Influencia de las anomalías genéticas de buen y mal pronóstico en LLA-B sobre la modulación de las células stem mesenquimales en un modelo in vitro de nicho leucémico

dc.contributor.advisorVernot, Jean Paul
dc.contributor.authorÁngel Cortés, Santiago
dc.contributor.orcidÁngel Cortés, Santiago [0009-0005-4664-8237]
dc.contributor.researchgroupGrupo de Fisiología Celular y Molecular (FCM)
dc.date.accessioned2026-02-02T20:31:28Z
dc.date.available2026-02-02T20:31:28Z
dc.date.issued2025
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractLas células stem mesenquimales (MSC) de médula ósea (MO) poseen gran relevancia en el establecimiento, desarrollo y progresión de la leucemia linfoide aguda de precursores de células B (LLA-B). Las interacciones de las MSC con las células de LLA-B establecen un nicho leucémico (LN) que modifica las propiedades stem, el secretoma y la expresión génica de las MSC, favoreciendo la proliferación y la quimioresistencia de las células leucémicas. Los subtipos de LLA-B presentan alteraciones genómicas asociadas al desenlace clínico, por ejemplo la fusión ETV6-RUNX1 (t(12;21), de buen pronóstico) o BCR-ABL1 (t(9;22), de mal pronóstico). Sin embargo, se desconoce si estas células con anomalias genéticas distintas alteran diferencialmente las funciones stem o inducen una reprogramación celular particular. En el presente trabajo, se demostró que dos líneas celulares de LLA-B diferentes genéticamente, REH (t(12;21)) y SUP-B15 (t(9;22)), asociadas con un pronóstico favorable y adverso, respectivamente, modulan sus capacidades de proliferación, adhesión y migración durante su interacción con las MSC y, además, alteran diferencialmente el secretoma y las propiedades stem de las MSC durante su interacción. Se destaca que las células SUP-B15 tuvieron una adhesión a las MSC mayor y más rápida, una menor proliferación y una mayor migración hacía CXCL12 que las células REH. Se encontró que el medio condicionado (CM) del LN de SUP-B15 estaba más enriquecido en citoquinas proinflamatorias (en particular IL-6, IL-8 y CCL2) que el del LN de REH. Además, las células SUP-B15 indujeron una mayor adipogénesis en las MSC e interesantemente, preservaron mejor su capacidad de autorrenovación y clonogenicidad, en contraste con las MSC del LN de REH. Se observó que la interacción tanto de SUP-B15 como de REH con las MSC indujo en estas últimas un aumento significativo de la senescencia celular, sin diferencias entre estos subtipos. Adicionalmente, se estudió el impacto de alteraciones mencionadas del secretoma, la senescencia y las propiedades stem de las MSC sobre las propiedades de las células leucémicas, así como la modulación de su quimioresistencia hacía distintos fármacos. Las MSC protegieron de manera significativa a las células SUP-B15 y REH contra tres tratamientos farmacológicos. Los CM de los LN de SUP-B15 y de REH indujeron la senescencia celular de las MSC, pero solo el del LN de SUP-B15 logró consolidar dicha senescencia. También, el tratamiento con las citoquinas más relevantes de estos CM (IL-6, IL-8 y CCL2) indujeron la senescencia de las MSC pero sin alterar la quimioprotección de las MSC. Por otra parte, el tratamiento con IL-6 potenció la autorrenovación de las MSC; además, se evidenció que la inducción de senescencia con IL-6 en las MSC con mayor autorrenovación no afectó su capacidad de quimioprotección, debido a que estas células fueron más eficientes revirtiendo la senescencia. Debido a que las células SUP-B15 indujeron una mayor adipogénesis, se establecieron y evaluaron LN con adipocitos (AD) derivados de MSC. El CM del LN con AD de SUP-B15 expresó más citoquinas proinflamatorias (IL-6, CCL2, MIF y G-CSF) que el LN de REH con AD. De forma interesante, los AD y sus CM protegieron mejor que las MSC a las células SUP-B15, pero no a las REH del efecto citotóxico de los fármacos. Además, los AD también modularon diferencialmente la adhesión y la proliferación, SUP-B15 siendo más adherente y entrando en quiescencia, cambios favorables para la quimioresistencia. En conclusión, la mayor agresividad de las células SUP-B15 se explica de forma multifactorial. Por un lado, durante su interacción con las MSC y los AD presentaron mayor adhesión y modularon de forma dinámica su proliferación y migración; por otro lado, las SUP-B15 reprogramaron a las MSC, generando un LN más adipogénico que, a su vez, favoreció su quimioresistencia contra distintos fármacos. Además, indujeron la senescencia de las MSC sin afectar su capacidad de autorrenovación y clonogenicidad; aumentaron la secreción de citoquinas proinflamatorias, las cuales incrementaron la senescencia, la quimioprotección y la autorrenovación de las MSC. (Texto tomado de la fuente)spa
dc.description.abstractBone marrow (BM) mesenchymal stem cells (MSC) are highly relevant to the development, development, and progression of B-cell acute lymphocytic leukemia (B-ALL). Interactions between MSCs and B-ALL cells establish a leukemic niche (LN) that modifies MSC stem cell properties, secretome, and gene expression, promoting proliferation and chemoresistance. B-ALL subtypes exhibit genomic alterations associated with clinical outcome, such as the ETV6-RUNX1 fusion (t(12;21), favorable prognosis) or BCR-ABL1 fusion (t(9;22), poor prognosis). However, it is unknown whether these genetic abnormalities differentially induce MSC reprogramming and function. In the present work, we demonstrated how two genetically distinct B-ALL cell lines, REH (t(12;21)) and SUP-B15 (t(9;22)), which are also associated with favorable and adverse prognoses, respectively, modulate their proliferation, adhesion, and migration capacities during their interaction with MSC and, in addition, differentially alter the secretome and stem properties of MSC during their interaction. It is notable that SUP-B15 cells had higher and faster adhesion to MSC, lower proliferation, and higher migration toward CXCL12 than REH cells. Furthermore, the conditioned medium (CM) of SUP-B15 LN was found to be more enriched in proinflammatory cytokines (particularly IL-6, IL-8, and CCL2) than that of REH LN. SUP-B15 cells induced greater adipogenesis in MSC and better preserved their self-renewal and clonogenicity capacity, in contrast to MSC from REH LN. It was observed that the interaction of both SUP-B15 and REH with MSC induced a significant increase in cellular senescence in the latter. Additionally, we studied the impact of the aforementioned alterations in the MSC’s secretome and stem functions on the properties of leukemic cells, as well as the modulation of their chemoresistance to different drugs. MSC significantly protected SUP-B15 and REH cells against three drug treatments. CM from SUP-B15 and REH LN induced cellular senescence in MSC, but only the CM from SUP-B15 LN managed to consolidate said senescence. Furthermore, treatment with the most relevant cytokines of these CM (IL-6, IL-8, and CCL2) induced MSC senescence without altering MSC chemoprotection. Treatment with IL-6 enhanced MSC self-renewal; furthermore, it was shown that inducing senescence with IL-6 in MSC with greater self-renewal did not affect their chemoprotection capacity, because these cells were more efficient in reversing senescence. Furthermore, since SUP-B15 cells induced greater adipogenesis, LN with MSC-derived adipocytes (AD) were established, and their secretome, their ability to modulate the properties of B-ALL cells, and their ability to protect them against the cytotoxic effect of different drugs were evaluated. The CM of SUP-B15 LN with AD also expressed more proinflammatory cytokines (IL-6, CCL2, MIF, and G-CSF) than the LNs of REH with AD. Interestingly, AD and their CMs protected SUP-B15 cells, but not REH cells, better than MSC from the drugs’ cytotoxic effects. Furthermore, AD also differentially modulated the proliferation and adhesion of the cell lines, causing SUP-B15 to increase its adhesion and enter a process of cellular quiescence beneficial to its chemoresistance. In conclusion, the greater aggressiveness of SUP-B15 cells was explained by several factors. On one hand, during their interaction with MSC and AD, they exhibited greater adhesion and dynamically modulated their proliferation and migration. On the other hand, they reprogrammed the MSC, generating a more adipogenic LN, which, in turn, favored their chemoresistance against various drugs. Furthermore, they induced MSC senescence without affecting their self-renewal and clonogenicity; they increased the secretion of proinflammatory cytokines, which enhanced MSC senescence, chemoprotection, and self-renewal.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Inmunología
dc.format.extentxix, 113 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89367
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Medicina - Maestría en Inmunología
dc.relation.referencesAcosta, J. C., A. Banito, T. Wuestefeld, A. Georgilis, P. Janich, J. P. Morton, D. Athineos, et al. (2013). A Complex Secretory Program Orchestrated by the Inflammasome Controls Paracrine Senescence. Nature Cell Biology 15(8): 978–90. https://doi.org/10.1038/ncb2784.
dc.relation.referencesAldoss, I., Capelletti, M., Park, J., Pistofidis, R. S., Pillai, R., Stiller, T., Sanchez, J. F., Forman, S. J., Ghobrial, I. M., & Krishnan, A. (2019). Acute lymphoblastic leukemia as a clonally unrelated second primary malignancy after multiple myeloma. Leukemia, 33(1), 266–270. https://doi.org/10.1038/s41375-018-0213-y
dc.relation.referencesAllan, E., Sison, R., Magoon, D., Li, L., Annesley, C. E., Rau, R. E., Small, D., & Brown, P. (2014). Plerixafor as a chemosensitizing agent in pediatric acute lymphoblastic leukemia: efficacy and potential mechanisms of resistance to CXCR4 inhibition. Oncotarget, 5(19), 8947–8958. https://doi.org/https://doi.org/10.18632/oncotarget.2407
dc.relation.referencesAnderson, N. M., & Simon, M. C. (2020). The tumor microenvironment. Curr Biol, 30, 905– 931. https://doi.org/https://doi.org/10.1016/j.cub.2020.06.081
dc.relation.referencesAndré, T., N. Meuleman, B. Stamatopoulos, C. De Bruyn, K. Pieters, D. Bron, and L. Lagneaux. (2013). Evidences of Early Senescence in Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells. PloS One 8(3): e59756. https://doi.org/10.1371/journal.pone.0059756
dc.relation.referencesAstudillo, P., Ríos, S., Pastenes, L., Pino, A. M., & Rodríguez, J. P. (2008). Increased adipogenesis of osteoporotic human‐mesenchymal stem cells (MSCs) characterizes by impaired leptin action. Journal of cellular biochemistry, 103(4), 1054-1065.
dc.relation.referencesAtashi, F., Modarressi, A., & Pepper, M. S. (2015). The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem cells and development, 24(10), 1150-1163.
dc.relation.referencesAzadniv, M., Myers, J. R., McMurray, H. R., Guo, N., Rock, P., Coppage, M. L., & Liesveld, J. L. (2020). Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support. Leukemia, 34(2), 391-403. https://doi.org/10.1038/s41375-019-0568-8
dc.relation.referencesAzevedo, P. L., Oliveira, N. C. A., Corrêa, S., Castelo-Branco, M. T. L., Abdelhay, E., & Binato, R. (2019). Canonical WNT Signaling Pathway is Altered in Mesenchymal Stromal Cells From Acute Myeloid Leukemia Patients And Is Implicated in BMP4 Down-Regulation. Transl Oncol, 12(4), 614–625. https://doi.org/10.1016/j.tranon.2019.01.003
dc.relation.referencesBailey, L. C., B. J. Lange, S. R. Rheingold, and N. J. Bunin. (2008). Bone marrow Relapse in Paediatric Acute Lymphoblastic Leukaemia. The Lancet Oncology 9: 873–83. https://doi.org/10.1016/s1470‐2045(08)70229‐8.
dc.relation.referencesBateman, M. E., Strong, A. L., McLachlan, J. A., Burow, M. E., & Bunnell, B. A. (2017). The effects of endocrine disruptors on adipogenesis and osteogenesis in mesenchymal stem cells: a review. Frontiers in endocrinology, 7, 171.
dc.relation.referencesBatsali, A. K., Kastrinaki, M. C., Papadaki, H. A., & Pontikoglou, C. (2013). Mesenchymal stem cells derived from Wharton’s jelly of the umbilical cord: Biological properties and emerging clinical applications. Current Stem Cell Research & Therapy, 8(2), 144–155. https://doi.org/10.2174/1574888X11308020005
dc.relation.referencesBehan, J. W., Yun, J. P., Proektor, M. P., Ehsanipour, E. A., Arutyunyan, A., Moses, A. S., & Mittelman, S. D. (2009). Adipocytes impair leukemia treatment in mice. Cancer research, 69(19), 7867-7874. https://doi.org/10.1158/0008-5472.CAN-09-0800
dc.relation.referencesBharti, R., Dey, G., & Mandal, M. (2016). Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: A snapshot of IL-6 mediated involvement. Cancer letters, 375(1), 51-61. https://doi.org/10.1016/j.canlet.2016.02.048
dc.relation.referencesBharti, D., Shivakumar, S. B., Park, J. K., Ullah, I., Subbarao, R. B., Park, J. S., & Rho, G. J. (2018). Comparative analysis of human Wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell and tissue research, 372(1), 51-65. https://doi.org/10.1007/s00441-017-2699-4
dc.relation.referencesBhojwani, D., & Pui, C.-H. (2013). Relapsed childhood acute lymphoblastic leukaemia. The Lancet Oncology, 14(6), e205– e217. https:// doi. org/ 10. 1016/ S1470- 2045(12) 70580-6
dc.relation.referencesBerlier, J. L., Rethnam, M., Banu Binte Abdul Majeed, A. Q., & Suda, T. (2019). Modification of the bone marrow MSC population in a xenograft model of early multiple myeloma. Biochem Biophys Res Commun, 508(4), 1175–1181. https://doi.org/10.1016/j.bbrc.2018.11.178
dc.relation.referencesBernt, K. M., & Hunger, S. P. (2014). Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol, 4(54). https://doi.org/10.3389/fonc.2014.00054
dc.relation.referencesBhojwani, D., & Pui, C. H. (2013). Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol, 14(6), 205–217. https://doi.org/10.1016/S1470-2045(12)70580-6
dc.relation.referencesBoyerinas, B., Zafrir, M., Yesilkanal, A. E., Price, T. T., Hyjek,E. M., & Sipkins, D. A. (2013). Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood, 121(24), 4821–4831. https:// doi. org/ 10. 1182/blood- 2012- 12- 475483
dc.relation.referencesBonilla, X., Vanegas, N. D. P., & Vernot, J. P. (2019). Acute leukemia induces senescence and impaired osteogenic differentiation in mesenchymal stem cells endowing leukemic cells with functional advantages. Stem Cells Int, 2019, 16. https://doi.org/10.1155/2019/3864948
dc.relation.referencesBray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6), 394–424. https://doi.org/10.3322/caac.21492
dc.relation.referencesCahu, X., Calvo, J., Poglio, S., Prade, N., Colsch, B., Arcangeli, M. L., ... & Pflumio, F. (2017). Bone marrow sites differently imprint dormancy and chemoresistance to T-cell acute lymphoblastic leukemia. Blood advances, 1(20), 1760-1772. https://doi.org/10.1182/bloodadvances.2017004960
dc.relation.referencesCampisi, J., & d'Adda di Fagagna, F. (2007). Cellular senescence: when bad things happen to good cells. Nature reviews Molecular cell biology, 8(9), 729-740. https://doi.org/10.1038/nrm2233
dc.relation.referencesCampisi, J. (2013). Aging, Cellular Senescence, and Cancer. Annual Review of Physiology 75(1): 685–705. https://doi.org/10.1146/annurev‐physiol‐030212‐183653.
dc.relation.referencesChen, Y.-L., Tang, C., Zhang, M.-Y., Huang, W.-L., Xu, Y., Sun, H.-Y., et al. (2019). Blocking ATM-dependent NF-κB pathway overcomes niche protection and improves chemotherapy response in acute lymphoblastic leukemia. Leukemia, 33(10), 2365–2378. https:// doi. org/ 10. 1038/ s41375- 019- 0458-0
dc.relation.referencesChiarini, F., Lonetti, A., Evangelisti, C., Buontempo, F., Orsini, E., Evangelisti, C., Cappellini, A., Neri, L. M., McCubrey, J. A., & Martelli, A. M. (2016). Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim Biophys Acta Mol Cell Res, 1863(3), 449–463. https://doi.org/10.1016/j.bbamcr.2015.08.015
dc.relation.referencesChoi, J., Cha, Y. J., & Koo, J. S. (2018). Adipocyte biology in breast cancer: From silent bystander to active facilitator. Progress in lipid research, 69, 11-20.
dc.relation.referencesChoo, A. B. H., Tan, H. L., Ang, S. N., Fong, W. J., Chin, A., Looi, L. S., & Yap, M. (2014). Immortalized mesenchymal stem cell lines: an invaluable tool for MSC biology. Stem Cell Research, 12(3), 387–398. https://doi.org/10.1016/j.scr.2013.12.001
dc.relation.referencesCivini, S., Jin, P., Ren, J., Sabatino, M., Castiello, L., Jin, J., Wang, H., Zhao, Y., Marincola, F., & Stroncek, D. (2013). Leukemia cells induce changes in human bone marrow stromal cells. J Transl Med , 11, 298. https://doi.org/https://doi.org/10.1186/1479-5876-11-298
dc.relation.referencesDander, E., Fallati, A., Gulić, T., Pagni, F., Gaspari, S., Silvestri, D., Cricrì, G., Bedini, G., Portale, F., Buracchi, C., Starace, R., Pasqualini, F., D’Angiò, M., Brizzolara, L., Maglia, O., Mantovani, A., Garlanda, C., Valsecchi, M. G., Locatelli, F., ... D’Amico, G. (2021). Monocyte–macrophage polarization and recruitment pathways in the tumour microenvironment of B-cell acute lymphoblastic leukaemia. Br J Haematol, 193(6), 1157– 1171. https://doi.org/10.1111/bjh.17330
dc.relation.referencesDe Vasconcellos, J.F.; Laranjeira, A.B.A.; Zanchin, N.I.T.; Otubo, R.; Vaz, T.H.; Cardoso, A.A.; Brandalise, S.R.; Yunes, J.A. (2011) Increased CCL2 and IL-8 in the bone marrow microenvironment in acute lymphoblastic leukemia. Pediatr. Blood Cancer, 56, 568–577. https://doi.org/10.1002/pbc.22941
dc.relation.referencesDehghan-Nayeri, N., Rezaei-Tavirani, M., Omrani, M. D., Gharehbaghian, A., Goudarzi Pour, K., & Eshghi, P. (2017). Identification of potential predictive markers of dexamethasone resistance in childhood acute lymphoblastic leukemia. J. Cell Commun. Signal, 11(2), 137– 145. https://doi.org/10.1007/s12079-016-0357-3
dc.relation.referencesDominici, M. L. B. K., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., ... & Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317
dc.relation.referencesDuan, C. W., Shi, J., Chen, J., Wang, B., Yu, Y. H., Qin, X., Zhou, X. C., Cai, Y. J., Li, Z. Q., Zhang, F., Yin, M. Z., Tao, Y., Mi, J. Q., Li, L. H., Enver, T., Chen, G. Q., & Hong, D. L. (2014). Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell, 25(6), 778–793. https://doi.org/10.1016/j.ccr.2014.04.015
dc.relation.referencesEhsanipour, E. A., Sheng, X., Behan, J. W., Wang, X., Butturini, A., Avramis, V. I., & Mittelman, S. D. (2013). Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine. Cancer research, 73(10), 2998-3006.
dc.relation.referencesEnciso, J., Mayani, H., Mendoza, L., & Pelayo, R. (2016). Modeling the pro-inflammatory tumor microenvironment in acute lymphoblastic leukemia predicts a breakdown of hematopoietic-mesenchymal communication networks. Front Physiol, 7(349). https://doi.org/10.3389/fphys.2016.00349
dc.relation.referencesFaget, D. V., Ren, Q., & Stewart, S. A. (2019). Unmasking senescence: context-dependent effects of SASP in cancer. Nature Reviews Cancer, 19(8), 439-453. https://doi.org/10.1038/s41568-019-0156-2
dc.relation.referencesFallati, A., Di Marzo, N., D’Amico, G., & Dander, E. (2022). Mesenchymal Stromal Cells (MSCs): An Ally of B-Cell Acute Lymphoblastic Leukemia (B-ALL) Cells in Disease Maintenance and Progression within the Bone Marrow Hematopoietic Niche. Cancers, 14(14), 3303. https://doi.org/10.3390/cancers14143303
dc.relation.referencesForte, D., Krause, D. S., Andreeff, M., Bonnet, D., & Méndez-Ferrer, S. (2019). Updates on the hematologic tumor microenvironment and its therapeutic targeting. Haematologica, 104(10), 1928–1934. https://doi.org/10.3324/haematol.2018.195396
dc.relation.referencesGazdar, A. F., Gao, B., & Minna, J. D. (2010). Lung cancer cell lines: Useless artifacts or invaluable tools for medical science? Lung Cancer, 68(3), 309–318. https://doi.org/10.1016/j.lungcan.2009.12.005
dc.relation.referencesGillet, J. P., Varma, S., & Gottesman, M. M. (2013). The clinical relevance of cancer cell lines. J Natl Cancer Inst, 105(7), 452–458. https://doi.org/10.1093/jnci/djt007
dc.relation.referencesGiordano, P.; Molinari, A.C.; del Vecchio, G.C.; Saracco, P.; Russo, G.; Altomare, M.; Perutelli, P.;Crescenzio, N.; Santoro, N.; Marchetti, M.; et al. Prospective study of hemostatic alterations in children with acute lymphoblastic leukemia. Am. J. Hematol. 2010, 85, 325–330. https://doi.org/10.1002/ajh.21665
dc.relation.referencesHass, R., & Otte, A. (2012). Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Commun Signal, 10(26). https://doi.org/10.1186/1478-811X-10-26
dc.relation.referencesHao, H., Chen, G., Liu, J., Ti, D., Zhao, Y., Xu, S., ... & Fu, X. (2013). Culturing on Wharton’s jelly extract delays mesenchymal stem cell senescence through p53 and p16INK4a/pRb pathways. PLoS ONE, 8(3), e58314. https://doi.org/10.1371/journal.pone.0058314
dc.relation.referencesHao, Q., Vadgama, J. v., & Wang, P. (2020). CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signal, 18(82). https://doi.org/10.1186/s12964-020-00589-8
dc.relation.referencesHarris, N. L., Jaffe, E. S., Diebold, J., Flandrin, G., Konrad Muller-Hermelink, H., Vardiman, J., Lister, T. A., & Bloomfield, C. D. (2000). The World Health Organization Classification of Hematological Malignancies Report of the Clinical Advisory Committee Meeting. Mod Pathol, 13(2), 193–207
dc.relation.referencesHeydt, Q., Xintaropoulou, C., Clear, A., Austin, M., Pislariu, I., Miraki-Moud, F., et al. (2021). Adipocytes disrupt the translational programme of acute lymphoblastic leukaemia to favour tumour survival and persistence. Nature Communications, 12(1), 5507. https:// doi. org/ 10. 1038/ s41467- 021- 25540-4
dc.relation.referencesHiraga, T., Ito, S., & Mizoguchi, T. (2021). Opposing effects of granulocyte colony-stimulating factor on the initiation and progression of breast cancer bone metastases. Molecular Cancer Research, 19(12), 2110-2119. https://doi.org/10.1158/1541-7786.MCR-21-0243
dc.relation.referencesHong, Z., Wei, Z., Xie, T., Fu, L., Sun, J., Zhou, F., Jamal, M., Zhang, Q., & Shao, L. (2021). Targeting chemokines for acute lymphoblastic leukemia therapy. J Hematol Oncol , 14(48). https://doi.org/10.1186/s13045-021-01060-y
dc.relation.referencesHomann, L., Rentschler, M., Brenner, E., Böhm, K., Röcken, M., & Wieder, T. (2022). IFN-γ and TNF induce senescence and a distinct senescence-associated secretory phenotype in melanoma. Cells, 11(9), 1514. https://doi.org/10.3390/cancers14061364
dc.relation.referencesHsieh, Y.-T., Gang, E. J., Geng, H., Park, E., Huantes, S., Chudziak, D., et al. (2013). Integrin alpha4 blockade sensitizes drug resistant pre-B acute lymphoblastic leukemia to chemotherapy. Blood, 121(10), 1814–1818. https:// doi. org/ 10. 1182/ blood- 2012- 01- 406272
dc.relation.referencesHughes, A. M., V. Kuek, R. S. Kotecha, and L. C. Cheung. (2022). The Bone Marrow Microenvironment in B‐Cell Development and Malignancy.” Cancers 14(9): 2089. https://doi.org/10.3390/cancers14092089
dc.relation.referencesHughes, A. M., Kuek, V., Oommen, J., Chua, G. A., van Loenhout, M., Malinge, S., & Cheung, L. C. (2023). Characterization of mesenchymal stem cells in pre-B acute lymphoblastic leukemia. Frontiers in cell and developmental biology, 11, 1005494. https://doi.org/10.3389/fcell.2023.1005494
dc.relation.referencesHunger, S. P., & Mullighan, C. G. (2015). Review Series ACUTE LYMPHOBLASTIC LEUKEMIA Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood, 125(26), 3977–3987. https://doi.org/10.1182/blood-2015-02
dc.relation.referencesInaba, H., Greaves, M., & Mullighan, C. G. (2013). Acute lymphoblastic leukaemia. Lancet, 381(9881), 1943–1955. https://doi.org/10.1016/S0140-6736(12)62187-4
dc.relation.referencesInaba, H., & Pui, C. H. (2021). Advances in the diagnosis and treatment of pediatric acute lymphoblastic leukemia. J. Clin. Med, 10(9), 1926. https://doi.org/10.3390/jcm10091926
dc.relation.referencesJacamo, R., Chen, Y., Wang, Z., Ma, W., Zhang, M., Spaeth, E. L., et al. (2014). Reciprocal leukemia-stroma VCAM-1/ VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood, 123(17), 2691–2702. https:// doi. org/ 10. 1182/blood- 2013- 06- 511527
dc.relation.referencesJin, H. J., Bae, Y. K., Kim, M., Kwon, S. J., Jeon, H. B., Choi, S. J.,x & Kim, S. W. (2013). Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. International Journal of Molecular Sciences, 14(9), 17986–18001. https://doi.org/10.3390/ijms140917986
dc.relation.referencesKarantanou, C., Godavarthy, P. S., & Krause, D. S. (2018). Targeting the bone marrow microenvironment in acute leukemia. Leuk Lymphoma, 59(11), 2535–2545. https://doi.org/10.1080/10428194.2018.1434886
dc.relation.referencesKerr, M. W. A., Magalhães-Gama, F., Ibiapina, H. N. S., Hanna, F. S. A., Xabregas, L. A., Alves, E. B., & Malheiro, A. (2021). Bone marrow soluble immunological mediators as clinical prognosis biomarkers in B-cell acute lymphoblastic leukemia patients undergoing induction therapy. Frontiers in Oncology, 11, 696032
dc.relation.referencesKfoury, Y., & Scadden, D. T. (2015). Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell, 16(3), 239–253. https://doi.org/10.1016/j.stem.2015.02.019
dc.relation.referencesKim, J., Denu, R. A., Dollar, B. A., Escalante, L. E., Kuether, J. P., Callander, N. S., Asimakopoulos, F., & Hematti, P. (2012). Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells. Br J Haematol, 158(3), 336– 346. https://doi.org/10.1111/j.1365-2141.2012.09154.x
dc.relation.referencesKim, J.‐A., J.‐S. Shim, G.‐Y. Lee, H. W. Yim, T.‐M. Kim, M. Kim, S.‐H. Leem, J.‐W. Lee, C.‐K. Min, and I.‐H. Oh. (2015). Microenvironmental Remodeling as a Parameter and Prognostic Factor of Heterogeneous Leukemogenesis in Acute Myelogenous Leukemia.” Cancer Research 75(11): 2222–31. https://doi.org/10.1158/0008‐5472.can‐14‐3379
dc.relation.referencesKolonin, M. G., & DiGiovanni, J. (2019). The role of adipose stroma in prostate cancer aggressiveness. Translational Andrology and Urology, 8(3), 348. 10.21037/tau.2019.04.07
dc.relation.referencesKonopleva, M. Y., & Jordan, C. T. (2011). Leukemia stem cells and microenvironment: Biology and therapeutic targeting. J Clin Oncol, 29(5), 591–599. https://doi.org/10.1200/JCO.2010.31.0904
dc.relation.referencesKumagai, M., A. Manabe, C. H. Pui, F. G. Behm, S. C. Raimondi, M. L. Hancock, H. Mahmoud, W. M. Crist, and D. Campana. (1996). Stroma‐supported Culture in Childhood B‐Lineage Acute Lymphoblastic Leukemia Cells Predicts Treatment Outcome. Journal of Clinical Investigation 97(3): 755–60. https://doi.org/10.1172/jci118474
dc.relation.referencesKumar, A., Anand, T., Bhattacharyya, J., Sharma, A., & Jaganathan, B. G. (2018). K562 chronic myeloid leukemia cells modify osteogenic differentiation and gene expression of bone marrow stromal cells. J Cell Commun Signal, 12(2), 441–450. https://doi.org/10.1007/s12079-017-0412-8
dc.relation.referencesKüppers, R. (2005). Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer, 5(4), 251–262. https://doi.org/10.1038/nrc1589
dc.relation.referencesLee, M. W., Ryu, S., Kim, D. S., Lee, J. W., Sung, K. W., Koo, H. H., & Yoo, K. H. (2019). Mesenchymal stem cells in suppression or progression of hematologic malignancy: current status and challenges. Leukemia, 33(3), 597–611. https://doi.org/10.1038/s41375-018-0373-9
dc.relation.referencesLi, J.-H., Fan, W.-S., Wang, M.-M., Wang, Y.-H., & Ren, Z.-G.(2018). Effects of mesenchymal stem cells on solid tumor metastasis in experimental cancer models: A systematic review and meta-analysis. Journal of Translational Medicine, 16(1), 113. https:// doi. org/ 10. 1186/ s12967- 018- 1484-9
dc.relation.referencesLim, M., Pang, Y., Ma, S., Hao, S., Shi, H., Zheng, Y., Hua, C., Gu, X., Yang, F., Yuan, W., & Cheng, T. (2016). Altered mesenchymal niche cells impede generation of normal hematopoietic progenitor cells in leukemic bone marrow. Leukemia, 30(1), 154–162. https://doi.org/10.1038/leu.2015.210
dc.relation.referencesLinares Ballesteros, A., Yunis, L. K., García, J., Aponte, N., Flechas, J., Martinez, C., Uribe, G., Quintero, E., Díaz, A., Pardo, C., Sarmiento, I. C., Contreras, A., & Yunis, J. J. (2022). Philadelphia-like acute lymphoblastic leukemia: Characterization in a pediatric cohort in a referral center in Colombia. Cancer Reports, 5(5), 1587. https://doi.org/10.1002/cnr2.1587
dc.relation.referencesLill, C. B., Fitter, S., Zannettino, A. C., Vandyke, K., & Noll, J. E. (2024). Molecular and cellular mechanisms of chemoresistance in paediatric pre–B cell acute lymphoblastic leukaemia. Cancer and Metastasis Reviews, 43(4), 1385-1399
dc.relation.referencesLutz, C., Woll, P. S., Hall, G., Castor, A., Dreau, H., Cazzaniga, G., & Enver, T. (2013). Quiescent leukaemic cells account for minimal residual disease in childhood lymphoblastic leukaemia. Leukemia, 27(5), 1204-1207. https://doi.org/10.1038/leu.2012.306
dc.relation.referencesLutzny, G., Kocher, T., Schmidt-Supprian, M., Rudelius, M., Klein-Hitpass, L., Finch, A. J., Dürig, J., Wagner, M., Haferlach, C., Kohlmann, A., Schnittger, S., Seifert, M., Wanninger, S., Zaborsky, N., Oostendorp, R., Ruland, J., Leitges, M., Kuhnt, T., Schäfer, Y., Ringshausen, I. (2013). Protein Kinase C-β-Dependent Activation of NF-κB in Stromal Cells Is Indispensable for the Survival of Chronic Lymphocytic Leukemia B Cells In Vivo. Cancer Cell, 23(1), 77–92. https://doi.org/10.1016/j.ccr.2012.12.003
dc.relation.referencesde Lourdes Perim, A., Amarante, M. K., Guembarovski, R. L., de Oliveira, C. E. C., & Watanabe, M. A. E. (2015). CXCL12/CXCR4 axis in the pathogenesis of acute lymphoblastic leukemia (ALL): a possible therapeutic target. Cellular and Molecular Life Sciences, 72(9), 1715-1723
dc.relation.referencesMa, C., Witkowski, M. T., Harris, J., Dolgalev, I., Sreeram, S., Qian, W., Tong, J., Chen, X., Aifantis, I., & Chen, W. (2020). Leukemia-on-a-chip: Dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche. Sci.Adv, 6(44). https://doi.org/10.1126/sciadv.aba5536
dc.relation.referencesMa, Z., Zhao, X., Deng, M., Huang, Z., Wang, J., Wu, Y., Cui, D., Liu, Y., Liu, R., & Ouyang, G. (2019). Bone Marrow Mesenchymal Stromal Cell-Derived Periostin Promotes B-ALL Progression by Modulating CCL2 in Leukemia Cells. Cell Rep, 26(6), 1533-1543.e4. https://doi.org/10.1016/j.celrep.2019.01.034
dc.relation.referencesMacanas-Pirard, P., Quezada, T., Navarrete, L., Broekhuizen, R., Leisewitz, A., Nervi, B., & Ramírez, P. A. (2017). The CCL2/CCR2 axis affects transmigration and proliferation but not resistance to chemotherapy of acute myeloid leukemia cells. PLoS ONE, 12(1). https://doi.org/10.1371/journal.pone.0168888
dc.relation.referencesManagò, S., Valente, C., Mirabelli, P., Circolo, D., Basile, F., Corda, D., & de Luca, A. C. (2016). A reliable Raman-spectroscopy-based approach for diagnosis, classification and follow-up of B-cell acute lymphoblastic leukemia. Sci Rep, 6, 24821. https://doi.org/10.1038/srep24821
dc.relation.referencesMalard, F., & Mohty, M. (2020). Acute lymphoblastic leukaemia. Lancet, 395(10230), 1146– 1162. https://doi.org/10.1016/S0140-6736(19)33018-1
dc.relation.referencesMalouf, C., and K. Ottersbach. (2018). Molecular Processes Involved in B Cell Acute Lymphoblastic Leukaemia. Cellular and Molecular Life Sciences 75(3): 417–46. https://doi.org/10.1007/s00018‐017‐2620‐z
dc.relation.referencesMarino, L., Castaldi, M. A., Rosamilio, R., Ragni, E., Vitolo, R., Fulgione, C., & Selleri, C. (2019). Mesenchymal stem cells from the Wharton’s jelly of the human umbilical cord: biological properties and therapeutic potential. Int J stem cells, 12(2), 218-226. https://doi.org/10.15283/ijsc18034
dc.relation.referencesMéndez-Ferrer, S., Bonnet, D., Steensma, D. P., Hasserjian, R. P., Ghobrial, I. M., Gribben, J. G., Andreeff, M., & Krause, D. S. (2020). Bone marrow niches in haematological malignancies. Nat Rev Cancer, 20(5), 285–298. https://doi.org/10.1038/s41568-020-0245-2
dc.relation.referencesMikhael, N. L., Seif H Gendi, M. A., Hassab, H., & Megahed, E. A. (2019). Evaluation of multiplexed biomarkers in assessment of CSF infiltration in pediatric acute lymphoblastic leukemia. Int J Hematol Oncol, 8(3). https://doi.org/10.2217/ijh-2019-0008
dc.relation.referencesMontaño, A., Ordoñez, J. L., Alonso-Pérez, V., Hernández-Sánchez, J., Santos, S., González, T., Benito, R., García-Tuñón, I., & Hernández-Rivas, J. M. (2020). ETV6/RUNX1 Fusion Gene Abrogation Decreases the Oncogenicity of Tumour Cells in a Preclinical Model of Acute Lymphoblastic Leukaemia. Cells, 9(1), 215. https://doi.org/10.3390/cells9010215
dc.relation.referencesMudry, R. E., Fortney, J. E., York, T., Hall, B. M., & Gibson, L. F. (2000). Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood, 96(5), 1926–1932. https:// doi.org/ 10. 1182/ blood. V96.5. 1926
dc.relation.referencesMullighan, C. G. (2013). Genomic characterization of childhood acute lymphoblastic leukemia. Semin Hematol, 50(4), 314–324. https://doi.org/10.1053/j.seminhematol.2013.10.001
dc.relation.referencesNazari, A., Khorramdelazad, H., & Hassanshahi, G. (2017). Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. Int J Clin Oncol, 22(6), 991–1000. https://doi.org/10.1007/s10147-017-1187-x
dc.relation.referencesNair-Gupta, P., Rudnick, S. I., Luistro, L., Smith, M., McDaid, R., Li, Y., Pillarisetti, K., Joseph, J., Heidrich, B., Packman, K., Attar, R., & Gaudet, F. (2020). Blockade of VLA4 sensitizes leukemic and myeloma tumor cells to CD3 redirection in the bone marrow microenvironment. Blood Cancer J, 10(6). https://doi.org/10.1038/s41408-020-0331-4
dc.relation.referencesLecka-Czernik, B., Baroi, S., Stechschulte, L. A., & Chougule, A. S. (2018). Marrow fat—a new target to treat bone diseases?. Current Osteoporosis Reports, 16, 123-129
dc.relation.referencesOh, I. H., Jeong, S. Y., & Kim, J. A. (2019). Normal and leukemic stem cell niche interactions. Curr Opin Hematol, 26(4), 249–257. https://doi.org/10.1097/MOH.0000000000000508
dc.relation.referencesOrtiz‐Montero, P., A. Londoño‐Vallejo, and J.‐P. Vernot. (2017). Senescence‐associated IL‐6 and IL‐8 Cytokines Induce a Self‐ and Cross‐Reinforced Senescence/inflammatory Milieu Strengthening Tumorigenic Capabilities in the MCF‐7 Breast Cancer Cell Line.” Cell Communication and Signaling 15(1): 17. https://doi.org/10.1186/s12964‐017‐0172‐3
dc.relation.referencesPinho, S., & Frenette, P. S. (2019). Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol, 20(5), 303–320. https://doi.org/10.1038/s41580-019-0103-9
dc.relation.referencesPortale, F., G. Cricrì, S. Bresolin, M. Lupi, S. Gaspari, D. Silvestri, B. Russo, et al. (2019). ActivinA: A New Leukemia‐Promoting Factor Conferring Migratory Advantage to B‐Cell Precursor‐Acute Lymphoblastic Leukemic Cells.” Haematologica 104(3): 533–45.https://doi.org/10.3324/haematol.2018.188664
dc.relation.referencesRentschler, M., Braumüller, H., Briquez, P. S., & Wieder, T. (2022). Cytokine-induced senescence in the tumor microenvironment and its effects on anti-tumor immune responses. Cancers, 14(6), 1364. https://doi.org/10.3390/cancers14061364
dc.relation.referencesRuiz-Aparicio, P. F., Vanegas, N. D. P., Uribe, G. I., Ortiz-Montero, P., Cadavid-Cortés, C., Lagos, J., Flechas-Afanador, J., Linares-Ballesteros, A., & Vernot, J. P. (2020). Dual targeting of stromal cell support and leukemic cell growth by a peptidic pkc inhibitor shows effectiveness against b-all. Int J Mol Sci, 21(10), 3705. https://doi.org/10.3390/ijms21103705
dc.relation.referencesSabbah, R., Saadi, S., Shahar-Gabay, T., Gerassy, S., Yehudai-Resheff, S., & Zuckerman, T. (2023). Abnormal adipogenic signaling in the bone marrow mesenchymal stem cells contributes to supportive microenvironment for leukemia development. Cell Communication and Signaling, 21(1), 277. https://doi.org/10.1186/s12964-023-01231-z
dc.relation.referencesSansone, P., Storci, G., Tavolari, S., Guarnieri, T., Giovannini, C., Taffurelli, M., ... & Bonafè, M. (2007). IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. The Journal of clinical investigation, 117(12), 3988-4002
dc.relation.referencesScupoli, M. T., Donadelli, M., Cioffi, F., Rossi, M., Perbellini, O., Malpeli, G., Corbioli, S., Vinante, F., Krampera, M., Palmieri, M., Scarpa, A., Ariola, C., Foà, R., & Pizzolo, G. (2008). Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-κB and JNK/AP-1 pathways. Haematologica, 93(4), 524–532. https://doi.org/10.3324/haematol.12098
dc.relation.referencesSevere, N., Karabacak, N. M., Gustafsson, K., Baryawno, N., Courties, G., Kfoury, Y., Kokkaliaris, K. D., Rhee, C., Lee, D., Scadden, E. W., Garcia-Robledo, J. E., Brouse, T., Nahrendorf, M., Toner, M., & Scadden, D. T. (2019). Stress-Induced Changes in Bone Marrow Stromal Cell Populations Revealed through Single-Cell Protein Expression Mapping. Cell Stem Cell, 25(4), 570-583.e7. https://doi.org/10.1016/j.stem.2019.06.003
dc.relation.referencesSchultz, K. R., Pullen, D. J., Sather, H. N., Shuster, J. J., Devidas, M., Borowitz, M. J., Carroll, A. J., Heerema, N. A., Rubnitz, J. E., Loh, M. L., Raetz, E. A., Winick, N. J., Hunger, S. P., Carroll, W. L., Gaynon, P. S., & Camitta, B. M. (2007). Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: A combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood, 109(3), 926–935. https://doi.org/10.1182/blood-2006-01-024729
dc.relation.referencesSheng, X., Tucci, J., Parmentier, J. H., Ji, L., Behan, J. W., Heisterkamp, N., et al. (2016). Adipocytes cause leukemia cell resistance to daunorubicin via oxidative stress response. Oncotarget, 7(45), 73147–73159. https:// doi. org/ 10. 18632/oncot arget. 12246
dc.relation.referencesSheng, X., Parmentier, J.-H., Tucci, J., Pei, H., Cortez-Toledo, O., Dieli-Conwright, C. M., et al. (2017). Adipocytes sequester and metabolize the chemotherapeutic daunorubicin. Molecular Cancer Research, 15(12), 1704–1713. https:// doi. org/ 10. 1158/541- 7786. Mcr- 17- 0338
dc.relation.referencesShishido, S., H. Bönig, and Y.‐M. Kim. (2014). Role of Integrin Alpha4 in Drug Resistance of Leukemia.” Frontiers in Oncology 4. https://doi.org/10.3389/fonc.2014.00099
dc.relation.referencesStarza, I. della, Chiaretti, S., de Propris, M. S., Elia, L., Cavalli, M., de Novi, L. A., Soscia, R., Messina, M., Vitale, A., Guarini, A., & Foà, R. (2019). Minimal residual disease in acute lymphoblastic leukemia: Technical and clinical advances. Front Oncol, 9, 726. https://doi.org/10.3389/fonc.2019.00726
dc.relation.referencesSun, W., Malvar, J., Sposto, R., Verma, A., Wilkes, J. J., Dennis, R., Heym, K., Laetsch, T. W., Widener, M., Rheingold, S. R., Oesterheld, J., Hijiya, N., Sulis, M. L., Huynh, V., Place, A. E., Bittencourt, H., Hutchinson, R., Messinger, Y., Chang, B., ... Whitlock, J. A. (2018). Outcome of children with multiply relapsed B-cell acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia & lymphoma study. Leukemia, 32(11), 2316– 2325. https://doi.org/10.1038/s41375-018-0094-0
dc.relation.referencesTabe, Y., and M. Konopleva. (2014). Advances in Understanding the Leukaemia Microenvironment.” British Journal of Haematology 164(6): 767–78. https://doi.org/10.1111/bjh.12725
dc.relation.referencesTakasugi, M., Yoshida, Y., Hara, E., & Ohtani, N. (2023). The role of cellular senescence and SASP in tumour microenvironment. The FEBS journal, 290(5), 1348-1361. https://doi.org/10.1111/febs.16381
dc.relation.referencesTan, Z., Kan, C., Wong, M., Sun, M., Liu, Y., Yang, F., ... & Zheng, H. (2022). Regulation of malignant myeloid leukemia by mesenchymal stem cells. Frontiers in cell and developmental biology, 10, 857045. https://doi.org/10.3389/fcell.2022.857045
dc.relation.referencesTessoulin, B., Papin, A., Gomez-Bougie, P., Bellanger, C., Amiot, M., Pellat-Deceunynck, C., & Chiron, D. (2019). BCL2-family dysregulation in B-cell malignancies: From gene expression regulation to a targeted therapy biomarker. Front Oncology, 9, 645. https://doi.org/10.3389/fonc.2018.00645
dc.relation.referencesTran, T. H., and S. P. Hunger. (2022). The Genomic Landscape ofPediatric Acute Lymphoblastic Leukemia and Precision MedicineOpportunities.” Seminars in Cancer Biology 84: 144–52. https://doi.org/10.1016/j.semcancer.2020.10.013
dc.relation.referencesTrastulla, L., Noorbakhsh, J., Vazquez, F., McFarland, J., & Iorio, F. (2022). Computational estimation of quality and clinical relevance of cancer cell lines. Mol Syst Biol, 18(7), e11017. https://doi.org/10.15252/msb.202211017
dc.relation.referencesTucci, J., Chen, T., Margulis, K., Orgel, E., Paszkiewicz, R. L., Cohen, M. D., & Mittelman, S. D. (2021). Adipocytes provide fatty acids to acute lymphoblastic leukemia cells. Frontiers in oncology, 11, 665763
dc.relation.referencesValenti, M. T., Dalle Carbonare, L., & Mottes, M. (2016). Osteogenic differentiation in healthy and pathological conditions. International journal of molecular sciences, 18(1), 41. https://doi.org/10.3390/ijms18010041
dc.relation.referencesVanegas, N. D. P., Ruiz-Aparicio, P. F., Uribe, G. I., Linares-Ballesteros, A., & Vernot, J. P. (2021). Leukemia-induced cellular senescence and stemness alterations in mesenchymal stem cells are reversible upon withdrawal of b-cell acute lymphoblastic leukemia cells. Int J Mol Sci, 22(15), 8166. https://doi.org/10.3390/ijms22158166
dc.relation.referencesVerma, D.; Zanetti, C.; Godavarthy, P.S.; Kumar, R.; Minciacchi, V.R.; Pfeiffer, J.; Metzler, M.; Lefort, S.; Maguer-Satta, V.; Nicolini, F.E.; et al. (2020). Bone marrow niche-derived extracellular matrix-degrading enzymes influence the progression of B-cell acute lymphoblastic leukemia. Leukemia. 34, 1540–1552. https://doi.org/10.1038/s41375-019-0674-7
dc.relation.referencesVernot, J. P., Bonilla, X., Rodriguez-Pardo, V., & Vanegas, N. D. P. (2017). Phenotypic and functional alterations of hematopoietic stem and progenitor cells in an in vitro leukemia- induced microenvironment. Int J Mol Sci, 18(2), 199. https://doi.org/10.3390/ijms18020199
dc.relation.referencesWang, Y., Liu, J., Jiang, Q., Deng, J., Xu, F., Chen, X., ... & Deng, H. (2017). Human adipose-derived mesenchymal stem cell-secreted CXCL1 and CXCL8 facilitate breast tumor growth by promoting angiogenesis. Stem Cells, 35(9), 2060-2070. https://doi.org/10.1002/stem.2643
dc.relation.referencesWang, B., Han, J., Elisseeff, J. H., & Demaria, M. (2024). The senescence-associated secretory phenotype and its physiological and pathological implications. Nature Reviews Molecular Cell Biology, 25, 958–978. https://doi.org/10.1038/s41580-024-00727-x
dc.relation.referencesWitkowski, M. T., Kousteni, S., & Aifantis, I. (2020). Mapping and targeting of the leukemic microenvironment. J Exp Med., 217(2). https://doi.org/10.1084/jem.20190589
dc.relation.referencesXing, C., Xu, W., Shi, Y., Zhou, B., Wu, D., Liang, B., Zhou, Y., Gao, S., & Feng, J. (2020). CD9 knockdown suppresses cell proliferation, adhesion, migration and invasion, while promoting apoptosis and the efficacy of chemotherapeutic drugs and imatinib in Ph+ALL SUP-B15 cells. Mol Med Rep, 22(4), 2791–2800. https://doi.org/10.3892/mmr.2020.11350
dc.relation.referencesXu, M., Wang, Y., Xia, R., Wei, Y., & Wei, X. (2021). Role of the CCL2-CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting. Cell Proliferation, 54(10), e13115. https://doi.org/10.1111/cpr.13115
dc.relation.referencesXu, S., Menu, E., de Becker, A., van Camp, B., Vanderkerken, K., & van Riet, I. (2012). Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell- produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells, 30(2), 266–279. https://doi.org/10.1002/stem.787
dc.relation.referencesYang, G.‐C., Y.‐H. Xu, H.‐X. Chen, and X.‐J. Wang. (2015). Acute Lymphoblastic Leukemia Cells Inhibit the Differentiation of Bone Mesenchymal Stem Cells into Osteoblasts In Vitro by Activating Notch Signaling. Stem Cells International.
dc.relation.referencesZhang, L., Zhao, Q., Cang, H., Wang, Z., Hu, X., Pan, R., Yang, Y, & Chen, Y. (2022). Acute myeloid leukemia cells educate mesenchymal stromal cells toward an adipogenic differentiation propensity with leukemia promotion capabilities. Advanced Science, 9(16), 2105811
dc.relation.referencesZelent, A., Greaves, M., & Enver, T. (2004). Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene, 23(24), 4275–4283. https://doi.org/10.1038/sj.onc.1207672
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.blaaCélulas madre mesenquimales
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.ddc610 - Medicina y salud
dc.subject.lembEnvejecimiento celularspa
dc.subject.lembCells - Agingeng
dc.subject.lembLeucemia linfoidespa
dc.subject.lembLymphocytic leukemiaeng
dc.subject.lembMédula óseaspa
dc.subject.lembBone marroweng
dc.subject.lembCitocinasspa
dc.subject.lembCytokineseng
dc.subject.proposalLLA-Bspa
dc.subject.proposalPronóstico favorable y adversospa
dc.subject.proposalMSCspa
dc.subject.proposalNicho leucémicospa
dc.subject.proposalPropiedades stemspa
dc.subject.proposalSenescenciaspa
dc.subject.proposalAdipogénesisspa
dc.subject.proposalQuimioresistenciaspa
dc.subject.proposalB-ALLeng
dc.subject.proposalFavorable and poor prognosiseng
dc.subject.proposalMSCeng
dc.subject.proposalLeukemic nicheeng
dc.subject.proposalStem propertieseng
dc.subject.proposalSenescenceeng
dc.subject.proposalAdipogenesiseng
dc.subject.proposalChemoresistanceeng
dc.titleInfluencia de las anomalías genéticas de buen y mal pronóstico en LLA-B sobre la modulación de las células stem mesenquimales en un modelo in vitro de nicho leucémicospa
dc.title.translatedInfluence of good and poor prognostic genetic abnormalities in B-ALL on the modulation of mesenchymal stem cells in an in vitro model of the leukemic nicheeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Final de Maestría.pdf
Tamaño:
31.5 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: