Péptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativas
dc.contributor.advisor | García Castañeda, Javier Eduardo | spa |
dc.contributor.advisor | Rivera Monroy, Zuly Jenny | spa |
dc.contributor.author | Cuero Amu, Kelin Johana | spa |
dc.contributor.researchgroup | Síntesis y Aplicación de Moléculas Peptídicas | spa |
dc.date.accessioned | 2024-09-02T14:38:59Z | |
dc.date.available | 2024-09-02T14:38:59Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | La alta incidencia de infecciones y el surgimiento de bacterias resistentes a los agentes antibacterianos es una amenaza a la salud pública global, la infección con bacterias como Escherichia coli, Klebsiella pneumoniae y Staphylococcus aureus meticilino-resistente (MRSA por sus siglas en inglés) ha llevado al aumento en la mortalidad, estadía intrahospitalaria de los pacientes y costos de atención en salud. Los péptidos antimicrobianos (PAMs) son potenciales fármacos antibacterianos debido a que han mostrado alta actividad antibacteriana, amplio espectro de acción y menor probabilidad de generar resistencia por parte de las bacterias. La lactoferrina bovina y su derivado, la lactoferricina bovina (LfcinB) han sido ampliamente estudiados debido a su acción antimicrobiana, anticancerígena e inmunomoduladora. El presente proyecto de investigación tuvo como objetivo sintetizar y evaluar el efecto antibacteriano de péptidos derivados de la secuencia LfcinB (20-30) RRWQWRMKKLG. Los péptidos fueron obtenidos por síntesis en fase sólida usando la estrategia Fmoc/tBu, caracterizados por RP-HPLC y ESI-Q-TOF y se evaluó la actividad antibacteriana (MIC, MBC, curvas de letalidad) con base en la guía del CLSI. Adicionalmente se evaluó la inducción de resistencia, el efecto sinérgico con antibióticos de uso común y el efecto hemolítico de los péptidos promisorios. Se evidenció que los péptidos 26[Nal]-LfcinB (20-30) (MIC=15.5 µM), 26[F]-LfcinB (20-30)2 (MIC=15 µM), 26[F]-LfcinB (20-27)2 (MIC=9.1 µM) y LfcinB (20-25)2 (MIC=11.4 µM) para E. coli ATCC 25922 y el péptido 26[Nal]-LfcinB (20-30)2 (MIC=14.5 µM) para S. aureus ATCC 29213, presentaron la mejor actividad antibacteriana, la cual fue potenciada hasta 8 veces con respecto al péptido original (LfcinB (20-30)) y se mantuvo en aislados clínicos sensibles y multidrogoresistentes de E. coli y S. aureus; el efecto antibacteriano de estos péptidos se da por mecanismos bactericidas, evidenciado en la evaluación de curvas de letalidad. Se observó un efecto sinérgico en la combinación de los péptidos 26[F]-LfcinB (20-30)2 y 26[F]-LfcinB (20-27)2 con ciprofloxacina y ceftriaxona contra E.coli, mientras que el efecto del péptido 26[Nal]-LfcinB (20-30)2 con vancomicina contra S. aureus fue antagónico. El ensayo de inducción de resistencia demostró que todos los péptidos, a excepción del 26[F]-LfcinB (20-30)2, generaron resistencia ante las cepas evaluadas, sin embargo, se evidenció que en los antibióticos de uso común la adaptación se da a mayor velocidad. Finalmente, los péptidos promisorios tuvieron un efecto hemolítico menor al 5% y un índice terapéutico >1 indicando baja toxicidad de estos. Estos resultados indican que los péptidos 26[Nal]-LfcinB (20-30), 26[F]-LfcinB (20-30)2, 26[F]- LfcinB (20-27)2, LfcinB (20-25)2 y 26[Nal]-LfcinB (20-30)2 son promisorios para el tratamiento de infecciones bacterianas por E. coli y S. aureus, sin embargo, se requiere de estudios adicionales (Texto tomado de la fuente). | spa |
dc.description.abstract | The high incidence of infections and the emergence of bacteria resistant to antibacterial agents is a threat to global public health, infection with bacteria such as Escherichia coli, Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) increase the mortality, hospital stay and health care costs. Antimicrobial peptides (AMPs) are potential antibacterial drugs because they have shown high antibacterial activity, a broad action spectrum and a lower probability of generating resistance by bacteria. Bovine lactoferrin and its derivate, bovine lactoferricin (LfcinB) have been widely studied due to their antimicrobial, anticancer and immunomodulatory action. The objective of this research was to synthesize and evaluate the antibacterial effect of peptides derived from the LfcinB sequence (20-30). The peptides were synthesized by the Fmoc/tBu strategy, characterized by RP-HPLC and ESI-Q-TOF and the antibacterial activity (MIC, MBC, lethality curves) was evaluated based on the CLSI guideline. In addition, the induction of resistance, the synergistic effect with commonly used antibiotics and the hemolytic effect of the promising peptides were evaluated. It was evidenced that the peptides 26[Nal]-LfcinB (20-30) (MIC=15.5 µM), 26[F]-LfcinB (20- 30)2 (MIC=15 µM), 26[F]-LfcinB (20-27)2 (MIC=9.1 µM) y LfcinB (20-25)2 (MIC=11.4 µM) for E. coli ATCC 25922 and peptide 26[Nal]-LfcinB (20-30)2 (MIC=14.5 µM) for S. aureus ATCC 29213, presented the best antibacterial activity, which was enhanced up to 8 times with respect to the original peptide and it was maintained in sensitive and multidrug-resistant clinical isolates of E. coli and S. aureus; The antibacterial effect of these peptides occurs through bactericidal mechanisms, evidenced in the evaluation of lethality curves. A synergistic effect was observed in the combination of peptides 26[F]-LfcinB (20-30)2 and 26[F]-LfcinB (20-27)2 with ciprofloxacin and ceftriaxone against E. coli, while the effect of peptide 26[Nal]-LfcinB (20-30)2 with vancomycin against S. aureus was antagonistic. The resistance induction test demonstrated that all peptides, except for 26[F]-LfcinB (20- 30)2, generated resistance to the strains evaluated; however, it was evident that in commonly used antibiotics adaptation occurs at a greater speed. Finally, the promising peptides had a hemolytic effect less than 5% and a therapeutic index >1 indicating low toxicity. These results indicate that peptides 26[Nal]-LfcinB (20-30), 26[F]-LfcinB (20-30)2, 26[F]- LfcinB (20-27)2, LfcinB (20-25)2 and 26[Nal]-LfcinB (20-30)2 are promising for the treatment of bacterial infections by E. coli and S. aureus, however, additional studies are required. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Microbiología | spa |
dc.description.methods | El presente estudio tuvo como objetivo sintetizar péptidos antimicrobianos derivados de la secuencia LfcinB (20-30): 20RRWQWRMKKLG30; en dichos péptidos el residuo en la posición 26 (metionina) fue reemplazado por diferentes aminoácidos y adicionalmente para la secuencia con fenilalanina en esta posición (26[F]), se obtuvieron péptidos análogos en los que se removieron, secuencialmente, los residuos del extremo C- terminal hasta alcanzar el motivo mínimo (RRWQWR); los péptidos fueron sintetizados como monómeros y dímeros. Para las moléculas obtenidas se evaluó (i) la actividad antibacteriana, (ii) cinética antibacteriana, (iii) sinergia con antibióticos de uso común, (iv) inducción de resistencia y (v) la toxicidad contra eritrocitos humanos. | spa |
dc.format.extent | xvi, 115 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86767 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | spa |
dc.relation.references | Assoni, L., Milani, B., Carvalho, M. R., Nepomuceno, L. N., Waz, N. T., Guerra, M. E. S., Converso, T. R., & Darrieux, M. (2020). Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Frontiers in Microbiology, 11(October), 1–20. https://doi.org/10.3389/fmicb.2020.593215 | spa |
dc.relation.references | ATCC. (2023a). Escherichia coli (Migula) Castellani and Chalmers - 25922 | ATCC. https://www.atcc.org/products/25922 | spa |
dc.relation.references | ATCC. (2023b). Staphylococcus aureus subsp. aureus rosenbach 29213. https://www.atcc.org/products/29213 | spa |
dc.relation.references | Bahar, A. A., & Ren, D. (2013). Antimicrobial Peptides. Pharmaceuticals 2013, Vol. 6, Pages 1543-1575, 6(12), 1543–1575. https://doi.org/10.3390/PH6121543 | spa |
dc.relation.references | Barragán-Cárdenas, A. C., Insuasty-Cepeda, D. S., Cárdenas-Martínez, K. J., López-Meza, J., Ochoa-Zarzosa, A., Umaña-Pérez, A., Rivera-Monroy, Z. J., & García-Castañeda, J. E. (2022). LfcinB-Derived Peptides: Specific and punctual change of an amino acid in monomeric and dimeric sequences increase selective cytotoxicity in colon cancer cell lines. Arabian Journal of Chemistry, 15(8), 103998. https://doi.org/10.1016/J.ARABJC.2022.103998 | spa |
dc.relation.references | Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S., & Tomita, M. (1993). Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Medical Microbiology and Immunology, 182(2), 97–105. https://doi.org/10.1007/BF00189377 | spa |
dc.relation.references | Bonilla, L. D. (2021). ACTIVIDAD ANTIBACTERIANA DEL PÉPTIDO LfcinB (20-25)4 CONTRA AISLADOS CLÍNICOS. Universidad Nacional de Colombia. | spa |
dc.relation.references | Brand, I., & Khairalla, B. (2021). Structural changes in the model of the outer cell membrane of Gram-negative bacteria interacting with melittin: an in situ spectroelectrochemical study. Faraday Discussions, 232(0), 68–85. https://doi.org/10.1039/D0FD00039F | spa |
dc.relation.references | Castañeda Casimiro, J., Ortega Roque, J. A., Venegas Medina, A. M., Aquino Andrade, A., Serafín López, J., Estrada Parra, S., & Estrada, I. (2009). Péptidos antimicrobianos: péptidos con múltiples funciones Artemisa medigraphic en línea. Alergia, Asma e Inmunologia Pediatrica, 18(1), 16–29. www.medigraphic.com | spa |
dc.relation.references | Chan, D. I., Prenner, E. J., & Vogel, H. J. (2006). Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta - Biomembranes, 1758(9), 1184–1202. https://doi.org/10.1016/j.bbamem.2006.04.006 | spa |
dc.relation.references | Chapple, D. S., Hussain, R., Joannou, C. L., Hancock, R. E. W., Odell, E., & Evans, R. W. (2004). Structure and Association of Human Lactoferrin Peptides with Escherichia coli Lipopolysaccharide. 48(6), 2190–2198. https://doi.org/10.1128/AAC.48.6.2190 | spa |
dc.relation.references | Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12(1), 547–569. https://doi.org/10.1080/21505594.2021.1878688 | spa |
dc.relation.references | Chou, T. C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews, 58(3), 621–681. https://doi.org/10.1124/pr.58.3.10 | spa |
dc.relation.references | Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88(1), 26–40. https://doi.org/10.1007/S00239-019-09914-3 | spa |
dc.relation.references | Christmann, J., Cao, P., Becker, J., Desiderato, C. K., Goldbeck, O., Riedel, C. U., Kohlstedt, M., & Wittmann, C. (2023). High-efficiency production of the antimicrobial peptide pediocin PA-1 in metabolically engineered Corynebacterium glutamicum using a microaerobic process at acidic pH and elevated levels of bivalent calcium ions. Microbial Cell Factories, 22(1), 1–18. https://doi.org/10.1186/s12934-023-02044-y | spa |
dc.relation.references | CLSI. (2018). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clinical and Laboratory Standards Institute, 11(M07). www.clsi.org. | spa |
dc.relation.references | De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3). https://doi.org/10.1128/CMR.00181-19/ASSET/CBA1C1D1-CF90-43DE-A9DF-32D24A4334AC/ASSETS/GRAPHIC/CMR.00181-19-F0001.JPEG | spa |
dc.relation.references | Duperthuy, M. (2020). Antimicrobial peptides: Virulence and resistance modulation in gram-negative bacteria. Microorganisms, 8. https://doi.org/10.3390/microorganisms8020280 | spa |
dc.relation.references | Farnaud, S., & Evans, R. W. (2003). Lactoferrin - A multifunctional protein with antimicrobial properties. Molecular Immunology, 40(7), 395–405. https://doi.org/10.1016/S0161-5890(03)00152-4 | spa |
dc.relation.references | Fleece, M. E., Pholwat, S., Mathers, A. J., & Houpt, E. R. (2018). Molecular diagnosis of antimicrobial resistance in Escherichia coli. Expert Review of Molecular Diagnostics, 18(3), 207–217. https://doi.org/10.1080/14737159.2018.1439381 | spa |
dc.relation.references | Gao, Y., Fang, H., Fang, L., Liu, D., Liu, J., Su, M., Fang, Z., Ren, W., & Jiao, H. (2018). The Modification and Design of Antimicrobial Peptide. Curr Pharm Des, 24(8), 904–910. https://doi.org/10.2174/1381612824666180213130318 | spa |
dc.relation.references | Gifford, J. L., Hunter, H. N., & Vogel, H. J. (2005). Lactoferricin. Cellular and Molecular Life Sciences 2005 62:22, 62(22), 2588–2598. https://doi.org/10.1007/S00018-005-5373-Z | spa |
dc.relation.references | Gruden, Š., & Ulrih, N. P. (2021). Diverse Mechanisms of Antimicrobial Activities of Lactoferrins, Lactoferricins, and Other Lactoferrin-Derived Peptides. International Journal of Molecular Sciences 2021, Vol. 22, Page 11264, 22(20), 11264. https://doi.org/10.3390/IJMS222011264 | spa |
dc.relation.references | Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/FCIMB.2020.00107 | spa |
dc.relation.references | Gutman, I., Gutman, R., Sidney, J., Chihab, L., Mishto, M., Liepe, J., Chiem, A., Greenbaum, J., Yan, Z., Sette, A., Koşaloǧlu-Yalçln, Z., & Peters, B. (2022). Predicting the Success of Fmoc-Based Peptide Synthesis. ACS Omega, 7(27), 23771–23781. https://doi.org/10.1021/ACSOMEGA.2C02425/SUPPL_FILE/AO2C02425_SI_002.XLSX | spa |
dc.relation.references | Hao, L., Shan, Q., Wei, J., Ma, F., & Sun, P. (2019). Lactoferrin: Major Physiological Functions and Applications. Current Protein & Peptide Science, 20(2), 139–144. https://doi.org/10.2174/1389203719666180514150921 | spa |
dc.relation.references | Ho, Y. H., Shah, P., Chen, Y. W., & Chen, C. S. (2016). Systematic analysis of intracellular-targeting antimicrobial peptides, bactenecin 7, hybrid of pleurocidin and dermaseptin, proline-arginine-rich peptide, and lactoferricin b, by using Escherichia coli proteome microarrays. Molecular and Cellular Proteomics, 15(6), 1837–1847. https://doi.org/10.1074/mcp.M115.054999 | spa |
dc.relation.references | Hoskin, D. . (2017). Lactoferricin Antiangiogenesis Inhibitor. Encyclopedia of Cancer, 2433–2436. https://doi.org/10.1007/978-3-662-46875-3_3261 | spa |
dc.relation.references | Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in Microbiology, 11, 2559. https://doi.org/10.3389/FMICB.2020.582779/BIBTEX | spa |
dc.relation.references | Huemer, M., Mairpady Shambat, S., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Reports, 21(12). https://doi.org/10.15252/EMBR.202051034 | spa |
dc.relation.references | Huertas Méndez, N. D. J., Vargas Casanova, Y., Gómez Chimbi, A. K., Hernández, E., Leal Castro, A. L., Melo Diaz, J. M., Rivera Monroy, Z. J., & García Castañeda, J. E. (2017). Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules (Basel, Switzerland), 22(3), 1–10. https://doi.org/10.3390/molecules22030452 | spa |
dc.relation.references | IACG. (2019). No time to wait: Securing the future from drug-resistant infections. World Health Organization. In World Health Organization. https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infections | spa |
dc.relation.references | INS. (2019). INFORME DE RESULTADOS DE LA VIGILANCIA POR LABORATORIO DE RESISTENCIA ANTIMICROBIANA EN INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD. | spa |
dc.relation.references | Insuasty Cepeda, D. S., Barragán Cárdenas, A. C., Ochoa Zarzosa, A., López Meza, J. E., Fierro Medina, R., García Castañeda, J. E., & Rivera Monroy, Z. J. (2020). Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. International Journal of Molecular Sciences, 21(12), 4550. https://doi.org/10.3390/IJMS21124550 | spa |
dc.relation.references | Insuasty, D. (2022). Implementación y Optimización de la Síntesis de Péptidos Diméricos Derivados de la Secuencia LfcinB (20-30) con Potencial Actividad Anticancerígena Contra el Cáncer de Mama. Universidad Nacional de Colombia. | spa |
dc.relation.references | Jaradat, D. M. M. (2018). Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids, 50(1), 39–68. https://doi.org/10.1007/S00726-017-2516-0 | spa |
dc.relation.references | Kang, J. H., Lee, M. K., Kim, K. L., & Hahm, K. S. (1996). Structure–biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. International Journal of Peptide and Protein Research, 48(4), 357–363. https://doi.org/10.1111/J.1399-3011.1996.TB00852.X | spa |
dc.relation.references | Kumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules, 8(1). https://doi.org/10.3390/BIOM8010004 | spa |
dc.relation.references | Lebreton, F., & Cattoir, V. (2019). Resistance to glycopeptide antibiotics. Bacterial Resistance to Antibiotics: From Molecules to Man, 51–80. https://doi.org/10.1002/9781119593522.ch3 | spa |
dc.relation.references | Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., & Coy, D. H. (2019). The antimicrobial peptides and their potential clinical applications. 11(7), 3919–3931. | spa |
dc.relation.references | León Calvijo, M. A., Leal Castro, A. L., Almanzar Reina, G. A., Rosas Pérez, J. E., García Castañeda, J. E., & Rivera Monroy, Z. J. (2015). Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. BioMed Research International, 2015. https://doi.org/10.1155/2015/453826 | spa |
dc.relation.references | Longhi, C., Conte, M. P., Bellamy, W., Seganti, L., & Valenti, P. (1994). Effect of lactoferricin B, a pepsin-generated peptide of bovine lactoferrin, on Escherichia coli HB101 (pRI203) entry into HeLa cells. Medical Microbiology and Immunology 1994 183:2, 183(2), 77–85. https://doi.org/10.1007/BF00277158 | spa |
dc.relation.references | Lorenzon, E. N., Piccoli, J. P., Santos-Filho, N. A., & Cilli, E. M. (2019). Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity. Protein & Peptide Letters, 26(2), 98–107. https://doi.org/10.2174/0929866526666190102125304 | spa |
dc.relation.references | Martínez, J. L. (2019). Mechanisms of action and of resistance to quinolones. Antibiotic Drug Resistance, 39–55. https://doi.org/10.1002/9781119282549.ch2 | spa |
dc.relation.references | McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial Resistance: a One Health Perspective. Microbiology Spectrum, 6(2). https://doi.org/10.1128/MICROBIOLSPEC.ARBA-0009-2017 | spa |
dc.relation.references | Minogue, T. D., Daligault, H. A., Davenport, K. W., Bishop-Lilly, K. A., Broomall, S. M., Bruce, D. C., Chain, P. S., Chertkov, O., Coyne, S. R., Freitas, T., Frey, K. G., Gibbons, H. S., Jaissle, J., Redden, C. L., Rosenzweig, C. N., Xu, Y., & Johnson, S. L. (2014). Complete Genome Assembly of Escherichia coli ATCC 25922, a Serotype O6 Reference Strain. Genome Announcements, 2(5), 969–983. https://doi.org/10.1128/GENOMEA.00969-14 | spa |
dc.relation.references | Miranda García, M. C. (2013). Escherichia coli portador de betalactamasas de espectro extendido: resistencia. Sanidad Militar, 69(4), 244–248. https://doi.org/10.4321/s1887-85712013000400003 | spa |
dc.relation.references | Morrison, L., & Zembower, T. R. (2020). Antimicrobial Resistance. Gastrointestinal Endoscopy Clinics of North America, 30(4), 619–635. https://doi.org/10.1016/J.GIEC.2020.06.004 | spa |
dc.relation.references | Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/FMICB.2019.00539 | spa |
dc.relation.references | Nguyen, L. T., Schibli, D. J., & Vogel, H. J. (2005). Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. Journal of Peptide Science, 11(7), 379–389. https://doi.org/10.1002/psc.629 | spa |
dc.relation.references | OMS. (2022). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022 (Issue 8.5.2017). | spa |
dc.relation.references | Paitan, Y. (2018). Current Trends in Antimicrobial Resistance of Escherichia coli. Current Topics in Microbiology and Immunology, 416, 181–211. https://doi.org/10.1007/82_2018_110 | spa |
dc.relation.references | Pei, J., Xiong, L., Chu, M., Guo, X., & Yan, P. (2020). Effect of intramolecular disulfide bond of bovine lactoferricin on its molecular structure and antibacterial activity against Trueperella pyogenes separated from cow milk with mastitis. BMC Veterinary Research, 16(1), 1–10. https://doi.org/10.1186/s12917-020-02620-z | spa |
dc.relation.references | Raheem, N., & Straus, S. K. (2019). Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Frontiers in Microbiology, 10(December), 1–14. https://doi.org/10.3389/fmicb.2019.02866 | spa |
dc.relation.references | Rainard, P. (1986). Bacteriostatic activity of bovine milk lactoferrin against mastitic bacteria. Veterinary Microbiology, 11(4), 387–392. https://doi.org/10.1016/0378-1135(86)90068-4 | spa |
dc.relation.references | Rodríguez, J. (2019). Evaluación de la actividad anticancerígena In Vitro de péptidos sintéticos derivados de Lactoferricina Bovina en líneas celulares de cáncer de mama [Universidad Nacional de Colombia]. In Repositorio.Unal.Edu.Co. https://repositorio.unal.edu.co/handle/unal/76436 | spa |
dc.relation.references | Sinha, M., Kaushik, S., Kaur, P., Sharma, S., & Singh, T. P. (2013). Antimicrobial lactoferrin peptides: The hidden players in the protective function of a multifunctional protein. International Journal of Peptides, 2013. https://doi.org/10.1155/2013/390230 | spa |
dc.relation.references | Sun, C., Li, Y., Cao, S., Wang, H., Jiang, C., Pang, S., Hussain, M. A., & Hou, J. (2018). Antibacterial Activity and Mechanism of Action of Bovine Lactoferricin Derivatives with Symmetrical Amino Acid Sequences. International Journal of Molecular Sciences 2018, Vol. 19, Page 2951, 19(10), 2951. https://doi.org/10.3390/IJMS19102951 | spa |
dc.relation.references | Tu, Y. H., Ho, Y. H., Chuang, Y. C., Chen, P. C., & Chen, C. S. (2011). Identification of lactoferricin B intracellular targets using an escherichia coli proteome chip. PLoS ONE, 6(12). https://doi.org/10.1371/journal.pone.0028197 | spa |
dc.relation.references | University of Nebraska Medical Center. (2023). Antimicrobial Peptide Database. https://aps.unmc.edu/ | spa |
dc.relation.references | Vargas Casanova, Y. (2018). EVALUACIÓN DE LA ACTIVIDAD ANTIBACTERIANA DE PÉPTIDOS DIMÉRICOS Y TETRAMÉRICOS DERIVADOS DE LACTOFERRICINA BOVINA CONTRA BACTERIAS GRAM POSITIVAS Y GRAM NEGATIVAS. Universidad Nacional de Colombia. | spa |
dc.relation.references | Vargas Casanova, Y., Rodríguez Mayor, A. V., Cardenas, K. J., Leal Castro, A. L., Muñoz Molina, L. C., Fierro Medina, R., Rivera Monroy, Z. J., & García Castañeda, J. E. (2019). Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. The Royal Society of Chemistry Advances, 9(13), 7239–7245. https://doi.org/10.1039/C9RA00708C | spa |
dc.relation.references | Ventola, C. L. (2015). The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharmacy and Therapeutics, 40(4), 277. https://doi.org/Article | spa |
dc.relation.references | Wang, B., Timilsena, Y. P., Blanch, E., & Adhikari, B. (2017). Lactoferrin: Structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition, 59(4), 580–596. https://doi.org/10.1080/10408398.2017.1381583 | spa |
dc.relation.references | Ying, J. P., Wu, G., Zhang, Y. M., & Zhang, Q. L. (2023). Proteomic analysis of Staphylococcus aureus exposed to bacteriocin XJS01 and its bio-preservative effect on raw pork loins. Meat Science, 204(February), 109258. https://doi.org/10.1016/j.meatsci.2023.109258 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | spa |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | spa |
dc.subject.decs | Péptidos Antimicrobianos | spa |
dc.subject.decs | Antimicrobial Peptides | eng |
dc.subject.decs | Bacterias Grampositivas | spa |
dc.subject.decs | Gram-Positive Bacteria | eng |
dc.subject.decs | Bacterias Gramnegativas | spa |
dc.subject.decs | Gram-Negative Bacteria | eng |
dc.subject.decs | Infecciones por Escherichia coli | spa |
dc.subject.decs | Escherichia coli Infections | eng |
dc.subject.decs | Klebsiella pneumoniae | spa |
dc.subject.decs | Staphylococcus aureus | spa |
dc.subject.decs | Productos con Acción Antimicrobiana | spa |
dc.subject.decs | Products with Antimicrobial Action | eng |
dc.subject.decs | Inmunomodulación | spa |
dc.subject.decs | Immunomodulation | eng |
dc.subject.proposal | Inducción de resistencia | spa |
dc.subject.proposal | Sinergismo | spa |
dc.subject.proposal | E. coli | spa |
dc.subject.proposal | S. aureus | spa |
dc.subject.proposal | Lactoferricina | spa |
dc.subject.proposal | Bactericida | spa |
dc.subject.proposal | Lactoferricin | eng |
dc.subject.proposal | Bactericide | eng |
dc.subject.proposal | Resistance induction | eng |
dc.subject.proposal | Synergism | eng |
dc.title | Péptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativas | spa |
dc.title.translated | Peptides derived from RRWQWRMKKLG sequence: Evaluation of antibacterial activity against Gram positive and Gram negative ATCC strains | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1023955785.2024.pdf
- Tamaño:
- 3.28 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Microbiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: