Desenlaces motores del bajo peso al nacer y el nacimiento pretérmino en adultos jóvenes: efectos del método madre canguro

dc.contributor.advisorZuluaga Gómez, Jairo Albertospa
dc.contributor.advisorCharpak Hernández, Nathaliespa
dc.contributor.authorGómez Ramírez, Sandra Milenaspa
dc.contributor.researchgroupGrupo investigación Fundación Cangurospa
dc.date.accessioned2020-07-13T21:49:23Zspa
dc.date.available2020-07-13T21:49:23Zspa
dc.date.issued2020-05-28spa
dc.description.abstractIntroduction: Low birth weight (LBW) (<2,500g) is cause of mortality and morbidity. One of its consequences is the motor impairment associated with alterations in the white matter, especially the corticospinal tract and the corpus callosum. The Kangaroo Mother Care (KMC) is an alternative to conventional care for LBW infants that consists of skin-to-skin contact, breastfeeding and early hospital discharge, and has been shown to reduce the risk of morbidity and mortality. Objective: The objective of this study was to evaluate the KMC effect on long-term motor development compared to conventional care in a cohort of 441 young adults with a history of LBW, mostly preterm, from a randomized controlled trial (RCT) carried out between 1993 and 1994, having as reference group 50 young people born at term with normal weight. Methods: Transcranial Magnetic Stimulation (TMS) was used to evaluate motor cortex development, corticospinal pathways and interhemispheric interactions through the corpus callosum and the Nine Hole Peg Test (9HPT) for the clinical evaluation of fine manual dexterity. Results: The analyzes by groups revealed a greater time in the 9HPT and less prehension force in the LBW subjects, independent of the type of intervention, with respect to the reference subjects. In contrast, no significant intergroup differences were found between the LBW subjects according to the intervention for the variables of motor interest, so they were disaggregated in the preterm and term, finding worse times in the 9HPT in the preterm subjects who received the KMC compared to those who received conventional care. No differences were found in the group analyzes in any of the neurophysiological measures of TMS between the subjects who received the KMC and conventional care, however, the multivariate logistic model showed that the KMC reduces the risk of developing by 71% (IC 95% 3-92%) alteration of transcallosal conduction time (TCT) in subjects born preterm. Conclusion: We check the heterogeneity of the subjects grouped within LBW category. Alterations in fine manual dexterity and grip strength associated with LBW persist in adulthood. The KMC seems to have a positive impact on interhemispheric communication between primary motor cortices and its effectiveness is 71% in preterm LBW subjects. TCT is a subclinical marker of neurophysiological disorders that may be associated with motor outcomes in subjects with LBW.spa
dc.description.abstractIntroducción: El bajo peso al nacer (BPN) (<2.500g) es una causa de mortalidad y morbilidad. Una de sus consecuencias es el deterioro motor asociado con alteraciones en la sustancia blanca, en especial del tracto corticoespinal y el cuerpo calloso. El método madre canguro (MMC) es una alternativa a la atención convencional para neonatos de BPN que consiste en el contacto piel a piel, la lactancia materna y el alta hospitalaria temprana, y ha demostrado reducir el riesgo de morbimortalidad. Objetivo: El objetivo de este estudio fue evaluar el efecto del MMC sobre desenlaces motores a largo plazo en comparación al cuidado convencional en una cohorte de 441 adultos jóvenes con antecedente de BPN, en su mayoría pretérmino, proveniente de un ensayo controlado aleatorizado (ECA) realizado entre 1993 y 1994 y teniendo como grupo de referencia a 50 jóvenes nacidos a término con peso normal. Métodos: Se utilizó estimulación magnética transcraneal (EMT) para evaluar el desarrollo de la corteza motora, vías corticoespinales e interacciones interhemisféricas a través del cuerpo calloso y la prueba de clavijas con nueve orificios (9HPT) para la evaluación clínica de la destreza manual fina. Resultados: Los análisis por grupos revelaron un mayor tiempo en el 9HPT y menor fuerza de la prensión de la pinza en los sujetos con BPN, independiente del tipo de intervención, respecto a los sujetos de referencia. En contraste, no se encontraron diferencias significativas intergrupales entre los sujetos de BPN de acuerdo a la intervención que recibieron para las variables de interés motor, por lo que se desagregaron en pretérmino y a término, encontrando peores tiempos en el 9HPT en los sujetos pretérmino que recibieron la intervención MMC comparados con los que recibieron la atención convencional. No se encontraron diferencias en los análisis por grupos en ninguna de las medidas neurofisiológicas de la EMT entre los sujetos que recibieron el MMC y la atención convencional, sin embargo, el modelo logístico multivariado demostró que el MMC reduce en un 71% el riesgo de desarrollar alteración del tiempo de conducción transcallosal (TCT) en los sujetos que nacieron pretérmino. Conclusión: Comprobamos la heterogeneidad de los sujetos agrupados dentro del término de BPN. Las alteraciones en la destreza manual fina y la fuerza de prensión asociadas al BPN persisten en la edad adulta. El MMC parece tener un impacto positivo en la comunicación interhemisférica entre cortezas motoras primarias y su efectividad es de 71% (IC 95% 3-92%) en sujetos con BPN pretérmino. El TCT es un marcador subclínico de alteraciones neurofisiológicas que pueden estar asociadas a desenlaces motores en sujetos con BPN.spa
dc.description.degreelevelMaestríaspa
dc.description.projectRandomized open controlled trial on Kangaroo Mother Care versus traditional care for Low Birth Weight infants. Patient-centered outcomes at the age of 18 years.spa
dc.description.sponsorshipSaving Brains Initiative (Grand Challenges Canada)spa
dc.format.extent116spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationGómez-Ramírez S. Desenlaces motores del bajo peso al nacer y el nacimiento pretérmino en adultos jóvenes: efectos del método madre canguro. Universidad Nacional de Colombia – Sede Bogotá; 2020spa
dc.identifier.citationGómez-Ramírez, S. (2020). Desenlaces motores del bajo peso al nacer y el nacimiento pretérmino en adultos jóvenes: efectos del método madre canguro. Tesis de maestría. Universidad Nacional de Colombia, Bogotáspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77766
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Medicina - Maestría en Neurocienciasspa
dc.relation.referencesWorld Health Organization. Guidelines on optimal feeding of low birth-weight infants in low-and middle-income countries. Geneva WHO [Internet]. 2011;16–45. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Guidelines+on+Optimal+feeding+of+low+birth-+weight+infants+in+low-and+middle-income+countries#0spa
dc.relation.referencesSistema Integral de Infomación de la Protección Social (SISPRO) [Internet]. Colombia, Ministerio de Salud y Protección Social. 2019. Available from: http://www.sispro.gov.co/spa
dc.relation.referencesUNICEF, WHO, The World Bank, Division UP. UNICEF: Levels & trends in child mortality: report 2014. Estimates developed by the UN Inter-agency Group for Child Mortality Estimation. United Nations Child Fund 2014. 2014;16–9.spa
dc.relation.referencesWHO. Preterm birth [Internet]. Fact sheet No. 363. 2015. p. 4. Available from: http://www.who.int/mediacentre/factsheets/fs363/en/spa
dc.relation.referencesConde-Agudelo A, Díaz-Rossello JL. Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. Cochrane Database Syst Rev. 2016;2016(8):1–148.spa
dc.relation.referencesBoundy EO, Dastjerdi R, Spiegelman D, Wafaie W. Kangaroo Mother Care and Neonatal Outcomes : A Meta-analysis. Pediatrics. 2016;137(1):1–16.spa
dc.relation.referencesHuether S, McCance K. Pathophysiology, The biologic basis for disease in adult and children 7e. Elsevier. 2014.spa
dc.relation.referencesMooney-Leber SM, Brummelte S. Neonatal pain and reduced maternal care: Early-life stressors interacting to impact brain and behavioral development. Neuroscience. 2017;342:21–36.spa
dc.relation.referencesVittner D, Casavant S, McGrath JM. A meta-ethnography: Skin-to-skin holding from the Caregiver’s perspective. Adv Neonatal Care. 2015;15(3):191–200.spa
dc.relation.referencesWeber A, Harrison TM, Sinnott L, Shoben A, Steward D. Associations between Nurse-Guided Variables and Plasma Oxytocin Trajectories in Premature Infants during Initial Hospitalization. Adv Neonatal Care. 2018;18(1):E12–23.spa
dc.relation.referencesFietzek UM, Heinen F, Berweck S, Maute S, Hufschmidt A, Schulte-Mönting J, et al. Development of the corticospinal system and hand motor function: Central conduction times and motor performance tests. Dev Med Child Neurol. 2000;42(4):220–7.spa
dc.relation.referencesBack SA. Brain injury in the preterm infant: New horizons for pathogenesis and prevention. Pediatr Neurol. 2015;53(3):185–92.spa
dc.relation.referencesBracewell M, Marlow N. Patterns of motor disability in very preterm children. Ment Retard Dev Disabil Res Rev. 2002;8(4):241–8.spa
dc.relation.referencesAnderson NG, Laurent I, Woodward LJ, Inder TE. Detection of impaired growth of the corpus callosum in premature infants. Pediatrics. 2006;118(3):951–60.spa
dc.relation.referencesMent LR, Kesler S, Vohr B, Katz KH, Baumgartner H, Schneider KC, et al. Longitudinal brain volume changes in preterm and term control subjects during late childhood and adolescence. Pediatrics. 2009;123(2):503–11.spa
dc.relation.referencesFlamand VH, Nadeau L, Schneider C. Brain motor excitability and visuomotor coordination in 8-year-old children born very preterm. Clin Neurophysiol. 2012;123(6):1191–9.spa
dc.relation.referencesMalinger G, Zakut H. The corpus callosum: Normal fetal development as shown by transvaginal sonography. Am J Roentgenol. 1993;161(5):1041–3.spa
dc.relation.referencesWiesendanger M, Serrien DJ. The quest to understand bimanual coordination. Prog Brain Res. 2004;143:491–505.spa
dc.relation.referencesLemon RN. Descending Pathways in Motor Control. Annu Rev Neurosci [Internet]. 2008;31(1):195–218. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18558853spa
dc.relation.referencesTessier R, Nadeau L, Boivin M, Tremblay RE. The Social Behaviour of 11- to 12-year-old Children Born as Low Birthweight and/or Premature Infants. Int J Behav Dev [Internet]. 1997;21(4):795–811. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc3&NEWS=N&AN=1997-38912-009spa
dc.relation.referencesHusby IM, Skranes J, Olsen A, Brubakk A-M, Evensen KAI. Motor skills at 23 years of age in young adults born preterm with very low birth weight. Early Hum Dev [Internet]. 2013;89(9):747–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23810435spa
dc.relation.referencesPrieto J, Garcia A, Pérez C. Valoración de los fenómenos de facilitación e inhibición cortical en humanos mediante estimulación magnética transcraneal. Universidad Complutense de Madrid; 2015.spa
dc.relation.referencesSchneider C, Charpak N, Ruiz-Peláez JG, Tessier R. Cerebral motor function in very premature-at-birth adolescents: A brain stimulation exploration of kangaroo mother care effects. Acta Paediatr Int J Paediatr. 2012;101(10):1045–53.spa
dc.relation.referencesPitcher JB, Schneider LA, Drysdale JL, Ridding MC, Owens JA. Motor System Development of the Preterm and Low Birthweight Infant. Clin Perinatol. 2011;38(4):605–25.spa
dc.relation.referencesZuluaga J. Fundamentos genéticos del desarrollo. In: Neurodesarrollo y Estimulación. Bogotá, Colombia: Editorial Médica Panamericana; 2001. p. 33–41.spa
dc.relation.referencesPurves D. Principles of cognitive neuroscience. Third Edit. Sunderland. Massachusetts, U.S.A; 2004.spa
dc.relation.referencesZuluaga J. Embriología funcional del sistema nervioso. In: Neurodesarrollo y Estimulación. Bogotá, Colombia: Editorial Médica Panamericana; 2001. p. 42–60.spa
dc.relation.referencesLawn JE, Blencowe H, Oza S, You D, Lee ACC, Waiswa P, et al. Every newborn: Progress, priorities, and potential beyond survival. Lancet. 2014;384(9938):189–205.spa
dc.relation.referencesMinisterio de Salud – Dirección General de Promoción y Prevención. Guía de atención del bajo peso al nacer.spa
dc.relation.referencesGold PW. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry. 2015;20(1):32–47.spa
dc.relation.referencesGimpl G, Fahrenholz F. The oxytocin receptor system: Structure, function, and regulation. Physiol Rev. 2001;81(2):629–83.spa
dc.relation.referencesPlacencia FX, McCullough LB. Biopsychosocial risks of parental care for high-risk neonates: Implications for evidence-based parental counseling. J Perinatol. 2012;32(5):381–6.spa
dc.relation.referencesBhutta AT, Cleves M a, Casey PH, Cradock MM, Anand KJS. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA. 2002;288(October 2015):728–37.spa
dc.relation.referencesLosch H, Dammann O. Impact of Motor Skills on Cognitive Test Results in Very-Low-Birthweight Children. J Child Neurol [Internet]. 2004;19(5):318–22. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc4&NEWS=N&AN=2004-15374-002spa
dc.relation.referencesde Kieviet JF, Piek JP, Aarnoudse-Moens CS, Oosterlaan J. Motor development in very preterm and very low-birth-weight children from birth to adolescence: a meta-analysis. JAMA [Internet]. 2009;302(20):2235–42. Available from: http://jama.jamanetwork.com/article.aspx?articleid=184952spa
dc.relation.referencesCerisola A, Baltar F, Ferrán C, Turcatti E. Mecanismos de lesión cerebral en niños prematuros. Medicina (B Aires). 2019;79(III):10–4.spa
dc.relation.referencesVolpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Vol. 8, The Lancet Neurology. 2009. p. 110–24.spa
dc.relation.referencesVolpe JJ, Kinney HC, Jensen FE, Rosenberg PA. Reprint of “The developing oligodendrocyte: Key cellular target in brain injury in the premature infant.” Vol. 29, International Journal of Developmental Neuroscience. 2011. p. 565–82.spa
dc.relation.referencesEikenes L, Lohaugen GC, Brubakk AM, Skranes J, Haberg AK. Young adults born preterm with very low birth weight demonstrate widespread white matter alterations on brain DTI. Neuroimage. 2011;54(3):1774–85.spa
dc.relation.referencesvan der Knaap LJ. The Corpus Callosum and Brain Hemisphere Communication How does the corpus callosum mediate interhemispheric transfer? [Internet]. Utrecht University; 2010. Available from: https://dspace.library.uu.nl/bitstream/handle/1874/188850/Master_Thesis_Final_LJvanderKnaap.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesWitelson SF. Hand and sex differences in the isthmus and genu of the human corpus callosum: A postmortem morphological study. Brain. 1989;112(3):799–835.spa
dc.relation.referencesKeshavan MS, Diwadkar VA, DeBellis M, Dick E, Kotwal R, Rosenberg DR, et al. Development of the corpus callosum in childhood, adolescence and early adulthood. Life Sci. 2002;70(16):1909–22.spa
dc.relation.referencesRichards LJ, Plachez C, Ren T. Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin Genet. 2004;66(4):276–89.spa
dc.relation.referencesvan der Knaap MS, Valk J. Magnetic resonance of myelination and myelin disorders. J Neuroradiol. 2006;33(2):132.spa
dc.relation.referencesHüppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, et al. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res. 1998;44(4):584–90.spa
dc.relation.referencesThompson DK, Inder TE, Faggian N, Johnston L, Warfield SK, Anderson PJ, et al. Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI. Neuroimage. 2011;55(2):479–90.spa
dc.relation.referencesCancelliere A, Mangano FT, Air EL, Jones B V., Altaye M, Rajagopal A, et al. DTI values in key white matter tracts from infancy through adolescence. Am J Neuroradiol. 2013;34(7):1443–9.spa
dc.relation.referencesBloom JS, Hynd GW. The role of the corpus callosum in interhemispheric transfer of information: Excitation or inhibition? Neuropsychol Rev. 2005;15(2):59–71.spa
dc.relation.referencesXydis V, Astrakas L, Drougia A, Gassias D, Andronikou S, Argyropoulou M. Myelination process in preterm subjects with periventricular leucomalacia assessed by magnetization transfer ratio. Pediatr Radiol. 2006;36(9):934–9.spa
dc.relation.referencesPaul LK. Developmental malformation of the corpus callosum: A review of typical callosal development and examples of developmental disorders with callosal involvement. J Neurodev Disord. 2011;3(1):3–27.spa
dc.relation.referencesRademaker KJ, Lam JNGP, Van Haastert IC, Uiterwaal CSPM, Lieftink AF, Groenendaal F, et al. Larger corpus callosum size with better motor performance in prematurely born children. In: Seminars in Perinatology. 2004. p. 279–87.spa
dc.relation.referencesKumar A, Juhasz C, Asano E. Diffusion tensor imaging study of the cortical origin and course of the corticospinal tract in healthy children. Am J Neuroradiol. 2009;30(10):1963–70.spa
dc.relation.referencesQuiénes somos : Fundación Canguro [Internet]. [cited 2019 Oct 21]. Available from: http://fundacioncanguro.co/quienes-somos/spa
dc.relation.referencesRey E, Martínez H. Manejo racional del niño prematuro. In: Universidad Nacional de Colombia, editor. Curso de Medicina Fetal. Bogotá; 1983.spa
dc.relation.referencesWorld Health Organization. Kangaroo mother care: A practical guide. [Internet]. Vol. 73, WHO Reproductive Health and Research. 2003. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22585327spa
dc.relation.referencesEngmann C, Darmstadt G, Valsangkar B, Claeson M, participants of the Istanbul KMC Acceleration Meetin. Consensus on kangaroo mother care acceleration. Lancet. 2013;382(9907):e26–e27.spa
dc.relation.referencesCharpak N, Ruiz-Pelaez JG, Figueroa de Calume Z. Current knowledge of Kangaroo Mother Intervention. Curr Opin Pediatr. 1996;8(2):108–12.spa
dc.relation.referencesLawn JE M-KJ, Horta BL, Barros FC CS. Kangaroo mother care to prevent neonatal deaths due to preterm birth complication. Int J Epidemiol. 2010;39:i144–i1.spa
dc.relation.referencesReynolds LC, Duncan MM, Smith GC, Mathur A, Neil J, Inder T, et al. Parental presence and holding in the neonatal intensive care unit and associations with early neurobehavior. J Perinatol. 2013;33(8):636–41.spa
dc.relation.referencesBera A, Ghosh J, Singh AK, Hazra A, Mukherjee S, Mukherjee R. Effect of kangaroo mother care on growth and development of low birthweight babies up to 12 months of age: A controlled clinical trial. Acta Paediatr Int J Paediatr. 2014;103(6):643–50.spa
dc.relation.referencesMerton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285(5762):227.spa
dc.relation.referencesBarker AT, Jalinous R, Freeston IL. Non-Invasive Magnetic Stimulation of Human Motor Cortex. Lancet [Internet]. 1985;325(8437):1106–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0140673685924134spa
dc.relation.referencesPascual-Leone A, Davey N, Wassermann E, Rothwell J, Puri B. Handbook of transcranial magnetic stimulation. London: Arnold Press; 2001.spa
dc.relation.referencesPascual-Leone A, Tormos-Muñoz JM. [Transcranial magnetic stimulation: the foundation and potential of modulating specific neuronal networks]. In: Revista de neurologia [Internet]. 2008. p. S3-10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18302119spa
dc.relation.referencesKobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol [Internet]. 2003;2(3):145–56. Available from: http://www.sciencedirect.com/science/article/pii/S1474442203003211spa
dc.relation.referencesBartrés-Faz D, Junqué C, Tormos-Muñoz JM, Pascual-Leone Á. Aplicación de la estimulación magnética transcraneal a la investigación neuropsicológica. Rev Neurol. 2000;30(12):1169–74.spa
dc.relation.referencesossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92.spa
dc.relation.referencesZiemann U, Rothwell JC, Ridding MC. Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol [Internet]. 1996;496(3):873–81. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1160871&tool=pmcentrez&rendertype=abstractspa
dc.relation.referencesDi Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, et al. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol. 2000;111(5):794–9.spa
dc.relation.referencesHallett M. Transcranial Magnetic Stimulation: A Primer. Neuron. 2007;55(2):187–99.spa
dc.relation.referencesMeyer BU, Röricht S, Woiciechowsky C. Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann Neurol. 1998;43(3):360–9.spa
dc.relation.referencesReis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. Vol. 586, Journal of Physiology. 2008. p. 325–51.spa
dc.relation.referencesDavidson T, Tremblay F. Age and hemispheric differences in transcallosal inhibition between motor cortices: An ispsilateral silent period study. BMC Neurosci [Internet]. 2013 [cited 2019 Nov 21];14. Available from: http://www.biomedcentral.com/1471-2202/14/62spa
dc.relation.referencesChen R, Lozano AM, Ashby P. Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res. 1999;128(4):539–42.spa
dc.relation.referencesFerbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD. Interhemispheric inhibition of the human motor cortex. J Physiol. 1992;453(1):525–46.spa
dc.relation.referencesSchneider C, Devanne H, Lavoie BA, Capaday C. Neural mechanisms involved in the functional linking of motor cortical points. Exp Brain Res. 2002;146(1):86–94.spa
dc.relation.referencesBeaulé V, Tremblay S, Théoret H. Interhemispheric control of unilateral movement. Neural Plast. 2012;2012.spa
dc.relation.referencesCox BC, Cincotta M, Espay AJ. Mirror movements in movement disorders: a review. Tremor Other Hyperkinet Mov (N Y) [Internet]. 2012;2:2–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23440079%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3569961spa
dc.relation.referencesCiechanski P, Zewdie E, Kirton A. Developmental profile of motor cortex transcallosal inhibition in children and adolescents. J Neurophysiol. 2017;118(1):140–8.spa
dc.relation.referencesGarvey MA, Ziemann U, Bartko JJ, Denckla MB, Barker CA, Wassermann EM. Cortical correlates of neuromotor development in healthy children. Clin Neurophysiol. 2003;114(9):1662–70.spa
dc.relation.referencesWasserman E. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation. Electroencaphalogr Clin Neurophysiol. 1998;108(1):1–16.spa
dc.relation.referencesChan T. An investigation of finger and manual dexterity. Percept Mot Skills. 2000;90(2):537–42.spa
dc.relation.referencesBackman C, Gibson SCD, Parsons J. Assessment of Hand Function: The Relationship between Pegboard Dexterity and Applied Dexterity. Can J Occup Ther [Internet]. 1992;59(4):208–13. Available from: http://cjo.sagepub.com/content/59/4/208.abstractspa
dc.relation.referencesExner C. In-hand manipulation skills in normal young children: A pilot study. OT Pract. 1999;1:63–72.spa
dc.relation.referencesPoole JL, Burtner PA, Torres TA, McMullen CK, Markham A, Marcum ML, et al. Measuring dexterity in children using the Nine-hole Peg Test. J Hand Ther. 2005;18(3):348–51.spa
dc.relation.referencesde Vries L, van Hartingsveldt MJ, Cup EHC, Nijhuis-van der Sanden MWG, de Groot IJM. Evaluating fine motor coordination in children who are not ready for handwriting: Which test should we take? Occup Ther Int. 2015;22(2):61–70.spa
dc.relation.referencesKellor M, Frost J, Silberberg N, Iversen I, Cummings R. Hand strength and dexterity. Am J Occup Ther Off Publ Am Occup Ther Assoc. 1971;25(2):77–83.spa
dc.relation.referencesMathiowetz V, Weber K, Kashman N, Volland G. Adult norms for the Nine Hole Peg Test of finger dexterity. Occup Ther J Res [Internet]. 1985;5(1):24–38. Available from: http://otj.sagepub.com/lookup/doi/10.1177/153944928500500102%5Cnhttp://psycnet.apa.org/psycinfo/1986-05316-001%5Cnhttp://nhpt.wikispaces.com/file/view/9-Hole+Norms.pdfspa
dc.relation.referencesGrice KO, Vogel KA, Le V, Mitchell A, Muniz S, Vollmer MA. Adult norms for a commercially available nine hole peg test for finger dexterity. Am J Occup Ther. 2003;57(5):570–3.spa
dc.relation.referencesPitcher JB, Schneider LA, Burns NR, Drysdale JL, Higgins RD, Ridding MC, et al. Reduced corticomotor excitability and motor skills development in children born preterm. J Physiol. 2012;590(22):5827–44.spa
dc.relation.referencesKurth F, Mayer EA, Toga AW, Thompson PM, Luders E. The right inhibition? Callosal correlates of hand performance in healthy children and adolescents callosal correlates of hand performance. Hum Brain Mapp. 2013;34(9):2259–65.spa
dc.relation.referencesCharpak N, Ruiz-Peláez JG, Figueroa de C Z, Charpak Y. Kangaroo mother versus traditional care for newborn infants </=2000 grams: a randomized, controlled trial. Pediatrics. 1997;100(4):682–8.spa
dc.relation.referencesCharpak N, Tessier R, Ruiz JG, Hernandez JT, Uriza F, Villegas J, et al. Twenty-year follow-up of kangaroo mother care versus traditional care. Pediatrics. 2017;139(1).spa
dc.relation.referencesSäisänen L, Julkunen P, Lakka T, Lindi V, Könönen M, Määttä S. Development of corticospinal motor excitability and cortical silent period from mid-childhood to adulthood – a navigated TMS study. Neurophysiol Clin. 2018;48(2):65–75.spa
dc.relation.referencesCarson RG. Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Rev. 2005;49(3):641–62.spa
dc.relation.referencesFling BW, Seidler RD. Task-dependent effects of interhemispheric inhibition on motor control. Behav Brain Res. 2012;226(1):211–7.spa
dc.relation.referencesDavidson T, Tremblay F. Hemispheric Differences in Corticospinal Excitability and in Transcallosal Inhibition in Relation to Degree of Handedness. PLoS One. 2013;8(7).spa
dc.relation.referencesHadders-Algra M, Touwen BCL. Body measurements, neurological and behavioural development in six-year-old children born preterm and/or small-for-gestational-age. Early Hum Dev. 1990;22(1):1–13.spa
dc.relation.referencesTuvemo T, Lundgren EM. Neurological and intellectual consequences of being born small for gestational age. Pediatr Adolesc Med. 2009;13:134–47.spa
dc.relation.referencesLundgren EM, Tuvemo T. Effects of being born small for gestational age on long-term intellectual performance. Best Pract Res Clin Endocrinol Metab. 2008;22(3):477–88.spa
dc.relation.referencesFlamand VH, Denis A, Allen-Demers F, Lavoie M, Tessier R, Schneider C. Altered transcallosal inhibition evidenced by transcranial magnetic stimulation highlights neurophysiological consequences of premature birth in early adulthood. J Neurol Sci. 2018;393:18–23.spa
dc.relation.referencesSzymanska M, Schneider M, Chateau-Smith C, Nezelof S, Vulliez-Coady L. Psychophysiological effects of oxytocin on parent–child interactions: A literature review on oxytocin and parent–child interactions. Psychiatry Clin Neurosci. 2017;71(10):690–705.spa
dc.relation.referencesHake-Brooks SJ, Anderson GC. Kangaroo care and breastfeeding of mother-preterm infant dyads 0-18 months: a randomized, controlled trial. Neonatal Netw. 2008;27(3):151–9.spa
dc.relation.referencesSuman Rao PN, Udani R, Nanavati R. Kangaroo mother care for low birth weight infants: A randomized controlled trial. Indian Pediatr. 2008;45(1):17–23.spa
dc.relation.referencesSharma D, Shastri S, Sharma P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin Med Insights Pediatr. 2016;spa
dc.relation.referencesHutton JL, Pharoah POD, Cooke RWI, Stevenson RC. Differential effects of preterm birth and small gestational age on cognitive and motor development. Arch Dis Child Fetal Neonatal Ed. 1997;76(2).spa
dc.relation.referencesNetz J, Ziemann U, Hömberg V. Hemispheric asymmetry of transcallosalinhibition in man. Exp Brain Res. 1995;104(3):527–33.spa
dc.relation.referencesBeauchamp MS, Beurlot MR, Fava E, Nath AR, Parikh NA, Saad ZS, et al. The developmental trajectory of brain-scalp distance from birth through childhood: Implications for functional neuroimaging. PLoS One. 2011;6(9).spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.proposalBajo peso al nacerspa
dc.subject.proposalInfant low birth weighteng
dc.subject.proposalPreterm birtheng
dc.subject.proposalNacimiento pretérminospa
dc.subject.proposalNacimiento prematurospa
dc.subject.proposalPremature birthseng
dc.subject.proposalSmall gestational ageeng
dc.subject.proposalPequeño para la edad gestacionalspa
dc.subject.proposalDesarrollo motorspa
dc.subject.proposalMotor Skillseng
dc.subject.proposalManual dexterityeng
dc.subject.proposalDestreza manualspa
dc.subject.proposalMétodo Madre Cangurospa
dc.subject.proposalKangaroo-Mother Care Methodeng
dc.subject.proposalTranscranial Magnetic Stimulationeng
dc.subject.proposalEstimulación Magnética Transcranealspa
dc.subject.proposalAlteración del tiempo de conducción transcallosalspa
dc.subject.proposalAlteration of transcallosal conduction timeeng
dc.titleDesenlaces motores del bajo peso al nacer y el nacimiento pretérmino en adultos jóvenes: efectos del método madre cangurospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010160674.2020.pdf
Tamaño:
3.43 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: