblastic leukemia: Characterization in a pediatric cohort in a referral center in Colombia. Cancer Reports, 5(5), 1587. https://doi.org/10.1002/cnr2.1587 | |
| dc.relation.references | Lill, C. B., Fitter, S., Zannettino, A. C., Vandyke, K., & Noll, J. E. (2024). Molecular and cellular mechanisms of chemoresistance in paediatric pre–B cell acute lymphoblastic leukaemia. Cancer and Metastasis Reviews, 43(4), 1385-1399 | |
| dc.relation.references | Lutz, C., Woll, P. S., Hall, G., Castor, A., Dreau, H., Cazzaniga, G., & Enver, T. (2013). Quiescent leukaemic cells account for minimal residual disease in childhood lymphoblastic leukaemia. Leukemia, 27(5), 1204-1207. https://doi.org/10.1038/leu.2012.306 | |
| dc.relation.references | Lutzny, G., Kocher, T., Schmidt-Supprian, M., Rudelius, M., Klein-Hitpass, L., Finch, A. J., Dürig, J., Wagner, M., Haferlach, C., Kohlmann, A., Schnittger, S., Seifert, M., Wanninger, S., Zaborsky, N., Oostendorp, R., Ruland, J., Leitges, M., Kuhnt, T., Schäfer, Y., Ringshausen, I. (2013). Protein Kinase C-β-Dependent Activation of NF-κB in Stromal Cells Is Indispensable for the Survival of Chronic Lymphocytic Leukemia B Cells In Vivo. Cancer Cell, 23(1), 77–92. https://doi.org/10.1016/j.ccr.2012.12.003 | |
| dc.relation.references | de Lourdes Perim, A., Amarante, M. K., Guembarovski, R. L., de Oliveira, C. E. C., & Watanabe, M. A. E. (2015). CXCL12/CXCR4 axis in the pathogenesis of acute lymphoblastic leukemia (ALL): a possible therapeutic target. Cellular and Molecular Life Sciences, 72(9), 1715-1723 | |
| dc.relation.references | Ma, C., Witkowski, M. T., Harris, J., Dolgalev, I., Sreeram, S., Qian, W., Tong, J., Chen, X., Aifantis, I., & Chen, W. (2020). Leukemia-on-a-chip: Dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche. Sci.Adv, 6(44). https://doi.org/10.1126/sciadv.aba5536 | |
| dc.relation.references | Ma, Z., Zhao, X., Deng, M., Huang, Z., Wang, J., Wu, Y., Cui, D., Liu, Y., Liu, R., & Ouyang, G. (2019). Bone Marrow Mesenchymal Stromal Cell-Derived Periostin Promotes B-ALL Progression by Modulating CCL2 in Leukemia Cells. Cell Rep, 26(6), 1533-1543.e4. https://doi.org/10.1016/j.celrep.2019.01.034 | |
| dc.relation.references | Macanas-Pirard, P., Quezada, T., Navarrete, L., Broekhuizen, R., Leisewitz, A., Nervi, B., & Ramírez, P. A. (2017). The CCL2/CCR2 axis affects transmigration and proliferation but not resistance to chemotherapy of acute myeloid leukemia cells. PLoS ONE, 12(1). https://doi.org/10.1371/journal.pone.0168888 | |
| dc.relation.references | Managò, S., Valente, C., Mirabelli, P., Circolo, D., Basile, F., Corda, D., & de Luca, A. C. (2016). A reliable Raman-spectroscopy-based approach for diagnosis, classification and follow-up of B-cell acute lymphoblastic leukemia. Sci Rep, 6, 24821. https://doi.org/10.1038/srep24821 | |
| dc.relation.references | Malard, F., & Mohty, M. (2020). Acute lymphoblastic leukaemia. Lancet, 395(10230), 1146– 1162. https://doi.org/10.1016/S0140-6736(19)33018-1 | |
| dc.relation.references | Malouf, C., and K. Ottersbach. (2018). Molecular Processes Involved in B Cell Acute Lymphoblastic Leukaemia. Cellular and Molecular Life Sciences 75(3): 417–46. https://doi.org/10.1007/s00018‐017‐2620‐z | |
| dc.relation.references | Marino, L., Castaldi, M. A., Rosamilio, R., Ragni, E., Vitolo, R., Fulgione, C., & Selleri, C. (2019). Mesenchymal stem cells from the Wharton’s jelly of the human umbilical cord: biological properties and therapeutic potential. Int J stem cells, 12(2), 218-226. https://doi.org/10.15283/ijsc18034 | |
| dc.relation.references | Méndez-Ferrer, S., Bonnet, D., Steensma, D. P., Hasserjian, R. P., Ghobrial, I. M., Gribben, J. G., Andreeff, M., & Krause, D. S. (2020). Bone marrow niches in haematological malignancies. Nat Rev Cancer, 20(5), 285–298. https://doi.org/10.1038/s41568-020-0245-2 | |
| dc.relation.references | Mikhael, N. L., Seif H Gendi, M. A., Hassab, H., & Megahed, E. A. (2019). Evaluation of multiplexed biomarkers in assessment of CSF infiltration in pediatric acute lymphoblastic leukemia. Int J Hematol Oncol, 8(3). https://doi.org/10.2217/ijh-2019-0008 | |
| dc.relation.references | Montaño, A., Ordoñez, J. L., Alonso-Pérez, V., Hernández-Sánchez, J., Santos, S., González, T., Benito, R., García-Tuñón, I., & Hernández-Rivas, J. M. (2020). ETV6/RUNX1 Fusion Gene Abrogation Decreases the Oncogenicity of Tumour Cells in a Preclinical Model of Acute Lymphoblastic Leukaemia. Cells, 9(1), 215. https://doi.org/10.3390/cells9010215 | |
| dc.relation.references | Mudry, R. E., Fortney, J. E., York, T., Hall, B. M., & Gibson, L. F. (2000). Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood, 96(5), 1926–1932. https:// doi.org/ 10. 1182/ blood. V96.5. 1926 | |
| dc.relation.references | Mullighan, C. G. (2013). Genomic characterization of childhood acute lymphoblastic leukemia. Semin Hematol, 50(4), 314–324. https://doi.org/10.1053/j.seminhematol.2013.10.001 | |
| dc.relation.references | Nazari, A., Khorramdelazad, H., & Hassanshahi, G. (2017). Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. Int J Clin Oncol, 22(6), 991–1000. https://doi.org/10.1007/s10147-017-1187-x | |
| dc.relation.references | Nair-Gupta, P., Rudnick, S. I., Luistro, L., Smith, M., McDaid, R., Li, Y., Pillarisetti, K., Joseph, J., Heidrich, B., Packman, K., Attar, R., & Gaudet, F. (2020). Blockade of VLA4 sensitizes leukemic and myeloma tumor cells to CD3 redirection in the bone marrow microenvironment. Blood Cancer J, 10(6). https://doi.org/10.1038/s41408-020-0331-4 | |
| dc.relation.references | Lecka-Czernik, B., Baroi, S., Stechschulte, L. A., & Chougule, A. S. (2018). Marrow fat—a new target to treat bone diseases?. Current Osteoporosis Reports, 16, 123-129 | |
| dc.relation.references | Oh, I. H., Jeong, S. Y., & Kim, J. A. (2019). Normal and leukemic stem cell niche interactions. Curr Opin Hematol, 26(4), 249–257. https://doi.org/10.1097/MOH.0000000000000508 | |
| dc.relation.references | Ortiz‐Montero, P., A. Londoño‐Vallejo, and J.‐P. Vernot. (2017). Senescence‐associated IL‐6 and IL‐8 Cytokines Induce a Self‐ and Cross‐Reinforced Senescence/inflammatory Milieu Strengthening Tumorigenic Capabilities in the MCF‐7 Breast Cancer Cell Line.” Cell Communication and Signaling 15(1): 17. https://doi.org/10.1186/s12964‐017‐0172‐3 | |
| dc.relation.references | Pinho, S., & Frenette, P. S. (2019). Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol, 20(5), 303–320. https://doi.org/10.1038/s41580-019-0103-9 | |
| dc.relation.references | Portale, F., G. Cricrì, S. Bresolin, M. Lupi, S. Gaspari, D. Silvestri, B. Russo, et al. (2019). ActivinA: A New Leukemia‐Promoting Factor Conferring Migratory Advantage to B‐Cell Precursor‐Acute Lymphoblastic Leukemic Cells.” Haematologica 104(3): 533–45.https://doi.org/10.3324/haematol.2018.188664 | |
| dc.relation.references | Rentschler, M., Braumüller, H., Briquez, P. S., & Wieder, T. (2022). Cytokine-induced senescence in the tumor microenvironment and its effects on anti-tumor immune responses. Cancers, 14(6), 1364. https://doi.org/10.3390/cancers14061364 | |
| dc.relation.references | Ruiz-Aparicio, P. F., Vanegas, N. D. P., Uribe, G. I., Ortiz-Montero, P., Cadavid-Cortés, C., Lagos, J., Flechas-Afanador, J., Linares-Ballesteros, A., & Vernot, J. P. (2020). Dual targeting of stromal cell support and leukemic cell growth by a peptidic pkc inhibitor shows effectiveness against b-all. Int J Mol Sci, 21(10), 3705. https://doi.org/10.3390/ijms21103705 | |
| dc.relation.references | Sabbah, R., Saadi, S., Shahar-Gabay, T., Gerassy, S., Yehudai-Resheff, S., & Zuckerman, T. (2023). Abnormal adipogenic signaling in the bone marrow mesenchymal stem cells contributes to supportive microenvironment for leukemia development. Cell Communication and Signaling, 21(1), 277. https://doi.org/10.1186/s12964-023-01231-z | |
| dc.relation.references | Sansone, P., Storci, G., Tavolari, S., Guarnieri, T., Giovannini, C., Taffurelli, M., ... & Bonafè, M. (2007). IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. The Journal of clinical investigation, 117(12), 3988-4002 | |
| dc.relation.references | Scupoli, M. T., Donadelli, M., Cioffi, F., Rossi, M., Perbellini, O., Malpeli, G., Corbioli, S., Vinante, F., Krampera, M., Palmieri, M., Scarpa, A., Ariola, C., Foà, R., & Pizzolo, G. (2008). Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-κB and JNK/AP-1 pathways. Haematologica, 93(4), 524–532. https://doi.org/10.3324/haematol.12098 | |
| dc.relation.references | Severe, N., Karabacak, N. M., Gustafsson, K., Baryawno, N., Courties, G., Kfoury, Y., Kokkaliaris, K. D., Rhee, C., Lee, D., Scadden, E. W., Garcia-Robledo, J. E., Brouse, T., Nahrendorf, M., Toner, M., & Scadden, D. T. (2019). Stress-Induced Changes in Bone Marrow Stromal Cell Populations Revealed through Single-Cell Protein Expression Mapping. Cell Stem Cell, 25(4), 570-583.e7. https://doi.org/10.1016/j.stem.2019.06.003 | |
| dc.relation.references | Schultz, K. R., Pullen, D. J., Sather, H. N., Shuster, J. J., Devidas, M., Borowitz, M. J., Carroll, A. J., Heerema, N. A., Rubnitz, J. E., Loh, M. L., Raetz, E. A., Winick, N. J., Hunger, S. P., Carroll, W. L., Gaynon, P. S., & Camitta, B. M. (2007). Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: A combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood, 109(3), 926–935. https://doi.org/10.1182/blood-2006-01-024729 | |
| dc.relation.references | Sheng, X., Tucci, J., Parmentier, J. H., Ji, L., Behan, J. W., Heisterkamp, N., et al. (2016). Adipocytes cause leukemia cell resistance to daunorubicin via oxidative stress response. Oncotarget, 7(45), 73147–73159. https:// doi. org/ 10. 18632/oncot arget. 12246 | |
| dc.relation.references | Sheng, X., Parmentier, J.-H., Tucci, J., Pei, H., Cortez-Toledo, O., Dieli-Conwright, C. M., et al. (2017). Adipocytes sequester and metabolize the chemotherapeutic daunorubicin. Molecular Cancer Research, 15(12), 1704–1713. https:// doi. org/ 10. 1158/541- 7786. Mcr- 17- 0338 | |
| dc.relation.references | Shishido, S., H. Bönig, and Y.‐M. Kim. (2014). Role of Integrin Alpha4 in Drug Resistance of Leukemia.” Frontiers in Oncology 4. https://doi.org/10.3389/fonc.2014.00099 | |
| dc.relation.references | Starza, I. della, Chiaretti, S., de Propris, M. S., Elia, L., Cavalli, M., de Novi, L. A., Soscia, R., Messina, M., Vitale, A., Guarini, A., & Foà, R. (2019). Minimal residual disease in acute lymphoblastic leukemia: Technical and clinical advances. Front Oncol, 9, 726. https://doi.org/10.3389/fonc.2019.00726 | |
| dc.relation.references | Sun, W., Malvar, J., Sposto, R., Verma, A., Wilkes, J. J., Dennis, R., Heym, K., Laetsch, T. W., Widener, M., Rheingold, S. R., Oesterheld, J., Hijiya, N., Sulis, M. L., Huynh, V., Place, A. E., Bittencourt, H., Hutchinson, R., Messinger, Y., Chang, B., ... Whitlock, J. A. (2018). Outcome of children with multiply relapsed B-cell acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia & lymphoma study. Leukemia, 32(11), 2316– 2325. https://doi.org/10.1038/s41375-018-0094-0 | |
| dc.relation.references | Tabe, Y., and M. Konopleva. (2014). Advances in Understanding the Leukaemia Microenvironment.” British Journal of Haematology 164(6): 767–78. https://doi.org/10.1111/bjh.12725 | |
| dc.relation.references | Takasugi, M., Yoshida, Y., Hara, E., & Ohtani, N. (2023). The role of cellular senescence and SASP in tumour microenvironment. The FEBS journal, 290(5), 1348-1361. https://doi.org/10.1111/febs.16381 | |
| dc.relation.references | Tan, Z., Kan, C., Wong, M., Sun, M., Liu, Y., Yang, F., ... & Zheng, H. (2022). Regulation of malignant myeloid leukemia by mesenchymal stem cells. Frontiers in cell and developmental biology, 10, 857045. https://doi.org/10.3389/fcell.2022.857045 | |
| dc.relation.references | Tessoulin, B., Papin, A., Gomez-Bougie, P., Bellanger, C., Amiot, M., Pellat-Deceunynck, C., & Chiron, D. (2019). BCL2-family dysregulation in B-cell malignancies: From gene expression regulation to a targeted therapy biomarker. Front Oncology, 9, 645. https://doi.org/10.3389/fonc.2018.00645 | |
| dc.relation.references | Tran, T. H., and S. P. Hunger. (2022). The Genomic Landscape ofPediatric Acute Lymphoblastic Leukemia and Precision MedicineOpportunities.” Seminars in Cancer Biology 84: 144–52. https://doi.org/10.1016/j.semcancer.2020.10.013 | |
| dc.relation.references | Trastulla, L., Noorbakhsh, J., Vazquez, F., McFarland, J., & Iorio, F. (2022). Computational estimation of quality and clinical relevance of cancer cell lines. Mol Syst Biol, 18(7), e11017. https://doi.org/10.15252/msb.202211017 | |
| dc.relation.references | Tucci, J., Chen, T., Margulis, K., Orgel, E., Paszkiewicz, R. L., Cohen, M. D., & Mittelman, S. D. (2021). Adipocytes provide fatty acids to acute lymphoblastic leukemia cells. Frontiers in oncology, 11, 665763 | |
| dc.relation.references | Valenti, M. T., Dalle Carbonare, L., & Mottes, M. (2016). Osteogenic differentiation in healthy and pathological conditions. International journal of molecular sciences, 18(1), 41. https://doi.org/10.3390/ijms18010041 | |
| dc.relation.references | Vanegas, N. D. P., Ruiz-Aparicio, P. F., Uribe, G. I., Linares-Ballesteros, A., & Vernot, J. P. (2021). Leukemia-induced cellular senescence and stemness alterations in mesenchymal stem cells are reversible upon withdrawal of b-cell acute lymphoblastic leukemia cells. Int J Mol Sci, 22(15), 8166. https://doi.org/10.3390/ijms22158166 | |
| dc.relation.references | Verma, D.; Zanetti, C.; Godavarthy, P.S.; Kumar, R.; Minciacchi, V.R.; Pfeiffer, J.; Metzler, M.; Lefort, S.; Maguer-Satta, V.; Nicolini, F.E.; et al. (2020). Bone marrow niche-derived extracellular matrix-degrading enzymes influence the progression of B-cell acute lymphoblastic leukemia. Leukemia. 34, 1540–1552. https://doi.org/10.1038/s41375-019-0674-7 | |
| dc.relation.references | Vernot, J. P., Bonilla, X., Rodriguez-Pardo, V., & Vanegas, N. D. P. (2017). Phenotypic and functional alterations of hematopoietic stem and progenitor cells in an in vitro leukemia- induced microenvironment. Int J Mol Sci, 18(2), 199. https://doi.org/10.3390/ijms18020199 | |
| dc.relation.references | Wang, Y., Liu, J., Jiang, Q., Deng, J., Xu, F., Chen, X., ... & Deng, H. (2017). Human adipose-derived mesenchymal stem cell-secreted CXCL1 and CXCL8 facilitate breast tumor growth by promoting angiogenesis. Stem Cells, 35(9), 2060-2070. https://doi.org/10.1002/stem.2643 | |
| dc.relation.references | Wang, B., Han, J., Elisseeff, J. H., & Demaria, M. (2024). The senescence-associated secretory phenotype and its physiological and pathological implications. Nature Reviews Molecular Cell Biology, 25, 958–978. https://doi.org/10.1038/s41580-024-00727-x | |
| dc.relation.references | Witkowski, M. T., Kousteni, S., & Aifantis, I. (2020). Mapping and targeting of the leukemic microenvironment. J Exp Med., 217(2). https://doi.org/10.1084/jem.20190589 | |
| dc.relation.references | Xing, C., Xu, W., Shi, Y., Zhou, B., Wu, D., Liang, B., Zhou, Y., Gao, S., & Feng, J. (2020). CD9 knockdown suppresses cell proliferation, adhesion, migration and invasion, while promoting apoptosis and the efficacy of chemotherapeutic drugs and imatinib in Ph+ALL SUP-B15 cells. Mol Med Rep, 22(4), 2791–2800. https://doi.org/10.3892/mmr.2020.11350 | |
| dc.relation.references | Xu, M., Wang, Y., Xia, R., Wei, Y., & Wei, X. (2021). Role of the CCL2-CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting. Cell Proliferation, 54(10), e13115. https://doi.org/10.1111/cpr.13115 | |
| dc.relation.references | Xu, S., Menu, E., de Becker, A., van Camp, B., Vanderkerken, K., & van Riet, I. (2012). Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell- produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells, 30(2), 266–279. https://doi.org/10.1002/stem.787 | |
| dc.relation.references | Yang, G.‐C., Y.‐H. Xu, H.‐X. Chen, and X.‐J. Wang. (2015). Acute Lymphoblastic Leukemia Cells Inhibit the Differentiation of Bone Mesenchymal Stem Cells into Osteoblasts In Vitro by Activating Notch Signaling. Stem Cells International. | |
| dc.relation.references | Zhang, L., Zhao, Q., Cang, H., Wang, Z., Hu, X., Pan, R., Yang, Y, & Chen, Y. (2022). Acute myeloid leukemia cells educate mesenchymal stromal cells toward an adipogenic differentiation propensity with leukemia promotion capabilities. Advanced Science, 9(16), 2105811 | |
| dc.relation.references | Zelent, A., Greaves, M., & Enver, T. (2004). Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene, 23(24), 4275–4283. https://doi.org/10.1038/sj.onc.1207672 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject.blaa | Células madre mesenquimales | |
| dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | |
| dc.subject.ddc | 610 - Medicina y salud | |
| dc.subject.lemb | Envejecimiento celular | spa |
| dc.subject.lemb | Cells - Aging | eng |
| dc.subject.lemb | Leucemia linfoide | spa |
| dc.subject.lemb | Lymphocytic leukemia | eng |
| dc.subject.lemb | Médula ósea | spa |
| dc.subject.lemb | Bone marrow | eng |
| dc.subject.lemb | Citocinas | spa |
| dc.subject.lemb | Cytokines | eng |
| dc.subject.proposal | LLA-B | spa |
| dc.subject.proposal | Pronóstico favorable y adverso | spa |
| dc.subject.proposal | MSC | spa |
| dc.subject.proposal | Nicho leucémico | spa |
| dc.subject.proposal | Propiedades stem | spa |
| dc.subject.proposal | Senescencia | spa |
| dc.subject.proposal | Adipogénesis | spa |
| dc.subject.proposal | Quimioresistencia | spa |
| dc.subject.proposal | B-ALL | eng |
| dc.subject.proposal | Favorable and poor prognosis | eng |
| dc.subject.proposal | MSC | eng |
| dc.subject.proposal | Leukemic niche | eng |
| dc.subject.proposal | Stem properties | eng |
| dc.subject.proposal | Senescence | eng |
| dc.subject.proposal | Adipogenesis | eng |
| dc.subject.proposal | Chemoresistance | eng |
| dc.title | Influencia de las anomalías genéticas de buen y mal pronóstico en LLA-B sobre la modulación de las células stem mesenquimales en un modelo in vitro de nicho leucémico | spa |
| dc.title.translated | Influence of good and poor prognostic genetic abnormalities in B-ALL on the modulation of mesenchymal stem cells in an in vitro model of the leukemic niche | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Bibliotecarios | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Maestros | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |

