Péptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativas

dc.contributor.advisorGarcía Castañeda, Javier Eduardospa
dc.contributor.advisorRivera Monroy, Zuly Jennyspa
dc.contributor.authorCuero Amu, Kelin Johanaspa
dc.contributor.researchgroupSíntesis y Aplicación de Moléculas Peptídicasspa
dc.date.accessioned2024-09-02T14:38:59Z
dc.date.available2024-09-02T14:38:59Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLa alta incidencia de infecciones y el surgimiento de bacterias resistentes a los agentes antibacterianos es una amenaza a la salud pública global, la infección con bacterias como Escherichia coli, Klebsiella pneumoniae y Staphylococcus aureus meticilino-resistente (MRSA por sus siglas en inglés) ha llevado al aumento en la mortalidad, estadía intrahospitalaria de los pacientes y costos de atención en salud. Los péptidos antimicrobianos (PAMs) son potenciales fármacos antibacterianos debido a que han mostrado alta actividad antibacteriana, amplio espectro de acción y menor probabilidad de generar resistencia por parte de las bacterias. La lactoferrina bovina y su derivado, la lactoferricina bovina (LfcinB) han sido ampliamente estudiados debido a su acción antimicrobiana, anticancerígena e inmunomoduladora. El presente proyecto de investigación tuvo como objetivo sintetizar y evaluar el efecto antibacteriano de péptidos derivados de la secuencia LfcinB (20-30) RRWQWRMKKLG. Los péptidos fueron obtenidos por síntesis en fase sólida usando la estrategia Fmoc/tBu, caracterizados por RP-HPLC y ESI-Q-TOF y se evaluó la actividad antibacteriana (MIC, MBC, curvas de letalidad) con base en la guía del CLSI. Adicionalmente se evaluó la inducción de resistencia, el efecto sinérgico con antibióticos de uso común y el efecto hemolítico de los péptidos promisorios. Se evidenció que los péptidos 26[Nal]-LfcinB (20-30) (MIC=15.5 µM), 26[F]-LfcinB (20-30)2 (MIC=15 µM), 26[F]-LfcinB (20-27)2 (MIC=9.1 µM) y LfcinB (20-25)2 (MIC=11.4 µM) para E. coli ATCC 25922 y el péptido 26[Nal]-LfcinB (20-30)2 (MIC=14.5 µM) para S. aureus ATCC 29213, presentaron la mejor actividad antibacteriana, la cual fue potenciada hasta 8 veces con respecto al péptido original (LfcinB (20-30)) y se mantuvo en aislados clínicos sensibles y multidrogoresistentes de E. coli y S. aureus; el efecto antibacteriano de estos péptidos se da por mecanismos bactericidas, evidenciado en la evaluación de curvas de letalidad. Se observó un efecto sinérgico en la combinación de los péptidos 26[F]-LfcinB (20-30)2 y 26[F]-LfcinB (20-27)2 con ciprofloxacina y ceftriaxona contra E.coli, mientras que el efecto del péptido 26[Nal]-LfcinB (20-30)2 con vancomicina contra S. aureus fue antagónico. El ensayo de inducción de resistencia demostró que todos los péptidos, a excepción del 26[F]-LfcinB (20-30)2, generaron resistencia ante las cepas evaluadas, sin embargo, se evidenció que en los antibióticos de uso común la adaptación se da a mayor velocidad. Finalmente, los péptidos promisorios tuvieron un efecto hemolítico menor al 5% y un índice terapéutico >1 indicando baja toxicidad de estos. Estos resultados indican que los péptidos 26[Nal]-LfcinB (20-30), 26[F]-LfcinB (20-30)2, 26[F]- LfcinB (20-27)2, LfcinB (20-25)2 y 26[Nal]-LfcinB (20-30)2 son promisorios para el tratamiento de infecciones bacterianas por E. coli y S. aureus, sin embargo, se requiere de estudios adicionales (Texto tomado de la fuente).spa
dc.description.abstractThe high incidence of infections and the emergence of bacteria resistant to antibacterial agents is a threat to global public health, infection with bacteria such as Escherichia coli, Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) increase the mortality, hospital stay and health care costs. Antimicrobial peptides (AMPs) are potential antibacterial drugs because they have shown high antibacterial activity, a broad action spectrum and a lower probability of generating resistance by bacteria. Bovine lactoferrin and its derivate, bovine lactoferricin (LfcinB) have been widely studied due to their antimicrobial, anticancer and immunomodulatory action. The objective of this research was to synthesize and evaluate the antibacterial effect of peptides derived from the LfcinB sequence (20-30). The peptides were synthesized by the Fmoc/tBu strategy, characterized by RP-HPLC and ESI-Q-TOF and the antibacterial activity (MIC, MBC, lethality curves) was evaluated based on the CLSI guideline. In addition, the induction of resistance, the synergistic effect with commonly used antibiotics and the hemolytic effect of the promising peptides were evaluated. It was evidenced that the peptides 26[Nal]-LfcinB (20-30) (MIC=15.5 µM), 26[F]-LfcinB (20- 30)2 (MIC=15 µM), 26[F]-LfcinB (20-27)2 (MIC=9.1 µM) y LfcinB (20-25)2 (MIC=11.4 µM) for E. coli ATCC 25922 and peptide 26[Nal]-LfcinB (20-30)2 (MIC=14.5 µM) for S. aureus ATCC 29213, presented the best antibacterial activity, which was enhanced up to 8 times with respect to the original peptide and it was maintained in sensitive and multidrug-resistant clinical isolates of E. coli and S. aureus; The antibacterial effect of these peptides occurs through bactericidal mechanisms, evidenced in the evaluation of lethality curves. A synergistic effect was observed in the combination of peptides 26[F]-LfcinB (20-30)2 and 26[F]-LfcinB (20-27)2 with ciprofloxacin and ceftriaxone against E. coli, while the effect of peptide 26[Nal]-LfcinB (20-30)2 with vancomycin against S. aureus was antagonistic. The resistance induction test demonstrated that all peptides, except for 26[F]-LfcinB (20- 30)2, generated resistance to the strains evaluated; however, it was evident that in commonly used antibiotics adaptation occurs at a greater speed. Finally, the promising peptides had a hemolytic effect less than 5% and a therapeutic index >1 indicating low toxicity. These results indicate that peptides 26[Nal]-LfcinB (20-30), 26[F]-LfcinB (20-30)2, 26[F]- LfcinB (20-27)2, LfcinB (20-25)2 and 26[Nal]-LfcinB (20-30)2 are promising for the treatment of bacterial infections by E. coli and S. aureus, however, additional studies are required.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.methodsEl presente estudio tuvo como objetivo sintetizar péptidos antimicrobianos derivados de la secuencia LfcinB (20-30): 20RRWQWRMKKLG30; en dichos péptidos el residuo en la posición 26 (metionina) fue reemplazado por diferentes aminoácidos y adicionalmente para la secuencia con fenilalanina en esta posición (26[F]), se obtuvieron péptidos análogos en los que se removieron, secuencialmente, los residuos del extremo C- terminal hasta alcanzar el motivo mínimo (RRWQWR); los péptidos fueron sintetizados como monómeros y dímeros. Para las moléculas obtenidas se evaluó (i) la actividad antibacteriana, (ii) cinética antibacteriana, (iii) sinergia con antibióticos de uso común, (iv) inducción de resistencia y (v) la toxicidad contra eritrocitos humanos.spa
dc.format.extentxvi, 115 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86767
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAssoni, L., Milani, B., Carvalho, M. R., Nepomuceno, L. N., Waz, N. T., Guerra, M. E. S., Converso, T. R., & Darrieux, M. (2020). Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Frontiers in Microbiology, 11(October), 1–20. https://doi.org/10.3389/fmicb.2020.593215spa
dc.relation.referencesATCC. (2023a). Escherichia coli (Migula) Castellani and Chalmers - 25922 | ATCC. https://www.atcc.org/products/25922spa
dc.relation.referencesATCC. (2023b). Staphylococcus aureus subsp. aureus rosenbach 29213. https://www.atcc.org/products/29213spa
dc.relation.referencesBahar, A. A., & Ren, D. (2013). Antimicrobial Peptides. Pharmaceuticals 2013, Vol. 6, Pages 1543-1575, 6(12), 1543–1575. https://doi.org/10.3390/PH6121543spa
dc.relation.referencesBarragán-Cárdenas, A. C., Insuasty-Cepeda, D. S., Cárdenas-Martínez, K. J., López-Meza, J., Ochoa-Zarzosa, A., Umaña-Pérez, A., Rivera-Monroy, Z. J., & García-Castañeda, J. E. (2022). LfcinB-Derived Peptides: Specific and punctual change of an amino acid in monomeric and dimeric sequences increase selective cytotoxicity in colon cancer cell lines. Arabian Journal of Chemistry, 15(8), 103998. https://doi.org/10.1016/J.ARABJC.2022.103998spa
dc.relation.referencesBellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S., & Tomita, M. (1993). Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Medical Microbiology and Immunology, 182(2), 97–105. https://doi.org/10.1007/BF00189377spa
dc.relation.referencesBonilla, L. D. (2021). ACTIVIDAD ANTIBACTERIANA DEL PÉPTIDO LfcinB (20-25)4 CONTRA AISLADOS CLÍNICOS. Universidad Nacional de Colombia.spa
dc.relation.referencesBrand, I., & Khairalla, B. (2021). Structural changes in the model of the outer cell membrane of Gram-negative bacteria interacting with melittin: an in situ spectroelectrochemical study. Faraday Discussions, 232(0), 68–85. https://doi.org/10.1039/D0FD00039Fspa
dc.relation.referencesCastañeda Casimiro, J., Ortega Roque, J. A., Venegas Medina, A. M., Aquino Andrade, A., Serafín López, J., Estrada Parra, S., & Estrada, I. (2009). Péptidos antimicrobianos: péptidos con múltiples funciones Artemisa medigraphic en línea. Alergia, Asma e Inmunologia Pediatrica, 18(1), 16–29. www.medigraphic.comspa
dc.relation.referencesChan, D. I., Prenner, E. J., & Vogel, H. J. (2006). Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta - Biomembranes, 1758(9), 1184–1202. https://doi.org/10.1016/j.bbamem.2006.04.006spa
dc.relation.referencesChapple, D. S., Hussain, R., Joannou, C. L., Hancock, R. E. W., Odell, E., & Evans, R. W. (2004). Structure and Association of Human Lactoferrin Peptides with Escherichia coli Lipopolysaccharide. 48(6), 2190–2198. https://doi.org/10.1128/AAC.48.6.2190spa
dc.relation.referencesCheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12(1), 547–569. https://doi.org/10.1080/21505594.2021.1878688spa
dc.relation.referencesChou, T. C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews, 58(3), 621–681. https://doi.org/10.1124/pr.58.3.10spa
dc.relation.referencesChristaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88(1), 26–40. https://doi.org/10.1007/S00239-019-09914-3spa
dc.relation.referencesChristmann, J., Cao, P., Becker, J., Desiderato, C. K., Goldbeck, O., Riedel, C. U., Kohlstedt, M., & Wittmann, C. (2023). High-efficiency production of the antimicrobial peptide pediocin PA-1 in metabolically engineered Corynebacterium glutamicum using a microaerobic process at acidic pH and elevated levels of bivalent calcium ions. Microbial Cell Factories, 22(1), 1–18. https://doi.org/10.1186/s12934-023-02044-yspa
dc.relation.referencesCLSI. (2018). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clinical and Laboratory Standards Institute, 11(M07). www.clsi.org.spa
dc.relation.referencesDe Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3). https://doi.org/10.1128/CMR.00181-19/ASSET/CBA1C1D1-CF90-43DE-A9DF-32D24A4334AC/ASSETS/GRAPHIC/CMR.00181-19-F0001.JPEGspa
dc.relation.referencesDuperthuy, M. (2020). Antimicrobial peptides: Virulence and resistance modulation in gram-negative bacteria. Microorganisms, 8. https://doi.org/10.3390/microorganisms8020280spa
dc.relation.referencesFarnaud, S., & Evans, R. W. (2003). Lactoferrin - A multifunctional protein with antimicrobial properties. Molecular Immunology, 40(7), 395–405. https://doi.org/10.1016/S0161-5890(03)00152-4spa
dc.relation.referencesFleece, M. E., Pholwat, S., Mathers, A. J., & Houpt, E. R. (2018). Molecular diagnosis of antimicrobial resistance in Escherichia coli. Expert Review of Molecular Diagnostics, 18(3), 207–217. https://doi.org/10.1080/14737159.2018.1439381spa
dc.relation.referencesGao, Y., Fang, H., Fang, L., Liu, D., Liu, J., Su, M., Fang, Z., Ren, W., & Jiao, H. (2018). The Modification and Design of Antimicrobial Peptide. Curr Pharm Des, 24(8), 904–910. https://doi.org/10.2174/1381612824666180213130318spa
dc.relation.referencesGifford, J. L., Hunter, H. N., & Vogel, H. J. (2005). Lactoferricin. Cellular and Molecular Life Sciences 2005 62:22, 62(22), 2588–2598. https://doi.org/10.1007/S00018-005-5373-Zspa
dc.relation.referencesGruden, Š., & Ulrih, N. P. (2021). Diverse Mechanisms of Antimicrobial Activities of Lactoferrins, Lactoferricins, and Other Lactoferrin-Derived Peptides. International Journal of Molecular Sciences 2021, Vol. 22, Page 11264, 22(20), 11264. https://doi.org/10.3390/IJMS222011264spa
dc.relation.referencesGuo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/FCIMB.2020.00107spa
dc.relation.referencesGutman, I., Gutman, R., Sidney, J., Chihab, L., Mishto, M., Liepe, J., Chiem, A., Greenbaum, J., Yan, Z., Sette, A., Koşaloǧlu-Yalçln, Z., & Peters, B. (2022). Predicting the Success of Fmoc-Based Peptide Synthesis. ACS Omega, 7(27), 23771–23781. https://doi.org/10.1021/ACSOMEGA.2C02425/SUPPL_FILE/AO2C02425_SI_002.XLSXspa
dc.relation.referencesHao, L., Shan, Q., Wei, J., Ma, F., & Sun, P. (2019). Lactoferrin: Major Physiological Functions and Applications. Current Protein & Peptide Science, 20(2), 139–144. https://doi.org/10.2174/1389203719666180514150921spa
dc.relation.referencesHo, Y. H., Shah, P., Chen, Y. W., & Chen, C. S. (2016). Systematic analysis of intracellular-targeting antimicrobial peptides, bactenecin 7, hybrid of pleurocidin and dermaseptin, proline-arginine-rich peptide, and lactoferricin b, by using Escherichia coli proteome microarrays. Molecular and Cellular Proteomics, 15(6), 1837–1847. https://doi.org/10.1074/mcp.M115.054999spa
dc.relation.referencesHoskin, D. . (2017). Lactoferricin Antiangiogenesis Inhibitor. Encyclopedia of Cancer, 2433–2436. https://doi.org/10.1007/978-3-662-46875-3_3261spa
dc.relation.referencesHuan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in Microbiology, 11, 2559. https://doi.org/10.3389/FMICB.2020.582779/BIBTEXspa
dc.relation.referencesHuemer, M., Mairpady Shambat, S., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Reports, 21(12). https://doi.org/10.15252/EMBR.202051034spa
dc.relation.referencesHuertas Méndez, N. D. J., Vargas Casanova, Y., Gómez Chimbi, A. K., Hernández, E., Leal Castro, A. L., Melo Diaz, J. M., Rivera Monroy, Z. J., & García Castañeda, J. E. (2017). Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules (Basel, Switzerland), 22(3), 1–10. https://doi.org/10.3390/molecules22030452spa
dc.relation.referencesIACG. (2019). No time to wait: Securing the future from drug-resistant infections. World Health Organization. In World Health Organization. https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infectionsspa
dc.relation.referencesINS. (2019). INFORME DE RESULTADOS DE LA VIGILANCIA POR LABORATORIO DE RESISTENCIA ANTIMICROBIANA EN INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD.spa
dc.relation.referencesInsuasty Cepeda, D. S., Barragán Cárdenas, A. C., Ochoa Zarzosa, A., López Meza, J. E., Fierro Medina, R., García Castañeda, J. E., & Rivera Monroy, Z. J. (2020). Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. International Journal of Molecular Sciences, 21(12), 4550. https://doi.org/10.3390/IJMS21124550spa
dc.relation.referencesInsuasty, D. (2022). Implementación y Optimización de la Síntesis de Péptidos Diméricos Derivados de la Secuencia LfcinB (20-30) con Potencial Actividad Anticancerígena Contra el Cáncer de Mama. Universidad Nacional de Colombia.spa
dc.relation.referencesJaradat, D. M. M. (2018). Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids, 50(1), 39–68. https://doi.org/10.1007/S00726-017-2516-0spa
dc.relation.referencesKang, J. H., Lee, M. K., Kim, K. L., & Hahm, K. S. (1996). Structure–biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. International Journal of Peptide and Protein Research, 48(4), 357–363. https://doi.org/10.1111/J.1399-3011.1996.TB00852.Xspa
dc.relation.referencesKumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules, 8(1). https://doi.org/10.3390/BIOM8010004spa
dc.relation.referencesLebreton, F., & Cattoir, V. (2019). Resistance to glycopeptide antibiotics. Bacterial Resistance to Antibiotics: From Molecules to Man, 51–80. https://doi.org/10.1002/9781119593522.ch3spa
dc.relation.referencesLei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., & Coy, D. H. (2019). The antimicrobial peptides and their potential clinical applications. 11(7), 3919–3931.spa
dc.relation.referencesLeón Calvijo, M. A., Leal Castro, A. L., Almanzar Reina, G. A., Rosas Pérez, J. E., García Castañeda, J. E., & Rivera Monroy, Z. J. (2015). Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. BioMed Research International, 2015. https://doi.org/10.1155/2015/453826spa
dc.relation.referencesLonghi, C., Conte, M. P., Bellamy, W., Seganti, L., & Valenti, P. (1994). Effect of lactoferricin B, a pepsin-generated peptide of bovine lactoferrin, on Escherichia coli HB101 (pRI203) entry into HeLa cells. Medical Microbiology and Immunology 1994 183:2, 183(2), 77–85. https://doi.org/10.1007/BF00277158spa
dc.relation.referencesLorenzon, E. N., Piccoli, J. P., Santos-Filho, N. A., & Cilli, E. M. (2019). Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity. Protein & Peptide Letters, 26(2), 98–107. https://doi.org/10.2174/0929866526666190102125304spa
dc.relation.referencesMartínez, J. L. (2019). Mechanisms of action and of resistance to quinolones. Antibiotic Drug Resistance, 39–55. https://doi.org/10.1002/9781119282549.ch2spa
dc.relation.referencesMcEwen, S. A., & Collignon, P. J. (2018). Antimicrobial Resistance: a One Health Perspective. Microbiology Spectrum, 6(2). https://doi.org/10.1128/MICROBIOLSPEC.ARBA-0009-2017spa
dc.relation.referencesMinogue, T. D., Daligault, H. A., Davenport, K. W., Bishop-Lilly, K. A., Broomall, S. M., Bruce, D. C., Chain, P. S., Chertkov, O., Coyne, S. R., Freitas, T., Frey, K. G., Gibbons, H. S., Jaissle, J., Redden, C. L., Rosenzweig, C. N., Xu, Y., & Johnson, S. L. (2014). Complete Genome Assembly of Escherichia coli ATCC 25922, a Serotype O6 Reference Strain. Genome Announcements, 2(5), 969–983. https://doi.org/10.1128/GENOMEA.00969-14spa
dc.relation.referencesMiranda García, M. C. (2013). Escherichia coli portador de betalactamasas de espectro extendido: resistencia. Sanidad Militar, 69(4), 244–248. https://doi.org/10.4321/s1887-85712013000400003spa
dc.relation.referencesMorrison, L., & Zembower, T. R. (2020). Antimicrobial Resistance. Gastrointestinal Endoscopy Clinics of North America, 30(4), 619–635. https://doi.org/10.1016/J.GIEC.2020.06.004spa
dc.relation.referencesMulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/FMICB.2019.00539spa
dc.relation.referencesNguyen, L. T., Schibli, D. J., & Vogel, H. J. (2005). Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. Journal of Peptide Science, 11(7), 379–389. https://doi.org/10.1002/psc.629spa
dc.relation.referencesOMS. (2022). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022 (Issue 8.5.2017).spa
dc.relation.referencesPaitan, Y. (2018). Current Trends in Antimicrobial Resistance of Escherichia coli. Current Topics in Microbiology and Immunology, 416, 181–211. https://doi.org/10.1007/82_2018_110spa
dc.relation.referencesPei, J., Xiong, L., Chu, M., Guo, X., & Yan, P. (2020). Effect of intramolecular disulfide bond of bovine lactoferricin on its molecular structure and antibacterial activity against Trueperella pyogenes separated from cow milk with mastitis. BMC Veterinary Research, 16(1), 1–10. https://doi.org/10.1186/s12917-020-02620-zspa
dc.relation.referencesRaheem, N., & Straus, S. K. (2019). Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Frontiers in Microbiology, 10(December), 1–14. https://doi.org/10.3389/fmicb.2019.02866spa
dc.relation.referencesRainard, P. (1986). Bacteriostatic activity of bovine milk lactoferrin against mastitic bacteria. Veterinary Microbiology, 11(4), 387–392. https://doi.org/10.1016/0378-1135(86)90068-4spa
dc.relation.referencesRodríguez, J. (2019). Evaluación de la actividad anticancerígena In Vitro de péptidos sintéticos derivados de Lactoferricina Bovina en líneas celulares de cáncer de mama [Universidad Nacional de Colombia]. In Repositorio.Unal.Edu.Co. https://repositorio.unal.edu.co/handle/unal/76436spa
dc.relation.referencesSinha, M., Kaushik, S., Kaur, P., Sharma, S., & Singh, T. P. (2013). Antimicrobial lactoferrin peptides: The hidden players in the protective function of a multifunctional protein. International Journal of Peptides, 2013. https://doi.org/10.1155/2013/390230spa
dc.relation.referencesSun, C., Li, Y., Cao, S., Wang, H., Jiang, C., Pang, S., Hussain, M. A., & Hou, J. (2018). Antibacterial Activity and Mechanism of Action of Bovine Lactoferricin Derivatives with Symmetrical Amino Acid Sequences. International Journal of Molecular Sciences 2018, Vol. 19, Page 2951, 19(10), 2951. https://doi.org/10.3390/IJMS19102951spa
dc.relation.referencesTu, Y. H., Ho, Y. H., Chuang, Y. C., Chen, P. C., & Chen, C. S. (2011). Identification of lactoferricin B intracellular targets using an escherichia coli proteome chip. PLoS ONE, 6(12). https://doi.org/10.1371/journal.pone.0028197spa
dc.relation.referencesUniversity of Nebraska Medical Center. (2023). Antimicrobial Peptide Database. https://aps.unmc.edu/spa
dc.relation.referencesVargas Casanova, Y. (2018). EVALUACIÓN DE LA ACTIVIDAD ANTIBACTERIANA DE PÉPTIDOS DIMÉRICOS Y TETRAMÉRICOS DERIVADOS DE LACTOFERRICINA BOVINA CONTRA BACTERIAS GRAM POSITIVAS Y GRAM NEGATIVAS. Universidad Nacional de Colombia.spa
dc.relation.referencesVargas Casanova, Y., Rodríguez Mayor, A. V., Cardenas, K. J., Leal Castro, A. L., Muñoz Molina, L. C., Fierro Medina, R., Rivera Monroy, Z. J., & García Castañeda, J. E. (2019). Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. The Royal Society of Chemistry Advances, 9(13), 7239–7245. https://doi.org/10.1039/C9RA00708Cspa
dc.relation.referencesVentola, C. L. (2015). The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharmacy and Therapeutics, 40(4), 277. https://doi.org/Articlespa
dc.relation.referencesWang, B., Timilsena, Y. P., Blanch, E., & Adhikari, B. (2017). Lactoferrin: Structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition, 59(4), 580–596. https://doi.org/10.1080/10408398.2017.1381583spa
dc.relation.referencesYing, J. P., Wu, G., Zhang, Y. M., & Zhang, Q. L. (2023). Proteomic analysis of Staphylococcus aureus exposed to bacteriocin XJS01 and its bio-preservative effect on raw pork loins. Meat Science, 204(February), 109258. https://doi.org/10.1016/j.meatsci.2023.109258spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsPéptidos Antimicrobianosspa
dc.subject.decsAntimicrobial Peptideseng
dc.subject.decsBacterias Grampositivasspa
dc.subject.decsGram-Positive Bacteriaeng
dc.subject.decsBacterias Gramnegativasspa
dc.subject.decsGram-Negative Bacteriaeng
dc.subject.decsInfecciones por Escherichia colispa
dc.subject.decsEscherichia coli Infectionseng
dc.subject.decsKlebsiella pneumoniaespa
dc.subject.decsStaphylococcus aureusspa
dc.subject.decsProductos con Acción Antimicrobianaspa
dc.subject.decsProducts with Antimicrobial Actioneng
dc.subject.decsInmunomodulaciónspa
dc.subject.decsImmunomodulationeng
dc.subject.proposalInducción de resistenciaspa
dc.subject.proposalSinergismospa
dc.subject.proposalE. colispa
dc.subject.proposalS. aureusspa
dc.subject.proposalLactoferricinaspa
dc.subject.proposalBactericidaspa
dc.subject.proposalLactoferricineng
dc.subject.proposalBactericideeng
dc.subject.proposalResistance inductioneng
dc.subject.proposalSynergismeng
dc.titlePéptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativasspa
dc.title.translatedPeptides derived from RRWQWRMKKLG sequence: Evaluation of antibacterial activity against Gram positive and Gram negative ATCC strainseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023955785.2024.pdf
Tamaño:
3.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: