Exploración de modificaciones estructurales de un antígeno de la proteína MSP1 de Plasmodium spp y su influencia en su propiedad de reconocimiento molecular por sueros murinos y humanos, de personas de áreas postconflicto en Colombia

dc.contributor.advisorLozano Moreno, José Manuelspa
dc.contributor.authorMelo Velanida, Fredy Leonardospa
dc.contributor.researchgroupMimetismo Molecular de Los Agentes Infecciososspa
dc.coverage.countryColombiaspa
dc.date.accessioned2024-01-17T18:32:49Z
dc.date.available2024-01-17T18:32:49Z
dc.date.issued2023-11-07
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractEstudios realizados en el marco de investigación del grupo de mimetismo molecular de los agentes infecciosos, evaluaron la reactividad de sueros de áreas endémicas de Colombia (san juan de nepomuceno - bolívar, tierralta - córdoba, nuquí - chocó y tumaco - nariño) (SIVIGILA, instituto nacional de salud, 2018), frente a lisados de dos cepas de referencia, 3D7 y FCB2 de Plasmodium falciparum, donde se identificaron bandas de reconocimiento de la proteína MSP1 con movilidades relativas de 195, 83, 42 y 38 kDa, que permitieron identificar la reactividad de sueros frente a la proteína precursora MSP1 y sus fragmentos de procesamiento, lo que valida la importancia de este antígeno de superficie respecto a su papel inmunológico, perfilándola como una proteína blanco en la implementación de modificaciones tipo amida reducida, que promuevan y evidencien una protección efectiva de individuos expuestos a la infección natural. (Texto tomado de la fuente)spa
dc.description.abstractStudies carried out within the research framework of the molecular mimicry of infectious agents group, evaluated the reactivity of sera from endemic areas of Colombia (San Juan de Nepomuceno - Bolívar, Tierralta - Córdoba, Nuquí - Chocó and Tumaco - Nariño) (SIVIGILA, national institute of health, 2018), compared to lysates of two reference strains, 3D7 and FCB2 of Plasmodium falciparum, where recognition bands of the MSP1 protein were identified with relative mobilities of 195, 83, 42 and 38 kDa, which allowed the identification the reactivity of sera against the MSP1 precursor protein and its processing fragments, which validates the importance of this surface antigen with respect to its immunological role, profiling it as a target protein in the implementation of reduced amide type modifications, which promote and demonstrate effective protection of individuals exposed to natural infection.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Farmacologíaspa
dc.description.researchareaCiencias Médicas y de la Salud - Biotecnología en Saludspa
dc.description.sponsorshipLa Convocatoria para el Apoyo a Proyectos de Investigación y Creación Artística de la Sede Bogotá de la Universidad Nacional de Colombia - 2019, tiene como objetivo fortalecer el desarrollo de la investigación y la creación artística, contribuir a la formación en procesos de investigación y extensión de estudiantes de pregrado y posgrado, y generar impacto mediante el reconocimiento y visibilidad de la Universidad Nacional de Colombia de la sede Bogotá, a través de la producción académica asociada al desarrollo de proyectos de investigación.spa
dc.format.extent[100] páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85352
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacologíaspa
dc.relation.referencesAbbas, A. K., Lichtman, A. H., & Pillai, S. (2015). Student Consult (8°; Elsevier, ed.). https://doi.org/10.1016/j.genhosppsych.2013.05.007spa
dc.relation.referencesAcosta, C., Galindo, C., Schellenberg, D., Aponte, J., Kahigwa, E., Urassa, H., … Alonso, P. (1999). Evaluation of the SPf66 vaccine for malaria control when delivered through the EPI scheme in Tanzania. Tropical Medicine and International Health, 4(5), 368–376. https://doi.org/10.1046/j.1365-3156.1999.00406.spa
dc.relation.referencesAikawa M, Miller LH, Johnson J, Rabbege J (1978) Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J. Cell Biol. 77: 72–82.spa
dc.relation.referencesAkter, J., Khoury, D. S., Aogo, R., Lansink, L. I., SheelaNair, A., Thomas, B. S., … Haque, A. (2019). Plasmodium-specific antibodies block in vivo parasite growth without clearing infected red blood cells. PLoS Pathogens, 15(2), 1–24. https://doi.org/10.1371/journal.ppat.1007599spa
dc.relation.referencesAl-Yaman, F., Genton, B., Anders, R., Falk, M., Triglia, T., Lewis, D., … Alpers, M. (1994). Relationship between humoral response to Plasmodium falciparum merozoite surface antigen- 2 and malaria morbidity in a highly endemic area of Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 51, 593–602. https://doi.org/10.4269/ajtmh.1994.51.593spa
dc.relation.referencesAngulo, I., & Fresno, M. (2002, November). Cytokines in the pathogenesis of and protection against malaria. Clinical and Diagnostic Laboratory Immunology, Vol. 9, pp. 1145–1152. https://doi.org/10.1128/CDLI.9.6.1145-1152.2002spa
dc.relation.referencesArias-Murillo, Y., Osorio-Arango, K., Bayona, B., Ercilla, Guadalupe., Beltrán-Durán, Mauricio. (2017). Determinación del polimorfismo de HLA-A, -B y -DRB1 en donantes de órganos con muerte encefálica representativos de la población general colombiana, 2007-2014. Biomédica, 37, 184-190. doi: http://dx.doi.org/10.7705/biomedica.v37i2.3263spa
dc.relation.referencesArlett, H., & Spielmann, T. (2014). Preparation of Parasite Protein Extracts and Western Blot Analysis.In Bio-protocol LLC (Vol. 4).spa
dc.relation.referencesArnaiz-Villena, A., Muñiz, E., del Palacio-Gruber, J., Campos, C., Alonso-Rubio, J., Gomez-Casado, E., … Silvera, C. (2016). Ancestry of Amerindians and its Impact in Anthropology, Transplantation, HLA Pharmacogenomics and Epidemiology by HLA Study in Wiwa Colombian Population. Open Medicine Journal, 3(1), 269–285. https://doi.org/10.2174/1874220301603010269spa
dc.relation.referencesArrunategui, A. M., Villegas, A., Ocampo, L. Á., Rodríguez, L. M., & Badih, A. (2013). Frecuencias alélicas, genotípicas y haplotípicas del sistema HLA clase I y II en donantes de una población del suroccidente colombiano. Acta Medica Colombiana, 38(1), 16–21.spa
dc.relation.referencesAurrecoechea, C., Brestelli, J., Brunk, B., Dommer, J., Fischer, S., Gajria, B., … Wang, H. (2009). PlasmoDB: A functional genomic database for malaria parasites. Nucleic Acids Research, 37(SUPPL. 1), D539. https://doi.org/10.1093/nar/gkn814spa
dc.relation.referencesÁvila-Portillo, L. M., Carmona, A., Franco, L., Briceño, I., Casas, M. C., & Gómez, A. (2010). Bajo polimorfismo en el sistema de antígenos de leucocitos humanos en población mestiza colombiana. Universitas Médica, 51(4), 359–370. https://doi.org/10.11144/javeriana.umed51- 4.bpsaspa
dc.relation.referencesBahl, A., Brunk, B., Crabtree, J., Fraunholz, M., Gajria, B., Grant, G., … Whetzel, P. (2003). PlasmoDB: The Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Research, 31(1), 212–215. https://doi.org/10.1093/nar/gkg081spa
dc.relation.referencesBaird, J. (1998). Age-dependent characteristics of protection v. susceptibility to Plasmodium falciparum. Annals of Tropical Medicine and Parasitology, 92(4), 367–390. https://doi.org/10.1080/00034989859366spa
dc.relation.referencesBannister, L., Hopkins, J., Fowler, R., Krishna, S., & Mitchell, G. (2000). A Brief Illustrated Guide to the Ultrastructure of Plasmodium falciparum Asexual Blood Stages. Parásitology Today, 16(10), 427–433. https://doi.org/10.1016/S0169-4758(00)01755-5spa
dc.relation.referencesBastian, M., Lozano, J. M., Patarroyo, M. E., Pluschke, G., & Daubenberger, C. A. (2004). Characterization of a reduced peptide bond analogue of a promiscuous CD4 T cell epitope derived from the Plasmodium falciparum malaria vaccine candidate merozoite surface protein 1. Molecular Immunology, 41, 775–784. https://doi.org/10.1016/j.molimm.2004.04.019spa
dc.relation.referencesBatista-Duharte, A., Lastre, M., & Pérez, O. (2014). Adyuvantes inmunológicos. Determinantes en el balance eficacia-toxicidad de las vacunas contemporáneas. Enfermedades Infecciosas y Microbiologia Clinica, 32(2), 106–114. https://doi.org/10.1016/j.eimc.2012.11.012spa
dc.relation.referencesBattle, K., Karhunen, M., Bhatt, S., Gething, P., Howes, R., Golding, N., … Hay, S. (2014). Geographical variation in Plasmodium vivax relapse. Malaria Journal, 13(1), 1–16. https://doi.org/10.1186/1475-2875-13-144spa
dc.relation.referencesBeeson, J., Drew, D., Boyle, M., Feng, G., Fowkes, F., & Richards, J. (2016). Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiology Reviews, 40(3), 343–372. https://doi.org/10.1093/femsre/fuw001spa
dc.relation.referencesBergmann-Leitner, E., Duncan, E., & Angov, E. (2012). Malaria Vaccine. In O. Okwa (Ed.), The Impact of Immune Responses on the Asexual Erythrocytic Stages of Plasmodium and the Implication for Vaccine Development. https://doi.org/10.5772/33130spa
dc.relation.referencesBermeo, S., Guerra, M. T., & Ostos Alfonso, H. (2010). Vista de Frecuencias de HLA-A, B y DRB1 en una población de Huila-Colombia. Revista Facultad de Salud, 2(1), 9–19.spa
dc.relation.referencesBernal, J., & Briceño, I. (2013). Estudios de HLA en Colombia. Acta Medica Colombiana, Vol. 38, pp.5–6.spa
dc.relation.referencesVol. 38, pp.5–6. P. (1986). Rabbit and human antibodies to a repeated amino acid sequence of a Plasmodium falciparum antigen, Pf 155, react with the native protein and inhibit merozoite invasion. Proceedings of the National Academy of Sciences of the United States of America, 83(4), 1065– 1069. https://doi.org/10.1073/pnas.83.4.1065 Birkett, A. (2016). Status of vaccine research and development of vaccines for malaria. Vaccine, 34, 2915–2920. https://doi.org/10.1016/j.vaccine.2016.02.074spa
dc.relation.referencesBlack, C. G., Wang, L., Wu, T., & Coppel, R. L. (2003). Apical location of a novel EGF-like domain- containing protein of Plasmodium falciparum. Molecular and Biochemical Parasitology, 127(1),59–68. https://doi.org/10.1016/S0166-6851(02)00308-0spa
dc.relation.referencesBlack, C. G., Wu, T., Wang, L., Hibbs, A. R., & Coppel, R. L. (2001). Merozoite surface protein 8 of Plasmodium falciparum contains two epidermal growth factor-like domains. Molecular and Biochemical Parasitology, 114(2), 217–226. https://doi.org/10.1016/S0166-6851(01)00265-1spa
dc.relation.referencesBlackman, M. J., Heidrich, H. G., Donachie, S., McBride, J. S., & Holder, A. (1990). A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. Journal of Experimental Medicine, 172, 379–382. https://doi.org/10.1084/jem.172.1.379spa
dc.relation.referencesBlackman, M. J., Whittle, H., & Holder, A. (1991). Processing of the Plasmodium falciparum major merozoite surface protein-1: identification of a 33-kilodalton secondary processing product which is shed prior to erythrocyte invasion. Molecular and Biochemical Parasitology, 49, 35–44. https://doi.org/10.1016/0166-6851(91)90128-Sspa
dc.relation.referencesBlasco, B., Leroy, Di., & Fidock, D. A. (2017). Antimalarial drug resistance: Linking Plasmodium falciparum parasite biology to the clinic. Nature Medicine, 23(8), 917–928. https://doi.org/10.1038/nm.4381spa
dc.relation.referencesBohley, P., & Seglen, P. (1992). Proteases and proteolysis in the lysosome. Experientia, 48(2), 151– 157. https://doi.org/10.1007/BF01923508spa
dc.relation.referencesBonanni, P. (1999). Demographic impact of vaccination: A review. Vaccine, 17(SUPPL. 3), 120–125. https://doi.org/10.1016/S0264-410X(99)00306-0spa
dc.relation.referencesBoyle, M. J., Langer, C., Chan, J. A., Hodder, A., Coppel, R. L., Anders, R., & Beeson, J. (2014). Sequential processing of merozoite surface proteins during and after erythrocyte invasion by Plasmodium falciparum. Infection and Immunity, 82(3), 924–936. https://doi.org/10.1128/IAI.00866-13spa
dc.relation.referencesCai, Q., Peng, G., Bu, L., Lin, Y., Zhang, L., Lustigmen, S., & Wang, H. (2007). Immunogenicity and in vitro protective efficacy of a polyepitope Plasmodium falciparum candidate vaccine constructed by epitope shuffling. Vaccine, 25(28), 5155–5165. https://doi.org/10.1016/j.vaccine.2007.04.085spa
dc.relation.referencesCamus, D., & Hadley, T. J. (1985). A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science, 230(4725), 553–556. https://doi.org/10.1126/science.3901257spa
dc.relation.referencesCavanagh, D. R., & McBride, J. S. (1997). Antigenicity of recombinant proteins derived from Plasmodium falciparum merozoite surface protein 1. Molecular and Biochemical Parasitology, 85(2), 197–211. https://doi.org/10.1016/S0166-6851(96)02826-5spa
dc.relation.referencesCéspedes, N., Arévalo-Herrera, M., Felger, I., Reed, S., Kajava, A. V, Corradin, G., & Herrera, S. (2013). Antigenicity and immunogenicity of a novel chimeric peptide antigen based on the P. vivax circumsporozoite protein. Vaccine, 31, 4923–4930. https://doi.org/10.1016/j.vaccine.2013.05.082spa
dc.relation.referencesChaves, F., Calvo, J., Carvajal, C., Rivera, Z., Ramírez, L., Pinto, M., … Patarroyo, M. E. (2001). Synthesis, isolation and characterization of Plasmodium falciparum antigenic tetrabranched peptide dendrimers obtained by thiazolidine linkages. Journal of Peptide Research, 58(4), 307– 316. https://doi.org/10.1034/j.1399-3011.2001.00921.spa
dc.relation.referencesChen, J. S., Liu, H., Yang, J., & Chou, K. (2007). Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids, 33, 423–428. https://doi.org/10.1007/s00726-006-0485-9spa
dc.relation.referencesChristopher, A., MacRaild, C. A., Reiling, L., Wycherley, K., Boyle, M. J., Kienzle, V., … Anders, R. (2012). Antigenic characterization of an intrinsically unstructured protein, Plasmodium falciparum merozoite surface protein 2. Infection and Immunity, 80(12), 4177–4185. https://doi.org/10.1128/IAI.00665-12spa
dc.relation.referencesCoffman, R. L., Sher, A., & Seder, R. A. (2010). Vaccine adjuvants: Putting innate immunity to work.Immunity, 33, 492–503. https://doi.org/10.1016/j.immuni.2010.10.002spa
dc.relation.referencesCohen, S. (1961). Gamma-Globulin and acquired immunity to human malaria. Nature, 192.spa
dc.relation.referencesColigan, J. E., Bierer, B. E., David, M., Shevach, E., & Strober, W. (2007). Current Protocols in Immunology (Richard Coico, Ed.). https://doi.org/10.1002/0471142735spa
dc.relation.referencesCollins, C. R., & Blackman, M. J. (2011). Apicomplexan AMA1 in Host Cell Invasion: A Model at the Junction? Cell Host & Microbe, 10(6), 531–533. https://doi.org/10.1016/J.CHOM.2011.11.006spa
dc.relation.referencesCoppi, A., Natarajan, R., Pradel, G., Bennett, B. L., James, E. R., Roggero, M. A., … Sinnis, P. (2011). The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. Journal of Experimental Medicine, 208(2), 341–356. https://doi.org/10.1084/jem.20101488spa
dc.relation.referencesCoppi, A., Pinzon-Ortiz, C., Hutter, C., & Sinnis, P. (2005). The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion. Journal of Experimental Medicine, 201(1), 27– 33. https://doi.org/10.1084/jem.20040989spa
dc.relation.referencesCorman, V., Müller, M., Costabel, U., Timm, J., Binger, T., Meyer, B., … Drosten, C. (2012). Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Eurosurveillance, 17(49), 20334. https://doi.org/10.2807/ese.17.49.20334spa
dc.relation.referencesCorrea, P., Whitworth, W., Kuffner, T., McNicholl, J., & Anaya, J. (2002). HLA-DR and DQB1 gene polymorphism in the North-western Colombian population. Tissue Antigens, 59(5), 436–439. https://doi.org/10.1034/j.1399-0039.2002.590515spa
dc.relation.referencesCowman, A., Healer, J., Marapana, D., & Marsh, K. (2016, October 20). Malaria: Biology and Disease.Cell, Vol. 167, pp. 610–624. https://doi.org/10.1016/j.cell.2016.07.055spa
dc.relation.referencesCox, F. (2002, October). History of human parasitology. Clinical Microbiology Reviews, Vol. 15, pp.595–612. https://doi.org/10.1128/CMR.15.4.595-612.2002spa
dc.relation.referencesCrewther, PE., Culvenor, J., Silva, A., Cooper, JA., Anders. RF. (1990). Plasmodium falciparum: two antigens of similar size are located in different compartments of the rhoptry. Exp. Parasitol. 70:193–206spa
dc.relation.referencesCroft, N. P., & Purcell, A. W. (2011). Peptidomimetics: Modifying peptides in the pursuit of better vaccines. Expert Review of Vaccines, 10(2), 211–226. https://doi.org/10.1586/erv.10.161spa
dc.relation.referencesCrompton, P. D., Kayala, M. A., Traore, B., Kayentao, K., Ongoiba, A., Weiss, G. E., … Pierce, S. K. (2010). A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 6958–6963. https://doi.org/10.1073/pnas.1001323107spa
dc.relation.referencesCubillos, M., Espejo, F., Purmova, J., Martinez, J. C., & Patarroyo, M. E. (2003). Alpha helix shortening in 1522 MSP-1 conserved peptide analogs is associated with immunogenicity and protection against P. falciparum malaria. Proteins: Structure, Function and Genetics, 50(3), 400–409. https://doi.org/10.1002/prot.10314spa
dc.relation.referencesCuesta Astroz, Yesid, & Segura Latorre, Cesar. (2012). Métodos proteómicos aplicados al estudio de la malaria: Plasmodium falciparum. Acta Biológica Colombiana, 17(3), 463-484. Retrieved January 18, 2022, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120- 548X2012000300002&lng=en&tlng=esspa
dc.relation.referencesCulvenor, J., Day, K., & Anders, R. (1991). Plasmodium falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion. Infection and Immunity, 59(3), 1183–1187. https://doi.org/10.1128/iai.59.3.1183-1187.1991spa
dc.relation.referencesD’Alessandro, U., Leach, A., Drakeley, C., Bennett, S., Olaleye, B., Fegan, G., … Targett, G. (1995). Efficacy trial of malaria vaccine SPf66 in Gambian infants. Lancet, 346(8973), 462–467. https://doi.org/10.1016/s0140-6736(95)91321-1spa
dc.relation.referencesD’Amelio, E., Salemi, S., & D’Amelio, R. (2015, May 3). Anti-Infectious Human Vaccination in Historical Perspective. International Reviews of Immunology, Vol. 35, pp. 260–290. https://doi.org/10.3109/08830185.2015.1082177spa
dc.relation.referencesDaubenberger, C. A., Nickel, B., Ciatto, C., Grütter, M. G., Pöltl‐Frank, F., Rossi, L., … Pluschke, G. (2002). Amino acid dimorphism and parasite immune evasion: cellular immune responses to a promiscuous epitope of Plasmodium falciparum merozoite surface protein 1 displaying dimorphic amino acid polymorphism are highly constrained. European Journal of Immunology, 32(12), 3667–3677. https://doi.org/10.1002/1521-4141(200212)32:12<3667::AID- IMMU3667>3.0.CO;2-Cspa
dc.relation.referencesDavies, E. E. (1974). Ultrastructural studies on the early ookinete stage of Plasmodium berghei nigeriensis and its transformation into an oocyst. Annals of Tropical Medicine and Parasitology, 68(3), 283–290. https://doi.org/10.1080/00034983.1974.11686950spa
dc.relation.referencesDe Groot, A. S. (2006, March). Immunomics: Discovering new targets for vaccines and therapeutics.spa
dc.relation.referencesDrug Discovery Today, Vol. 11, pp. 203–209. https://doi.org/10.1016/S1359-6446(05)03720-7spa
dc.relation.referencesDe Sousa, K., & Doolan, D. (2016). Immunomics: a 21st century approach to vaccine development for complex pathogens. Parasitology, 143(Special issue), 236–244. https://doi.org/10.1017/S0031182015001079spa
dc.relation.referencesDeans, J., Knight, A., Jean, W., Waters, A., Cohen, S., & Mitchell, G. (1988). Vaccination trials in rhesus monkeys with a minor, invariant, Plasmodium knowlesi 66 kD merozoite antigen. Parasite Immunology, 10(5), 535–552. https://doi.org/10.1111/j.1365-3024.1988.tb00241spa
dc.relation.referencesDearsly, A., Sinden, R., & Self, I. (1990). Sexual development in malarial parasites: Gametocyte production, fertility and infectivity to the mosquito vector. Parasitology, 100(3), 359–368. https://doi.org/10.1017/S0031182000078628spa
dc.relation.referencesDel Río-Ospina, L., Camargo, M., Soto-De León, S.C., Robayo-Calderón, K.L., Garzón-Ospina, D… (2019). Using next-generation sequencing for characterising HLA-DRB1 and DQB1 loci in a cohort of Colombian women. HLA Immnune Response Genetics, (94)5, 425-434. https://doi.org/10.1111/tan.13672spa
dc.relation.referencesDhanda, S. K., Gupta, S., Vir, P., & Raghava, G. (2013). Prediction of IL4 Inducing Peptides. Clinical and Developmental Immunology, 2013, 1–9. https://doi.org/10.1155/2013/263952spa
dc.relation.referencesDhanda, S. K., Vir, P., & Raghava, G. (2013). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct, 8(1), 1–15. https://doi.org/10.1186/1745-6150-8-30spa
dc.relation.referencesDieng, M. M., Diawara, A., Manikandan, V., Tamim El Jarkass, H., Sermé, S. S., Sombié, S., Idaghdour, Y. (2020). Integrative genomic analysis reveals mechanisms of immune evasion in P. falciparum malaria. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467- 020-18915-6spa
dc.relation.referencesDinko, B., & Pradel, G. (2016). Immune Evasion by Plasmodium falciparum Parasites: Converting a Host Protection Mechanism for the Parasite’s Benefit. Advances in Infectious Diseases, 06, 82– 95. https://doi.org/10.4236/aid.2016.62011spa
dc.relation.referencesDobaño, C., Sanz, H., Sorgho, H., Dosoo, D., Mpina, M., Ubillos, I., … Gyan, B. (2019). Concentration and avidity of antibodies to different circumsporozoite epitopes correlate with RTS,S/ AS01E malaria vaccine efficacy. Nature Communications, 10(2174), 1–13. https://doi.org/10.1038/s41467-019-10195-zspa
dc.relation.referencesDonahue, CG., Carruthers, v., Gilk, sd., Ward, GE. (2000). The Toxoplasma homolog of Plasmodium apical membrane antigen-1 (AMA-1) is a microneme protein secreted in response to elevated intracellular calcium levels. Mol. Biochem. Parasitol. 111:15–30spa
dc.relation.referencesDoolan, D. (Ed.). (2002). Malaria Methods and Protocols. New Jersey: Humana Press.spa
dc.relation.referencesDoolan, D., Dobaño, C., & Baird, J. (2009). Acquired immunity to Malaria. Clinical Microbiology Reviews, 22(1), 13–36. https://doi.org/10.1128/CMR.00025-08spa
dc.relation.referencesDrakeley, C., Corran, P., Coleman, P., Tongren, J., McDonald, S. L., Carneiro, I., … Riley, E. (2005). Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 5108–5113. https://doi.org/10.1073/pnas.0408725102spa
dc.relation.referencesDunbar, B. S., & Schwoebel, E. D. (1990). Preparation of Polyclonal Antibodies. Methods in Enzymology, 182(C), 663–670. https://doi.org/10.1016/0076-6879(90)82051-3spa
dc.relation.referencesEgan, J., Hoffman, S., Haynes, J., Sadoff, J., Schneider, I., Grau, G., … Gordon, D. (1993). Humoral immune responses in volunteers immunized with irradiated Plasmodium falciparum sporozoites. American Journal of Tropical Medicine and Hygiene, 49(2), 166–173. https://doi.org/10.4269/ajtmh.1993.49.166spa
dc.relation.referencesEl-Manzalawy, Y., Dobbs, D., & Honavar, V. (2008). Predicting linear B-cell epitopes using string kernels. J. Mol. Recognit, 21, 243–255. https://doi.org/10.1002/jmr.893spa
dc.relation.referencesEllis, R., Martin, L. B., Shaffer, D., Long, C., Miura, K., Fay, M., … Durbin, A. (2010). Phase 1 trial of the Plasmodium falciparum blood stage vaccine MSP1 42-C1/alhydrogel with and without CPG 7909 in malaria naïve adults. PLoS ONE, 5(1), 1–9. https://doi.org/10.1371/journal.pone.0008787spa
dc.relation.referencesEsen, M., Kremsner, P., Schleucher, R., Gässler, M., Imoukhuede, E., Imbault, N., … Mordmüller, B. (2009). Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate. Vaccine, 27(49), 6862–6868. https://doi.org/10.1016/j.vaccine.2009.09.011spa
dc.relation.referencesEspejo, F., Bermúdez, A., Vanegas, M., Rivera, Z., Torres, E., Salazar, L. M., & Patarroyo, M. E. (2005). Elongating modified conserved peptides eliminates their immunogenicity and protective efficacy against P. falciparum malaria. Journal of Structural Biology, 150(3), 245–258. https://doi.org/10.1016/j.jsb.2005.03.007spa
dc.relation.referencesEspejo, F., Cubillos, M., Mary Salazar, L., Guzmán, F., Urquiza, M., Ocampo, M., … Patarroyo, Mspa
dc.relation.referencesE. (2001). Structure, Immunogenicity, and Protectivity Relationship for the 1585 Malarial Peptide and Its Substitution Analogues (Vol. 113).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsSimulación del acoplamiento molecularspa
dc.subject.decsMolecular docking simulationeng
dc.subject.decsPlasmodium falciparumspa
dc.subject.decsPlasmodium bergheispa
dc.subject.decsAntígenos de protozoosspa
dc.subject.decsAntigens, protozoaneng
dc.subject.decsPlasmodium yoeliispa
dc.subject.decsMalaria-Tratamiento farmacológicospa
dc.subject.decsTécnicas Inmunológicasspa
dc.subject.decsImmunologic techniqueseng
dc.subject.proposalProteína MSP1spa
dc.subject.proposalPlasmodium falciparum 3D7spa
dc.subject.proposalPlasmodium berghei ANKAspa
dc.subject.proposalPlasmodium yoelii 17XLspa
dc.subject.proposalMalariaspa
dc.subject.proposalModificación amida reducidaspa
dc.subject.proposalAcoplamiento molecularspa
dc.subject.proposalMSP1 proteineng
dc.subject.proposalReduced amide modificationeng
dc.subject.proposalMolecular dockingeng
dc.titleExploración de modificaciones estructurales de un antígeno de la proteína MSP1 de Plasmodium spp y su influencia en su propiedad de reconocimiento molecular por sueros murinos y humanos, de personas de áreas postconflicto en Colombiaspa
dc.title.translatedExploration of structural modifications of an MSP1 protein antigen from Plasmodium spp and their influence on its molecular recognition property by murine and human sera from people from post-conflict areas in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleConvocatoria para el apoyo a proyectos de investigación y creación artística de la sede Bogotá de la Universidad Nacional de Colombia - 2019spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias - Farmacología.pdf
Tamaño:
3.78 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Farmacología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: