Efectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotina
dc.contributor.advisor | Lamprea Rodríguez, Marisol | |
dc.contributor.advisor | Cortés-Patiño, Diana | |
dc.contributor.author | Ballesteros-Acosta, Hans | |
dc.contributor.cvlac | Ballesteros-Acosta, Hans [0001711713#] | spa |
dc.contributor.orcid | Ballesteros-Acosta, Hans [0000000303879084] | spa |
dc.contributor.researchgate | Ballesteros-Acosta, Hans [Hans-Ballesteros-Acosta] | spa |
dc.contributor.researchgroup | Neurociencia Básica y Cognoscitiva | spa |
dc.date.accessioned | 2023-07-25T17:39:09Z | |
dc.date.available | 2023-07-25T17:39:09Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, fotografías, diagramas | spa |
dc.description.abstract | La interacción social resulta fundamental para el apropiado desarrollo del sistema nervioso y la adquisición de habilidades de supervivencia. Se ha demostrado que impedir las interacciones sociales durante la adolescencia aumenta los efectos de las drogas psicoactivas; sin embargo, existen pocos reportes sobre el impacto del aislamiento social sobre los efectos de la nicotina. El presente estudio evaluó los efectos del aislamiento social durante la adolescencia sobre (1) la acumulación del factor de transcripción ΔFosB en la corteza prelímbica, el núcleo accumbens y el núcleo paraventricular del tálamo, (2) la sensibilización a los efectos locomotores de la nicotina tras su administración repetida y (3) la preferencia condicionada de lugar inducida por diferentes dosis de nicotina (0,1 o 0,3 mg/kg). Los resultados indican que los animales aislados acumulan menos ΔFosB en las estructuras del circuito de recompensa evaluadas. El aislamiento no afectó los procesos de sensibilización locomotora inducida por dosis bajas de nicotina, pero sí se observó un efecto sobre la inducción de una mayor preferencia por lugares asociados con la nicotina. Dicho cambio se mantuvo por más de cuatro sesiones de extinción, únicamente para la dosis más baja. No se observaron incrementos significativos durante el restablecimiento de la asociación para ninguna de las dosis. Los resultados sugieren que el aislamiento social durante la adolescencia no afecta los procesos subyacentes a la expresión de la sensibilización locomotora, pero aumenta la sensibilidad de los animales a los efectos asociativos de la nicotina, incrementando el valor de incentivo de los contextos asociados con la misma. Este efecto podría estar mediado por reducciones en la acumulación de ΔFosB en las estructuras del circuito de recompensa. (Texto tomado de la fuente) | spa |
dc.description.abstract | Social interaction is essential for the proper development of the nervous system and the acquisition of survival skills. Preventing social interactions during adolescence has been shown to increase the effects of psychoactive drugs; however, there are few reports on the impact of social isolation on the effects of nicotine. The present study evaluated the effects of social isolation during adolescence on (1) the accumulation of the transcription factor ΔFosB in the prelimbic cortex, nucleus accumbens, and paraventricular nucleus of the thalamus, (2) sensitization to the locomotor effects of nicotine after repeated administration, and (3) conditioned place preference induced by different doses of nicotine (0.1 or 0.3 mg/kg). The results indicate that isolated animals accumulated less ΔFosB in the reward circuit structures evaluated. Isolation did not affect locomotor sensitization processes induced by low doses of nicotine but an effect on the induction of increased preference for nicotine-associated locations was observed. Such a change was maintained for more than four extinction sessions, only for the lowest dose. No significant increases were observed during reinstatement of the association for any of the doses. The results suggest that social isolation during adolescence does not affect the processes underlying the expression of locomotor sensitization but increases the sensitivity of animals to the associative effects of nicotine, increasing the incentive value of nicotine-associated contexts. This effect could be mediated by reductions in the accumulation of ΔFosB in reward circuit structures. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Maestría en Psicología | spa |
dc.format.extent | 104 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84265 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Humanas | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Humanas - Maestría en Psicología | spa |
dc.relation.references | Ahsan, H. M., I. de la Peña, J. B., Botanas, C. J., Kim, H. J., Yu, G. Y., & Cheong, J. H. (2014). Conditioned Place Preference and Self-Administration Induced by Nicotine in Adolescent and Adult Rats. Biomolecules & Therapeutics, 22(5), 460–466. https://doi.org/10.4062/biomolther.2014.056 | spa |
dc.relation.references | Alajaji, M., Lazenka, M. f., Kota, D., Wise, L. E., Younis, R. M., Carroll, F. I., Levine, A., Selley, D. E., Sim-Selley, L. J., & Damaj, M. I. (2016). Early adolescent nicotine exposure affects later-life cocaine reward in mice. Neuropharmacology, 105, 308–317. https://doi.org/10.1016/j.neuropharm.2016.01.032 | spa |
dc.relation.references | Arain, M., Mathur, P., Rais, A., Nel, W., Sandhu, R., Haque, M., Johal, L., & Sharma, S. (2013). Maturation of the Adolescent Brain. Neuropsychiatric Disease and Treatment, 9(9), 449–461. https://doi.org/10.2147/ndt.s39776 | spa |
dc.relation.references | Arakawa, H. (2018). Ethological approach to social isolation effects in behavioral studies of laboratory rodents. Behavioural Brain Research, 341, 98–108. https://doi.org/10.1016/j.bbr.2017.12.022 | spa |
dc.relation.references | Ashokan, A., Lim, J. W. H., Hang, N., & Mitra, R. (2018). Complex housing causes a robust increase in dendritic complexity and spine density of medial prefrontal cortical neurons. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-25399-4 | spa |
dc.relation.references | Baarendse, P. J. J., Counotte, D. S., O’Donnell, P., & Vanderschuren, L. J. M. J. (2013). Early Social Experience Is Critical for the Development of Cognitive Control and Dopamine Modulation of Prefrontal Cortex Function. Neuropsychopharmacology, 38(8), 1485–1494. https://doi.org/10.1038/npp.2013.47 | spa |
dc.relation.references | Ballesteros-Acosta, H., Martinez, M. A., Martin, V., Cortes-Patiño, D., & Lamprea, M. R. (2022, September 12). PLASTIC CHANGES ASSOCIATED WITH JUVENILE SOCIAL ISOLATION AND ITS EFFECTS OVER CONTEXT-CUE REWARD ASSOCIATIONS. 3rd FALAN Congress, Belém, Brazil. | spa |
dc.relation.references | Bastle, R. M., Peartree, N. A., Goenaga, J., Hatch, K. N., Henricks, A., Scott, S., Hood, L. E., & Neisewander, J. L. (2016). Immediate early gene expression reveals interactions between social and nicotine rewards on brain activity in adolescent male rats. Behavioural Brain Research, 313, 244–254. https://doi.org/10.1016/j.bbr.2016.07.024 | spa |
dc.relation.references | Belluzzi, J., Lee, A., Oliff, H., & Leslie, F. (2004). Age-dependent effects of nicotine on locomotor activity and conditioned place preference in rats. Psychopharmacology, 174(3). https://doi.org/10.1007/s00213-003-1758-6 | spa |
dc.relation.references | Bendersky, C. J., Milian, A. A., Andrus, M. D., De La Torre, U., & Walker, D. M. (2021). Long-Term Impacts of Post-weaning Social Isolation on Nucleus Accumbens Function. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.745406 | spa |
dc.relation.references | Bockman, C. S., Zeng, W., Hall, J., Mittelstet, B., Schwarzkopf, L., & Stairs, D. J. (2018). Nicotine drug discrimination and nicotinic acetylcholine receptors in differentially reared rats. Psychopharmacology, 235(5), 1415–1426. https://doi.org/10.1007/s00213-018-4850-7 | spa |
dc.relation.references | Bressan, R. A., & Crippa, J. A. (2005). The role of dopamine in reward and pleasure behaviour--review of data from preclinical research. Acta Psychiatrica Scandinavica. Supplementum, 111(427), 14–21. https://doi.org/10.1111/j.1600-0447.2005.00540.x | spa |
dc.relation.references | Burke, A. R., & Miczek, K. A. (2015). Escalation of cocaine self-administration in adulthood after social defeat of adolescent rats: role of social experience and adaptive coping behavior. Psychopharmacology, 232(16), 3067–3079. https://doi.org/10.1007/s00213-015-3947-5 | spa |
dc.relation.references | Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F., & Renzi, P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behavioural Brain Research, 134(1), 49–57. https://doi.org/10.1016/S0166-4328(01)00452-1 | spa |
dc.relation.references | Caruso, M. J., Seemiller, L. R., Fetherston, T. B., Miller, C. N., Reiss, D. E., Cavigelli, S. A., & Kamens, H. M. (2018). Adolescent social stress increases anxiety-like behavior and ethanol consumption in adult male and female C57BL/6J mice. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28381-2 | spa |
dc.relation.references | Cavazos‐Rehg, P., Li, X., Kasson, E., Kaiser, N., Borodovsky, J., & Grucza, R. A. (2021). Investigating the role of familial and peer‐related factors on electronic nicotine delivery systems (ENDS) use among U.S. adolescents. Journal of Adolescence, 87(1), 98–105. https://doi.org/10.1016/j.adolescence.2021.01.003 | spa |
dc.relation.references | Chen, J., Kelz, M. B., Hope, B. T., Nakabeppu, Y., & Nestler, E. J. (1997). Chronic Fos-Related Antigens: Stable Variants of ΔFosB Induced in Brain by Chronic Treatments. Journal of Neuroscience, 17(13), 4933–4941. https://doi.org/10.1523/JNEUROSCI.17-13-04933.1997 | spa |
dc.relation.references | Counotte, D. S., Spijker, S., Van de Burgwal, L. H., Hogenboom, F., Schoffelmeer, A. N. M., De Vries, T. J., Smit, A. B., & Pattij, T. (2009). Long-lasting cognitive deficits resulting from adolescent nicotine exposure in rats. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 34(2), 299–306. https://doi.org/10.1038/npp.2008.96 | spa |
dc.relation.references | Crofton, E. J., Zhang, Y., & Green, T. A. (2015). Inoculation stress hypothesis of environmental enrichment. Neuroscience & Biobehavioral Reviews, 49, 19–31. https://doi.org/10.1016/j.neubiorev.2014.11.017 | spa |
dc.relation.references | Di Ciano, P., Robbins, T. W., & Everitt, B. J. (2008). Differential Effects of Nucleus Accumbens Core, Shell, or Dorsal Striatal Inactivations on the Persistence, Reacquisition, or Reinstatement of Responding for a Drug-Paired Conditioned Reinforcer. Neuropsychopharmacology, 33(6), 1413–1425. https://doi.org/10.1038/sj.npp.1301522 | spa |
dc.relation.references | DiFranza, J., & Wellman, R. (2007). Sensitization to nicotine: How the animal literature might inform future human research. Nicotine & Tobacco Research, 9(1), 9–20. https://doi.org/10.1080/14622200601078277 | spa |
dc.relation.references | Doremus-Fitzwater, T. L., Varlinskaya, E. I., & Spear, L. P. (2010). Motivational systems in adolescence: Possible implications for age differences in substance abuse and other risk-taking behaviors. Brain and Cognition, 72(1), 114–123. https://doi.org/10.1016/j.bandc.2009.08.008 | spa |
dc.relation.references | Douglas, L. A., Varlinskaya, E. I., & Spear, L. P. (2004). Rewarding properties of social interactions in adolescent and adult male and female rats: Impact of social versus isolate housing of subjects and partners. Developmental Psychobiology, 45(3), 153–162. https://doi.org/10.1002/dev.20025 | spa |
dc.relation.references | D’Souza, M. S., & Markou, A. (2013). The “Stop” and “Go” of Nicotine Dependence: Role of GABA and Glutamate. Cold Spring Harbor Perspectives in Medicine, 3(6), a012146–a012146. https://doi.org/10.1101/cshperspect.a012146 | spa |
dc.relation.references | DuRant, R. H., Smith, J. A., Kreiter, S. R., & Krowchuk, D. P. (1999). The Relationship Between Early Age of Onset of Initial Substance Use and Engaging in Multiple Health Risk Behaviors Among Young Adolescents. Archives of Pediatrics & Adolescent Medicine, 153(3). https://doi.org/10.1001/archpedi.153.3.286 | spa |
dc.relation.references | Eddy, M. C., & Green, J. T. (2017). Running wheel exercise reduces renewal of extinguished instrumental behavior and alters medial prefrontal cortex neurons in adolescent, but not adult, rats. Behavioral Neuroscience, 131(6), 460–469. https://doi.org/10.1037/bne0000218 | spa |
dc.relation.references | Eliasson, B. (2005). Los efectos del tabaco sobre las complicaciones diabéticas. Rev. Diabetes Voice, 50. https://diabetesmadrid.org/ | spa |
dc.relation.references | El Rawas, R., Amaral, I. M., & Hofer, A. (2020). Social interaction reward: A resilience approach to overcome vulnerability to drugs of abuse. European Neuropsychopharmacology, 37, 12–28. https://doi.org/10.1016/j.euroneuro.2020.06.008 | spa |
dc.relation.references | El Rawas, R., Klement, S., Kummer, K. K., Fritz, M., Dechant, G., Saria, A., & Zernig, G. (2012). Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction. Frontiers in Behavioral Neuroscience, 6. https://doi.org/10.3389/fnbeh.2012.00063 | spa |
dc.relation.references | El Rawas, R., Thiriet, N., Lardeux, V., Jaber, M., & Solinas, M. (2009). Environmental enrichment decreases the rewarding but not the activating effects of heroin. Psychopharmacology, 203(3), 561–570. https://doi.org/10.1007/s00213-008-1402-6 | spa |
dc.relation.references | Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience, 8(11), 1481–1489. https://doi.org/10.1038/nn1579 | spa |
dc.relation.references | Ewin, S. E., Kangiser, M. M., & Stairs, D. J. (2015). The effects of environmental enrichment on nicotine condition place preference in male rats. Experimental and Clinical Psychopharmacology, 23(5), 387–394. https://doi.org/10.1037/pha0000024 | spa |
dc.relation.references | Faraday, M. M., Elliott, B. M., Phillips, J. M., & Grunberg, N. E. (2003). Adolescent and adult male rats differ in sensitivity to nicotine’s activity effects. Pharmacology Biochemistry and Behavior, 74(4), 917–931. https://doi.org/10.1016/s0091-3057(03)00024-8 | spa |
dc.relation.references | Faure, P., Tolu, S., Valverde, S., & Naudé, J. (2014). Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience, 282, 86–100. https://doi.org/10.1016/j.neuroscience.2014.05.040 | spa |
dc.relation.references | Feja, M., Hayn, L., & Koch, M. (2014). Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 54, 31–42. https://doi.org/10.1016/j.pnpbp.2014.04.012 | spa |
dc.relation.references | Fenoglio, K. A., Chen, Y., & Baram, T. Z. (2006). Neuroplasticity of the hypothalamic–pituitary–adrenal (HPA) axis early in life requires recurrent recruitment of stress-regulating brain regions. Frontiers in Neuroendocrinology, 27(1), 50–51. https://doi.org/10.1016/j.yfrne.2006.03.103 | spa |
dc.relation.references | Ferdman, N., Murmu, R., Bock, J., Braun, K., & Leshem, M. (2007). Weaning age, social isolation, and gender, interact to determine adult explorative and social behavior, and dendritic and spine morphology in prefrontal cortex of rats. Behavioural Brain Research, 180(2), 174–182. https://doi.org/10.1016/j.bbr.2007.03.011 | spa |
dc.relation.references | Fosnocht, A. Q., Lucerne, K. E., Ellis, A. S., Olimpo, N. A., & Briand, L. A. (2019). Adolescent social isolation increases cocaine seeking in male and female mice. Behavioural Brain Research, 359, 589–596. https://doi.org/10.1016/j.bbr.2018.10.007 | spa |
dc.relation.references | Fudala, P. J., Teoh, K. W., & Iwamoto, E. T. (1985). Pharmacologic characterization of nicotine-induced conditioned place preference. Pharmacology Biochemistry and Behavior, 22(2), 237–241. https://doi.org/10.1016/0091-3057(85)90384-3 | spa |
dc.relation.references | Gobierno de Colombia. (2020). Encuesta nacional de consumo de sustanciaspsicoactivas (ENCSPA). Resultados 2019 [National survey on psychoactivesubstances consumption. Results 2019]. DANE, Gobierno de Colombia.https://bit.ly/3z9ywwr | spa |
dc.relation.references | Gomez, A. M., Midde, N. M., Mactutus, C. F., Booze, R. M., & Zhu, J. (2012). Environmental Enrichment Alters Nicotine-Mediated Locomotor Sensitization and Phosphorylation of DARPP-32 and CREB in Rat Prefrontal Cortex. PLoS ONE, 7(8), e44149. https://doi.org/10.1371/journal.pone.0044149 | spa |
dc.relation.references | Gomez, A. M., Sun, W.-L., Midde, N. M., Harrod, S. B., & Zhu, J. (2015). Effects of environmental enrichment on ERK1/2 phosphorylation in the rat prefrontal cortex following nicotine-induced sensitization or nicotine self-administration. European Journal of Neuroscience, 41(1), 109–119. https://doi.org/10.1111/ejn.12758 | spa |
dc.relation.references | Goriounova, N. A., & Mansvelder, H. D. (2012). Short- and Long-Term Consequences of Nicotine Exposure during Adolescence for Prefrontal Cortex Neuronal Network Function. Cold Spring Harbor Perspectives in Medicine, 2(12). https://doi.org/10.1101/cshperspect.a012120 | spa |
dc.relation.references | Gould, T. J., & Leach, P. T. (2014). Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiology of Learning and Memory, 107, 108–132. https://doi.org/10.1016/j.nlm.2013.08.004 | spa |
dc.relation.references | Green, T. A., Cain, M. E., Thompson, M., & Bardo, M. T. (2003). Environmental enrichment decreases nicotine-induced hyperactivity in rats. Psychopharmacology, 170(3), 235–241. https://doi.org/10.1007/s00213-003-1538-3 | spa |
dc.relation.references | Grueter, B. A., Robison, A. J., Neve, R. L., Nestler, E. J., & Malenka, R. C. (2012). FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proceedings of the National Academy of Sciences, 110(5), 1923–1928. https://doi.org/10.1073/pnas.1221742110 | spa |
dc.relation.references | Hachimine-Merli, P. (2017). The Role of Glutamate Neurotransmission in the Ventral Tegmental Area in the Expression of Conditioned Approach Learning [Thesis]. | spa |
dc.relation.references | Haight, J. L., & Flagel, S. B. (2014). A potential role for the paraventricular nucleus of the thalamus in mediating individual variation in Pavlovian conditioned responses. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00079 | spa |
dc.relation.references | Haj-Mirzaian, A., Nikbakhsh, R., Ramezanzadeh, K., Rezaee, M., Amini-Khoei, H., Haj-Mirzaian, A., Ghesmati, M., Afshari, K., Haddadi, N.-S., & Dehpour, A. R. (2019). Involvement of opioid system in behavioral despair induced by social isolation stress in mice. Biomedicine & Pharmacotherapy, 109, 938–944. https://doi.org/10.1016/j.biopha.2018.10.144 | spa |
dc.relation.references | Hall, S., Deurveilher, S., Ko, K. R., Burns, J., & Semba, K. (2017). Region-specific increases in FosB/ΔFosB immunoreactivity in the rat brain in response to chronic sleep restriction. Behavioural Brain Research, 322, 9–17. https://doi.org/10.1016/j.bbr.2017.01.024 | spa |
dc.relation.references | Hearing, M. C., Jedynak, J., Ebner, S. R., Ingebretson, A., Asp, A. J., Fischer, R. A., Schmidt, C., Larson, E. B., & Thomas, M. J. (2016). Reversal of morphine-induced cell-type–specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement. Proceedings of the National Academy of Sciences, 113(3), 757–762. https://doi.org/10.1073/pnas.1519248113 | spa |
dc.relation.references | Henley, J. M., & Wilkinson, K. A. (2016). Synaptic AMPA receptor composition in development, plasticity and disease. Nature Reviews Neuroscience, 17(6), 337–350. https://doi.org/10.1038/nrn.2016.37 | spa |
dc.relation.references | Holliday, E., & Gould, T. J. (2016). Nicotine, adolescence, and stress: A review of how stress can modulate the negative consequences of adolescent nicotine abuse. Neuroscience & Biobehavioral Reviews, 65, 173–184. https://doi.org/10.1016/j.neubiorev.2016.04.003 | spa |
dc.relation.references | Hoops, D., & Flores, C. (2017). Making Dopamine Connections in Adolescence. Trends in Neurosciences, 40(12), 709–719. https://doi.org/10.1016/j.tins.2017.09.004 | spa |
dc.relation.references | Huston, J. P., Silva, M. A. de S., Topic, B., & Müller, C. P. (2013). What’s conditioned in conditioned place preference? Trends in Pharmacological Sciences, 34(3), 162–166. https://doi.org/10.1016/j.tips.2013.01.004 | spa |
dc.relation.references | Iglesias, A. G., & Flagel, S. B. (2021). The Paraventricular Thalamus as a Critical Node of Motivated Behavior via the Hypothalamic-Thalamic-Striatal Circuit. Frontiers in Integrative Neuroscience, 15. https://doi.org/10.3389/fnint.2021.706713 | spa |
dc.relation.references | Iñiguez, S. D., Warren, B. L., Parise, E. M., Alcantara, L. F., Schuh, B., Maffeo, M. L., Manojlovic, Z., & Bolaños-Guzmán, C. A. (2009). Nicotine Exposure during Adolescence Induces a Depression-Like State in Adulthood. Neuropsychopharmacology, 34(6), 1609–1624. https://doi.org/10.1038/npp.2008.220 | spa |
dc.relation.references | Jentsch, J. D., Ashenhurst, J. R., Cervantes, M. C., James, A. S., Groman, S. M., & Pennington, Z. T. (2014). Dissecting Impulsivity and its Relationships to Drug Addictions. Annals of the New York Academy of Sciences, 1327, 1–26. https://doi.org/10.1111/nyas.12388 | spa |
dc.relation.references | Jeong, Y. H., Kim, J. M., Yoo, J., Lee, S. H., Kim, H.-S., & Suh, Y.-H. (2011). Environmental enrichment compensates for the effects of stress on disease progression in Tg2576 mice, an Alzheimer’s disease model. Journal of Neurochemistry, 119(6), 1282–1293. https://doi.org/10.1111/j.1471-4159.2011.07514.x | spa |
dc.relation.references | Kandel, E. R., & Kandel, D. B. (2014). A Molecular Basis for Nicotine as a Gateway Drug. New England Journal of Medicine, 371(10), 932–943. https://doi.org/10.1056/nejmsa1405092 | spa |
dc.relation.references | Karkhanis, A. N., Leach, A. C., Yorgason, J. T., Uneri, A., Barth, S., Niere, F., Alexander, N. J., Weiner, J. L., McCool, B. A., Raab-Graham, K. F., Ferris, M. J., & Jones, S. R. (2018). Chronic Social Isolation Stress during Peri-Adolescence Alters Presynaptic Dopamine Terminal Dynamics via Augmentation in Accumbal Dopamine Availability. ACS Chemical Neuroscience, 10(4), 2033–2044. https://doi.org/10.1021/acschemneuro.8b00360 | spa |
dc.relation.references | Kelz, M. B., Chen, J., Carlezon Jr, W. A., Whisler, K., Gilden, L., Beckmann, A. M., ... & Nestler, E. J. (1999). Expression of the transcription factor? FosB in the brain controls sensitivity to cocaine. Nature, 401(6750), 272-276. DOI: 10.1038/45790 | spa |
dc.relation.references | Kenney, J. W., & Gould, T. J. (2008). Nicotine enhances context learning but not context-shock associative learning. Behavioral Neuroscience, 122(5), 1158–1165. https://doi.org/10.1037/a0012807 | spa |
dc.relation.references | Kim, S., Kwok, S., Mayes, L. C., Potenza, M. N., Rutherford, H. J. V., & Strathearn, L. (2017). Early adverse experience and substance addiction: dopamine, oxytocin, and glucocorticoid pathways. Annals of the New York Academy of Sciences, 1394(1), 74–91. https://doi.org/10.1111/nyas.13140 | spa |
dc.relation.references | Kirouac, G. (2015). Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neuroscience & Biobehavioral Reviews, 56, 315–329. https://doi.org/10.1016/j.neubiorev.2015.08.005 | spa |
dc.relation.references | Ko, J.-H. (2017). Social isolation effect on nicotine consumption in adolescent mice [Thesis]. | spa |
dc.relation.references | Kooiker, C. L., Birnie, M. T., & Baram, T. Z. (2021). The Paraventricular Thalamus: A Potential Sensor and Integrator of Emotionally Salient Early-Life Experiences. Frontiers in Behavioral Neuroscience, 15. https://doi.org/10.3389/fnbeh.2021.673162 | spa |
dc.relation.references | Kowiański, P., Lietzau, G., Steliga, A., Czuba, E., Ludkiewicz, B., Waśkow, M., Spodnik, J. H., & Moryś, J. (2018). Nicotine-induced CREB and DeltaFosB activity is modified by caffeine in the brain reward system of the rat. Journal of Chemical Neuroanatomy, 88, 1–12. https://doi.org/10.1016/j.jchemneu.2017.10.005 | spa |
dc.relation.references | Kupferschmidt, D. A., Funk, D., Erb, S., & Lê, A. D. (2010). Age-related effects of acute nicotine on behavioural and neuronal measures of anxiety. Behavioural Brain Research, 213(2), 288–292. https://doi.org/10.1016/j.bbr.2010.05.022 | spa |
dc.relation.references | Lapiz, A. Fulford, S. Muchimapura, R. Mason, T. Parker, C.A. Marsden (2003) Influence of Postweaning Social Isolation in the Rat on Brain Development,Conditioned Behavior, and Neurotransmission, Neurosci. Behav. Physiol. 33 13–29, https://doi.org/10.1023/A:1021171129766. | spa |
dc.relation.references | Laviola, G., Macri, S., Morley-Fletcher, S., & Adriani, W. (2003). Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neuroscience & Biobehavioral Reviews, 27(1-2), 19–31. https://doi.org/10.1016/s0149-7634(03)00006-x | spa |
dc.relation.references | Lee, H., Jang, M., Kim, W., & Noh, J. (2017). Differential effects of pair housing on voluntary nicotine consumption: a comparison between male and female adolescent rats. Psychopharmacology, 234(16), 2463–2473. https://doi.org/10.1007/s00213-017-4636-3 | spa |
dc.relation.references | Le Foll, B., & Goldberg, S. R. (2005). Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology, 178(4), 481–492. https://doi.org/10.1007/s00213-004-2021-5 | spa |
dc.relation.references | Le Foll, B., Schwartz, J-C., & Sokoloff, P. (2003). Disruption of nicotine conditioning by dopamine D3 receptor ligands. Molecular Psychiatry, 8(2), 225–230. https://doi.org/10.1038/sj.mp.4001202 | spa |
dc.relation.references | Lehmann, M. L., & Herkenham, M. (2011). Environmental Enrichment Confers Stress Resiliency to Social Defeat through an Infralimbic Cortex-Dependent Neuroanatomical Pathway. Journal of Neuroscience, 31(16), 6159–6173. https://doi.org/10.1523/jneurosci.0577-11.2011 | spa |
dc.relation.references | Leslie, F. M. (2020). Unique, long-term effects of nicotine on adolescent brain. Pharmacology Biochemistry and Behavior, 197(173010), 173010. https://doi.org/10.1016/j.pbb.2020.173010 | spa |
dc.relation.references | Liu, Y., & McNally, G. P. (2021). Dopamine and relapse to drug seeking. Journal of Neurochemistry, 157(5), 1572–1584. https://doi.org/10.1111/jnc.15309 | spa |
dc.relation.references | Lobo, M. K., Zaman, S., Damez-Werno, D. M., Koo, J. W., Bagot, R. C., DiNieri, J. A., Nugent, A., Finkel, E., Chaudhury, D., Chandra, R., Riberio, E., Rabkin, J., Mouzon, E., Cachope, R., Cheer, J. F., Han, M.-H. ., Dietz, D. M., Self, D. W., Hurd, Y. L., & Vialou, V. (2013). FosB Induction in Striatal Medium Spiny Neuron Subtypes in Response to Chronic Pharmacological, Emotional, and Optogenetic Stimuli. Journal of Neuroscience, 33(47), 18381–18395. https://doi.org/10.1523/jneurosci.1875-13.2013 | spa |
dc.relation.references | Lukkes, J. L., Mokin, M. V., Scholl, J. L., & Forster, G. L. (2009). Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Hormones and Behavior, 55(1), 248–256. https://doi.org/10.1016/j.yhbeh.2008.10.014 | spa |
dc.relation.references | Lukkes, J. L., Watt, M., Lowry, C., & Forster, G. (2009). Consequences of post-weaning social isolation on anxiety behavior and related neural circuits in rodents. Frontiers in Behavioral Neuroscience, 3. https://doi.org/10.3389/neuro.08.018.2009 | spa |
dc.relation.references | Man, H.-Y. (2011). GluA2-lacking, calcium-permeable AMPA receptors — inducers of plasticity? Current Opinion in Neurobiology, 21(2), 291–298. https://doi.org/10.1016/j.conb.2011.01.001 | spa |
dc.relation.references | Martin, V., Mejia, L. V., Martinez, M. A., Ballesteros-Acosta, H., Cortés-Patiño, D., & Lamprea, M. (2022, September 12). Modulatory role of social isolation on the effects of acute nicotine in behavioral inhibition and basal corticosterone levels. 3rd FALAN Congress, Belém, Brazil. | spa |
dc.relation.references | Marttila, K., Raattamaa, H., & Ahtee, L. (2006). Effects of chronic nicotine administration and its withdrawal on striatal FosB/ΔFosB and c-Fos expression in rats and mice. Neuropharmacology, 51(1), 44–51. https://doi.org/10.1016/j.neuropharm.2006.02.014 | spa |
dc.relation.references | Mastrogiovanni, N. A., Wheeler, A. K., & Clemens, K. J. (2021). Social isolation enhances cued-reinstatement of sucrose and nicotine seeking, but this is reversed by a return to social housing. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81966-2 | spa |
dc.relation.references | Matta, S. G., Balfour, D. J., Benowitz, N. L., Boyd, R. T., Buccafusco, J. J., Caggiula, A. R., ... & Zirger, J. M. (2007). Guidelines on nicotine dose selection for in vivo research. Psychopharmacology, 190, 269-319. DOI: 10.1007/s00213-006-0441-0 | spa |
dc.relation.references | McClung, C. A., & Nestler, E. J. (2003). Regulation of gene expression and cocaine reward by CREB and ΔFosB. Nature Neuroscience, 6(11), 1208–1215. https://doi.org/10.1038/nn1143 | spa |
dc.relation.references | McCormick, C. M., & Ibrahim, F. N. (2007). Locomotor activity to nicotine and Fos immunoreactivity in the paraventricular nucleus of the hypothalamus in adolescent socially-stressed rats. Pharmacology Biochemistry and Behavior, 86(1), 92–102. https://doi.org/10.1016/j.pbb.2006.12.012 | spa |
dc.relation.references | McCutcheon, J. E., & Marinelli, M. (2009). Age matters. European Journal of Neuroscience, 29(5), 997–1014. https://doi.org/10.1111/j.1460-9568.2009.06648.x | spa |
dc.relation.references | McFarland, K., & Kalivas, P. W. (2001). The Circuitry Mediating Cocaine-Induced Reinstatement of Drug-Seeking Behavior. The Journal of Neuroscience, 21(21), 8655–8663. https://doi.org/10.1523/jneurosci.21-21-08655.2001 | spa |
dc.relation.references | McKendrick, G., & Graziane, N. M. (2020). Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Frontiers in Behavioral Neuroscience, 14. https://doi.org/10.3389/fnbeh.2020.582147 | spa |
dc.relation.references | Meir Drexler, S., Merz, C. J., Jentsch, V. L., & Wolf, O. T. (2019). How stress and glucocorticoids timing-dependently affect extinction and relapse. Neuroscience & Biobehavioral Reviews, 98, 145–153. https://doi.org/10.1016/j.neubiorev.2018.12.029 | spa |
dc.relation.references | Miguel-Aguilar, C. F., Rodríguez-Bolaños, R. D. los Á., Caballero, M., Arillo-Santillán, E., & Reynales-Shigematsu, L. M. (2017). Fumar entre adolescentes: análisis cuantitativo y cualitativo de factores psicosociales asociados con la decisión de fumar en escolares mexicanos. Salud Pública de México, 59, 63. https://doi.org/10.21149/7835 | spa |
dc.relation.references | Mosaferi, B., Babri, S., Ebrahimi, H., & Mohaddes, G. (2015). Enduring effects of post-weaning rearing condition on depressive- and anxiety-like behaviors and motor activity in male rats. Physiology & Behavior, 142, 131–136. https://doi.org/10.1016/j.physbeh.2015.02.015 | spa |
dc.relation.references | Mukhara, D., Banks, M. L., & Neigh, G. N. (2018). Stress as a Risk Factor for Substance Use Disorders: A Mini-Review of Molecular Mediators. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00309 | spa |
dc.relation.references | Muller, D. L., & Unterwald, E. M. (2005). D1 Dopamine Receptors Modulate ΔFosB Induction in Rat Striatum after Intermittent Morphine Administration. Journal of Pharmacology and Experimental Therapeutics, 314(1), 148–154. https://doi.org/10.1124/jpet.105.083410 | spa |
dc.relation.references | Mumtaz, F., Khan, M. I., Zubair, M., & Dehpour, A. R. (2018). Neurobiology and consequences of social isolation stress in animal model—A comprehensive review. Biomedicine & Pharmacotherapy, 105, 1205–1222. https://doi.org/10.1016/j.biopha.2018.05.086 | spa |
dc.relation.references | Nader, J., Claudia, C., Rawas, R. E., Favot, L., Jaber, M., Thiriet, N., & Solinas, M. (2012). Loss of Environmental Enrichment Increases Vulnerability to Cocaine Addiction. Neuropsychopharmacology, 37(7), 1579–1587. https://doi.org/10.1038/npp.2012.2 | spa |
dc.relation.references | Nestler, E. J. (2015). ΔFosB: a transcriptional regulator of stress and antidepressant responses. European Journal of Pharmacology, 753, 66–72. https://doi.org/10.1016/j.ejphar.2014.10.034 | spa |
dc.relation.references | Nestler, E. J., Barrot, M., & Self, D. W. (2001). ΔFosB: A sustained molecular switch for addiction. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11042–11046. https://doi.org/10.1073/pnas.191352698 | spa |
dc.relation.references | Niedhammer, I., David, S., Degioanni, S., Drummond, A., & Philip, P. (2010). Workplace Bullying and Psychotropic Drug Use: The Mediating Role of Physical and Mental Health Status. The Annals of Occupational Hygiene, 55(2). https://doi.org/10.1093/annhyg/meq086 | spa |
dc.relation.references | Noback, M., Zhang, G., White, N., Barrow, J. C., & Carr, G. V. (2021). Post-weaning social isolation increases ΔFosB/FosB protein expression in sex-specific patterns in the prelimbic/infralimbic cortex and hippocampus in mice. Neuroscience Letters, 740, 135423. https://doi.org/10.1016/j.neulet.2020.135423 | spa |
dc.relation.references | Noschang, C., Lampert, C., Krolow, R., & de Almeida, R. M. M. (2021). Social isolation at adolescence: a systematic review on behaviour related to cocaine, amphetamine and nicotine use in rats and mice. Psychopharmacology, 238(4), 927–947. https://doi.org/10.1007/s00213-021-05777-z | spa |
dc.relation.references | Novak, G., Seeman, P., & Le Foll, B. (2010). Exposure to Nicotine Produces an Increase in Dopamine D2HighReceptors: A Possible Mechanism for Dopamine Hypersensitivity. International Journal of Neuroscience, 120(11), 691–697. https://doi.org/10.3109/00207454.2010.513462 | spa |
dc.relation.references | Novoa, C., Solano, J. L., Ballesteros-Acosta, H. N., Lamprea, M. R., & Ortega, L. A. (2022). Nicotine Differentially Modulates Emotional-Locomotor Interactions for Adult or Adolescent Rats. Revista Colombiana de Psicología, 31(1), 13–22. https://doi.org/10.15446/rcp.v31n1.89822 | spa |
dc.relation.references | Oficina de Naciones Unidas Contra la Droga y el Delito (UNODC). (2017). Tercer estudio epidemiológico andino sobre consumo de drogas en la población universitaria de Colombia 2016. https://www.unodc.org/colombia/es/press/2017/octubre/estudio-consumo-de-drogas-en-poblacion-universitaria.html. | spa |
dc.relation.references | Ohmura, Y., Tsutsui-Kimura, I., & Yoshioka, M. (2012). Impulsive Behavior and Nicotinic Acetylcholine Receptors. Journal of Pharmacological Sciences, 118(4), 413–422. https://doi.org/10.1254/jphs.11r06cr | spa |
dc.relation.references | Ortega, L. A., Tracy, B. A., Gould, T. J., & Parikh, V. (2013). Effects of chronic low- and high-dose nicotine on cognitive flexibility in C57BL/6J mice. Behavioural Brain Research, 238, 134–145. https://doi.org/10.1016/j.bbr.2012.10.032 | spa |
dc.relation.references | O’Dell, L. E. (2009). A psychobiological framework of the substrates that mediate nicotine use during adolescence. Neuropharmacology, 56 Suppl 1, 263–278. https://doi.org/10.1016/j.neuropharm.2008.07.039 | spa |
dc.relation.references | Palmatier, M. I., Matteson, G. L., Black, J. J., Liu, X., Caggiula, A. R., Craven, L., Donny, E. C., & Sved, A. F. (2007). The reinforcement enhancing effects of nicotine depend on the incentive value of non-drug reinforcers and increase with repeated drug injections. Drug and Alcohol Dependence, 89(1), 52–59. https://doi.org/10.1016/j.drugalcdep.2006.11.020 | spa |
dc.relation.references | Pang, T. Y. C., & Hannan, A. J. (2013). Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology, 64, 515–528. https://doi.org/10.1016/j.neuropharm.2012.06.029 | spa |
dc.relation.references | Pascual, M. M., Pastor, V., & Bernabeu, R. O. (2009). Nicotine-conditioned place preference induced CREB phosphorylation and Fos expression in the adult rat brain. Psychopharmacology, 207(1), 57–71. https://doi.org/10.1007/s00213-009-1630-4 | spa |
dc.relation.references | Pawlak, C., & Schwarting, R. (2002). Object preference and nicotine consumption in rats with high vs. low rearing activity in a novel open field. Pharmacology Biochemistry and Behavior, 73(3), 679–687. https://doi.org/10.1016/s0091-3057(02)00852-3 | spa |
dc.relation.references | Paxinos, G., & Watson, C. (2018). The rat brain in stereotaxic coordinates. Elsevier Academic Press. | spa |
dc.relation.references | Perrotti, L. I., Hadeishi, Y., Ulery, P., Barrot, M., Monteggia, L., Duman, R., & Nestler, E. (2004). Induction of FosB in Reward-Related Brain Structures after Chronic Stress. Journal of Neuroscience, 24(47), 10594–10602. https://doi.org/10.1523/jneurosci.2542-04.2004 | spa |
dc.relation.references | Perrotti, L. I., Weaver, R. R., Robison, B., Renthal, W., Maze, I., Yazdani, S., Elmore, R. G., Knapp, D. J., Selley, D. E., Martin, B. R., Sim-Selley, L., Bachtell, R. K., Self, D. W., & Nestler, E. J. (2008). Distinct patterns of ΔFosB induction in brain by drugs of abuse. Synapse, 62(5), 358–369. https://doi.org/10.1002/syn.20500 | spa |
dc.relation.references | Peters, J., LaLumiere, R. T., & Kalivas, P. W. (2008). Infralimbic Prefrontal Cortex Is Responsible for Inhibiting Cocaine Seeking in Extinguished Rats. Journal of Neuroscience, 28(23), 6046–6053. https://doi.org/10.1523/jneurosci.1045-08.2008 | spa |
dc.relation.references | Phillipson, O. T. (1979). Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: A horseradish peroxidase study in the rat. The Journal of Comparative Neurology, 187(1), 117–143. https://doi.org/10.1002/cne.901870108 | spa |
dc.relation.references | Picciotto, M. R., Addy, N. A., Mineur, Y. S., & Brunzell, D. H. (2008). It’s not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Progress in Neurobiology, 84(4), 329–342. https://doi.org/10.1016/j.pneurobio.2007.12.005 | spa |
dc.relation.references | Picciotto, M. R., Brunzell, D. H., & Caldarone, B. J. (2002). Effect of nicotine and nicotinic receptors on anxiety and depression. Neuroreport, 13(9), 1097–1106. https://doi.org/10.1097/00001756-200207020-00006 | spa |
dc.relation.references | Pistillo, F., Clementi, F., Zoli, M., & Gotti, C. (2015). Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: Focus on nicotine effects. Progress in Neurobiology, 124, 1–27. https://doi.org/10.1016/j.pneurobio.2014.10.002 | spa |
dc.relation.references | Pistillo, F., Fasoli, F., Moretti, M., McClure-Begley, T., Zoli, M., Marks, M. J., & Gotti, C. (2016). Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner. Pharmacological Research, 103, 167–176. https://doi.org/10.1016/j.phrs.2015.11.016 | spa |
dc.relation.references | Pitchers, K. K., Vialou, V., Nestler, E. J., Laviolette, S. R., Lehman, M. N., & Coolen, L. M. (2013). Natural and Drug Rewards Act on Common Neural Plasticity Mechanisms with FosB as a Key Mediator. Journal of Neuroscience, 33(8), 3434–3442. https://doi.org/10.1523/jneurosci.4881-12.2013 | spa |
dc.relation.references | Pulgar Muñoz, S., & Fernández-Luna, A. (2018). Práctica de actividad física, consumo de tabaco y alcohol y sus efectos en la salud respiratoria de los jóvenes universitarios (Physical activity, smoking and alcohol consumption and their effects on the respiratory health of college students). Retos, 35, 130–135. https://doi.org/10.47197/retos.v0i35.60603 | spa |
dc.relation.references | Pushkin, A. N., Eugene, A. J., Lallai, V., Torres-Mendoza, A., Fowler, J. P., Chen, E., & Fowler, C. D. (2019). Cannabinoid and nicotine exposure during adolescence induces sex-specific effects on anxiety- and reward-related behaviors during adulthood. PLOS ONE, 14(1), e0211346. https://doi.org/10.1371/journal.pone.0211346 | spa |
dc.relation.references | Ribeiro Do Couto, B., Aguilar, M. A., Lluch, J., Rodríguez-Arias, M., & Miñarro, J. (2009). Social experiences affect reinstatement of cocaine-induced place preference in mice. Psychopharmacology, 207(3), 485–498. https://doi.org/10.1007/s00213-009-1678-1 | spa |
dc.relation.references | Robison, A. J., & Nestler, E. J. (2021). ΔFOSB: A Potentially Druggable Master Orchestrator of Activity-Dependent Gene Expression. ACS Chemical Neuroscience, 13(3), 296–307. https://doi.org/10.1021/acschemneuro.1c00723 | spa |
dc.relation.references | Romeo, R. D. (2010). Pubertal maturation and programming of hypothalamic–pituitary–adrenal reactivity. Frontiers in Neuroendocrinology, 31(2), 232–240. https://doi.org/10.1016/j.yfrne.2010.02.004 | spa |
dc.relation.references | Ruffle, J. K. (2014). Molecular neurobiology of addiction: what’s all the (Δ)FosB about? The American Journal of Drug and Alcohol Abuse, 40(6), 428–437. https://doi.org/10.3109/00952990.2014.933840 | spa |
dc.relation.references | Ruiz, A. M., Gómez, I. R., Rubio, C., Revert, C., & Hardisson, A. (2004). Efectos tóxicos del tabaco. Revista de toxicología, 21(2-3), 64-71. | spa |
dc.relation.references | Rupprecht LE, Smith TT, Schassburger RL, Buffalari DM, Sved AF, Donny EC. Behavioral mechanisms underlying nicotine reinforcement. In: The Neuropharmacology of Nicotine Dependence. Switzerland: Springer International Publishing; 2015:19–53 | spa |
dc.relation.references | Russo, S. J., Mazei-Robison, M. S., Ables, J. L., & Nestler, E. J. (2009). Neurotrophic factors and structural plasticity in addiction. Neuropharmacology, 56, 73–82. https://doi.org/10.1016/j.neuropharm.2008.06.059 | spa |
dc.relation.references | Russo, S. J., Wilkinson, M. B., Mazei-Robison, M. S., Dietz, D. M., Maze, I., Krishnan, V., Renthal, W., Graham, A., Birnbaum, S. G., Green, T. A., Robison, B., Lesselyong, A., Perrotti, L. I., Bolanos, C. A., Kumar, A., Clark, M. S., Neumaier, J. F., Neve, R. L., Bhakar, A. L., & Barker, P. A. (2009). Nuclear Factor B Signaling Regulates Neuronal Morphology and Cocaine Reward. Journal of Neuroscience, 29(11), 3529–3537. https://doi.org/10.1523/jneurosci.6173-08.2009 | spa |
dc.relation.references | Ruxton, G. D., & Beauchamp, G. (2008). Time for some a priori thinking about post hoc testing. Behavioral Ecology, 19(3), 690–693. https://doi.org/10.1093/beheco/arn020 | spa |
dc.relation.references | Salgado, S., & Kaplitt, M. G. (2015). The Nucleus Accumbens: A Comprehensive Review. Stereotactic and Functional Neurosurgery, 93(2), 75–93. https://doi.org/10.1159/000368279 | spa |
dc.relation.references | Saunders, B. T., O’Donnell, E. G., Aurbach, E. L., & Robinson, T. E. (2014). A Cocaine Context Renews Drug Seeking Preferentially in a Subset of Individuals. Neuropsychopharmacology, 39(12), 2816–2823. https://doi.org/10.1038/npp.2014.131 | spa |
dc.relation.references | Schiltz, C. A., Bremer, Q. Z., Landry, C. F., & Kelley, A. E. (2007). Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression. BMC Biology, 5(1). https://doi.org/10.1186/1741-7007-5-16 | spa |
dc.relation.references | Schneider, M. (2013). Adolescence as a vulnerable period to alter rodent behavior. Cell and Tissue Research, 354(1), 99–106. https://doi.org/10.1007/s00441-013-1581-2 | spa |
dc.relation.references | Schrijver, N. C. A., Bahr, N. I., Weiss, I. C., & Würbel, H. (2002). Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacology Biochemistry and Behavior, 73(1), 209–224. https://doi.org/10.1016/s0091-3057(02)00790-6 | spa |
dc.relation.references | Sellings, L. H. L., & Clarke, P. B. S. (2003). Segregation of Amphetamine Reward and Locomotor Stimulation between Nucleus Accumbens Medial Shell and Core. The Journal of Neuroscience, 23(15), 6295–6303. https://doi.org/10.1523/jneurosci.23-15-06295.2003 | spa |
dc.relation.references | Shepherd, J. D., & Huganir, R. L. (2007). The cell biology of synaptic plasticity: AMPA receptor trafficking. Annual Review of Cell and Developmental Biology, 23, 613–643. https://doi.org/10.1146/annurev.cellbio.23.090506.123516 | spa |
dc.relation.references | Shram, M. J., Funk, D., Li, Z., & Lê, A. D. (2006). Periadolescent and adult rats respond differently in tests measuring the rewarding and aversive effects of nicotine. Psychopharmacology, 186(2), 201–208. https://doi.org/10.1007/s00213-006-0373-8 | spa |
dc.relation.references | Shram, M. J., & Lê, A. D. (2010). Adolescent male Wistar rats are more responsive than adult rats to the conditioned rewarding effects of intravenously administered nicotine in the place conditioning procedure. Behavioural Brain Research, 206(2), 240–244. https://doi.org/10.1016/j.bbr.2009.09.018 | spa |
dc.relation.references | Sinclair, D., Purves-Tyson, T. D., Allen, K. M., & Weickert, C. S. (2014). Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology, 231(8), 1581–1599. https://doi.org/10.1007/s00213-013-3415-z | spa |
dc.relation.references | Smail, M. A., Smith, B. L., Nawreen, N., & Herman, J. P. (2020). Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacology Biochemistry and Behavior, 197, 172993. https://doi.org/10.1016/j.pbb.2020.172993 | spa |
dc.relation.references | Solano, J. L. (2019). MODULACIÓN DE LA RESPUESTA EMOCIONAL Y LA MEMORIA ESPACIAL EN LA ADULTEZ POR EXPOSICIÓN TEMPRANA A NICOTINA [Thesis]. | spa |
dc.relation.references | Solinas, M., Thiriet, N., Chauvet, C., & Jaber, M. (2010). Prevention and treatment of drug addiction by environmental enrichment. Progress in Neurobiology, 92(4), 572–592. https://doi.org/10.1016/j.pneurobio.2010.08.002 | spa |
dc.relation.references | Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24(4), 417–463. https://doi.org/10.1016/s0149-7634(00)00014-2 | spa |
dc.relation.references | Tabbara, R. I., & Fletcher, P. J. (2019). Nicotine enhances responding for conditioned reinforcement via α4β2 nicotinic acetylcholine receptors in the ventral tegmental area, but not the nucleus accumbens or the prefrontal cortex. Neuropharmacology, 148, 68–76. https://doi.org/10.1016/j.neuropharm.2018.12.011 | spa |
dc.relation.references | Tan, H., Bishop, S. F., Lauzon, N. M., Sun, N., & Laviolette, S. R. (2009). Chronic nicotine exposure switches the functional role of mesolimbic dopamine transmission in the processing of nicotine’s rewarding and aversive effects. Neuropharmacology, 56(4), 741–751. https://doi.org/10.1016/j.neuropharm.2008.12.008 | spa |
dc.relation.references | Tarazi, F. I., & Baldessarini, R. J. (2000). Comparative postnatal development of dopamine D1, D2 and D4 receptors in rat forebrain. International Journal of Developmental Neuroscience, 18(1), 29–37. https://doi.org/10.1016/s0736-5748(99)00108-2 | spa |
dc.relation.references | Taylor, J. R., Lynch, W. J., Sanchez, H., Olausson, P., Nestler, E. J., & Bibb, J. A. (2007). Inhibition of Cdk5 in the nucleus accumbens enhances the locomotor-activating and incentive-motivational effects of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 4147–4152. https://doi.org/10.1073/pnas.0610288104 | spa |
dc.relation.references | Teegarden, S. L., Nestler, E. J., & Bale, T. L. (2008). ΔFosB-Mediated Alterations in Dopamine Signaling Are Normalized by a Palatable High-Fat Diet. Biological Psychiatry, 64(11), 941–950. https://doi.org/10.1016/j.biopsych.2008.06.007 | spa |
dc.relation.references | Thiel, K. J., Sanabria, F., & Neisewander, J. L. (2009). Synergistic interaction between nicotine and social rewards in adolescent male rats. Psychopharmacology, 204(3), 391–402. https://doi.org/10.1007/s00213-009-1470-2 | spa |
dc.relation.references | Thorpe, H. H. A., Hamidullah, S., Jenkins, B. W., & Khokhar, J. Y. (2020). Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacology & Therapeutics, 206, 107431. https://doi.org/10.1016/j.pharmthera.2019.107431 | spa |
dc.relation.references | Tirelli, E., Laviola, G., & Adriani, W. (2003). Ontogenesis of behavioral sensitization and conditioned place preference induced by psychostimulants in laboratory rodents. Neuroscience & Biobehavioral Reviews, 27(1-2), 163–178. https://doi.org/10.1016/s0149-7634(03)00018-6 | spa |
dc.relation.references | Torres, O., Tejeda, H., Natividad, L., & O’Dell, L. (2008). Enhanced vulnerability to the rewarding effects of nicotine during the adolescent period of development. Pharmacology Biochemistry and Behavior, 90(4), 658–663. https://doi.org/10.1016/j.pbb.2008.05.009 | spa |
dc.relation.references | Tzschentke, T. M. (2007). Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addiction Biology, 12(3-4), 227–462. https://doi.org/10.1111/j.1369-1600.2007.00070.x | spa |
dc.relation.references | Vargas-López, V., Lamprea, M. R., & Múnera, A. (2011). Characterizing spatial extinction in an abbreviated version of the Barnes maze. Behavioural Processes, 86(1), 30–38. https://doi.org/10.1016/j.beproc.2010.08.002 | spa |
dc.relation.references | Varty, G. B., Paulus, M. P., Braff, D. L., & Geyer, M. A. (2000). Environmental enrichment and isolation rearing in the rat: effects on locomotor behavior and startle response plasticity. Biological Psychiatry, 47(10), 864–873. https://doi.org/10.1016/s0006-3223(99)00269-3 | spa |
dc.relation.references | Vastola, B. J., Douglas, L. A., Varlinskaya, E. I., & Spear, L. P. (2002). Nicotine-induced conditioned place preference in adolescent and adult rats. Physiology & Behavior, 77(1), 107–114. https://doi.org/10.1016/s0031-9384(02)00818-1 | spa |
dc.relation.references | Venebra-Muñoz, A., Corona-Morales, A., Santiago-García, J., Melgarejo-Gutiérrez, M., Caba, M., & García-García, F. (2014). Enriched environment attenuates nicotine self-administration and induces changes in ΔFosB expression in the rat prefrontal cortex and nucleus accumbens. NeuroReport, 25(9), 688–692. https://doi.org/10.1097/wnr.0000000000000157 | spa |
dc.relation.references | Vialou, V., Bagot, R. C., Cahill, M. E., Ferguson, D., Robison, A. J., Dietz, D. M., Fallon, B., Mazei-Robison, M., Ku, S. M., Harrigan, E., Winstanley, C. A., Joshi, T., Feng, J., Berton, O., & Nestler, E. J. (2014). Prefrontal Cortical Circuit for Depression- and Anxiety-Related Behaviors Mediated by Cholecystokinin: Role of FosB. Journal of Neuroscience, 34(11), 3878–3887. https://doi.org/10.1523/jneurosci.1787-13.2014 | spa |
dc.relation.references | Vialou, V., Robison, A. J., LaPlant, Q. C., Covington, H. E., Dietz, D. M., Ohnishi, Y. N., Mouzon, E., Rush, A. J., Watts, E. L., Wallace, D. L., Iñiguez, S. D., Ohnishi, Y. H., Steiner, M. A., Warren, B. L., Krishnan, V., Bolaños, C. A., Neve, R. L., Ghose, S., Berton, O., & Tamminga, C. A. (2010). ΔFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nature Neuroscience, 13(6), 745–752. https://doi.org/10.1038/nn.2551 | spa |
dc.relation.references | Volkow, N. D., Wang, G.-J. . Fowler, J. S., Tomasi, D., & Telang, F. (2011). Addiction: Beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences, 108(37), 15037–15042. https://doi.org/10.1073/pnas.1010654108 | spa |
dc.relation.references | Wahlstrom, D., White, T., & Luciana, M. (2010). Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neuroscience & Biobehavioral Reviews, 34(5), 631–648. https://doi.org/10.1016/j.neubiorev.2009.12.007 | spa |
dc.relation.references | Wahlstrom, D., White, T., & Luciana, M. (2010). Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neuroscience & Biobehavioral Reviews, 34(5), 631–648. https://doi.org/10.1016/j.neubiorev.2009.12.007 | spa |
dc.relation.references | Walker, D. M., Cunningham, A. M., Gregory, J. K., & Nestler, E. J. (2019). Long-Term Behavioral Effects of Post-weaning Social Isolation in Males and Females. Frontiers in Behavioral Neuroscience, 13. https://doi.org/10.3389/fnbeh.2019.00066 | spa |
dc.relation.references | Wang, Y.-C., Ho, U.-C., Ko, M.-C., Liao, C.-C., & Lee, L.-J. (2012). Differential neuronal changes in medial prefrontal cortex, basolateral amygdala and nucleus accumbens after postweaning social isolation. Brain Structure & Function, 217(2), 337–351. https://doi.org/10.1007/s00429-011-0355-4 | spa |
dc.relation.references | Watanasriyakul, W. T., Normann, M. C., Akinbo, O. I., Colburn, W., Dagner, A., & Grippo, A. J. (2019). Protective neuroendocrine effects of environmental enrichment and voluntary exercise against social isolation: evidence for mediation by limbic structures. Stress, 22(5), 603–618. https://doi.org/10.1080/10253890.2019.1617691 | spa |
dc.relation.references | Watterson, E., Daniels, C. W., Watterson, L. R., Mazur, G. J., Brackney, R. J., Olive, M. F., & Sanabria, F. (2015). Nicotine-induced place conditioning and locomotor activity in an adolescent animal model of attention deficit/hyperactivity disorder (ADHD). Behavioural Brain Research, 291, 184–188. https://doi.org/10.1016/j.bbr.2015.05.031 | spa |
dc.relation.references | Weissenborn, R., Robbins, T. W., & Everitt, B. J. (1997). Effects of medial prefrontal or anterior cingulate cortex lesions on responding for cocaine under fixed-ratio and second-order schedules of reinforcement in rats. Psychopharmacology, 134(3), 242–257. https://doi.org/10.1007/s002130050447 | spa |
dc.relation.references | Weiss, J. W., Mouttapa, M., Cen, S., Johnson, C. A., & Unger, J. (2011). Longitudinal Effects of Hostility, Depression, and Bullying on Adolescent Smoking Initiation. Journal of Adolescent Health, 48(6), 591–596. https://doi.org/10.1016/j.jadohealth.2010.09.012 | spa |
dc.relation.references | Werme, M., Messer, C., Olson, L., Gilden, L., Thorén, P., Nestler, E. J., & Brené, S. (2002). ΔFosBRegulates Wheel Running. The Journal of Neuroscience, 22(18), 8133–8138. https://doi.org/10.1523/jneurosci.22-18-08133.2002 | spa |
dc.relation.references | Whitaker, Leslie R., Degoulet, M., & Morikawa, H. (2013). Social Deprivation Enhances VTA Synaptic Plasticity and Drug-Induced Contextual Learning. Neuron, 77(2), 335–345. https://doi.org/10.1016/j.neuron.2012.11.022 | spa |
dc.relation.references | Wilar, G., Shinoda, Y., Sasaoka, T., & Fukunaga, K. (2019). Crucial Role of Dopamine D2 Receptor Signaling in Nicotine-Induced Conditioned Place Preference. Molecular Neurobiology, 56(12), 7911–7928. https://doi.org/10.1007/s12035-019-1635-x | spa |
dc.relation.references | Wolter, M. (2021). Neuropharmacological Mechanisms of Enhancement of Memory Consolidation by Nicotine, Cocaine, Heroin, and their Conditioned Stimuli (Doctoral dissertation, University of Guelph). | spa |
dc.relation.references | Wongwitdecha, N., & Alexander Marsden, C. (1996). Effects of social isolation rearing on learning in the morris water maze. Brain Research, 715(1-2), 119–124. https://doi.org/10.1016/0006-8993(95)01578-7 | spa |
dc.relation.references | Yazdanfar, N., Farnam, A., Sadigh-Eteghad, S., Mahmoudi, J., & Sarkaki, A. (2021). Enriched environment and social isolation differentially modulate addiction-related behaviors in male offspring of morphine-addicted dams: The possible role of μ-opioid receptors and ΔFosB in the brain reward pathway. Brain Research Bulletin, 170, 98–105. https://doi.org/10.1016/j.brainresbull.2021.02.005 | spa |
dc.relation.references | Yuan, M., Cross, S. J., Loughlin, S. E., & Leslie, F. M. (2015). Nicotine and the adolescent brain. The Journal of Physiology, 593(16), 3397–3412. https://doi.org/10.1113/jp270492 | spa |
dc.relation.references | Zakharova, E., Miller, J., Unterwald, E., Wade, D., & Izenwasser, S. (2009). Social and physical environment alter cocaine conditioned place preference and dopaminergic markers in adolescent male rats. Neuroscience, 163(3), 890–897. https://doi.org/10.1016/j.neuroscience.2009.06.068 | spa |
dc.relation.references | Zarrindast, M. R., Aghamohammadi-Sereshki, A., Rezayof, A., & Rostami, P. (2012). Nicotine-induced anxiogenic-like behaviours of rats in the elevated plus-maze: possible role of NMDA receptors of the central amygdala. Journal of Psychopharmacology, 26(4), 555–563. https://doi.org/10.1177/0269881111412094 | spa |
dc.relation.references | Zhang, Y., Crofton, E. J., Li, D., Lobo, M. K., Fan, X., Nestler, E. J., & Green, T. A. (2014). Overexpression of DeltaFosB in nucleus accumbens mimics the protective addiction phenotype, but not the protective depression phenotype of environmental enrichment. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00297 | spa |
dc.relation.references | Zhao-Shea, R., Liu, L., Soll, L. G., Improgo, M. R., Meyers, E. E., McIntosh, J. M., Grady, S. R., Marks, M. J., Gardner, P. D., & Tapper, A. R. (2011). Nicotine-Mediated Activation of Dopaminergic Neurons in Distinct Regions of the Ventral Tegmental Area. Neuropsychopharmacology, 36(5), 1021–1032. https://doi.org/10.1038/npp.2010.240 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 150 - Psicología::156 - Psicología comparada | spa |
dc.subject.decs | Psicología del Adolescente | spa |
dc.subject.decs | Psychology, Adolescent | eng |
dc.subject.decs | Conducta del Adolescente | spa |
dc.subject.decs | Adolescent Behavior | eng |
dc.subject.proposal | Adolescencia | spa |
dc.subject.proposal | Aislamiento social | spa |
dc.subject.proposal | Nicotina | spa |
dc.subject.proposal | ΔFosB | spa |
dc.subject.proposal | Sensibilización locomotora | spa |
dc.subject.proposal | Preferencia condicionada de lugar | spa |
dc.subject.proposal | Adolescence | eng |
dc.subject.proposal | Social isolation | eng |
dc.subject.proposal | Nicotine | eng |
dc.subject.proposal | ΔFosB | eng |
dc.subject.proposal | Locomotor sensitization | eng |
dc.subject.proposal | Conditioned place preference | eng |
dc.title | Efectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotina | spa |
dc.title.translated | Effects of social isolation on the induction of plasticity processes and the learning of nicotine-associated contextual stimuli | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Convocatoria pacto para la generación de nuevo conocimiento a través de proyectos de investigación científica en ciencias médicas y de la salud 2019 Proyecto Código 67701 | spa |
oaire.fundername | Minciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1015448642_2023.pdf
- Tamaño:
- 2.15 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Psicología
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: