Efectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotina

dc.contributor.advisorLamprea Rodríguez, Marisol
dc.contributor.advisorCortés-Patiño, Diana
dc.contributor.authorBallesteros-Acosta, Hans
dc.contributor.cvlacBallesteros-Acosta, Hans [0001711713#]spa
dc.contributor.orcidBallesteros-Acosta, Hans [0000000303879084]spa
dc.contributor.researchgateBallesteros-Acosta, Hans [Hans-Ballesteros-Acosta]spa
dc.contributor.researchgroupNeurociencia Básica y Cognoscitivaspa
dc.date.accessioned2023-07-25T17:39:09Z
dc.date.available2023-07-25T17:39:09Z
dc.date.issued2023
dc.descriptionilustraciones, fotografías, diagramasspa
dc.description.abstractLa interacción social resulta fundamental para el apropiado desarrollo del sistema nervioso y la adquisición de habilidades de supervivencia. Se ha demostrado que impedir las interacciones sociales durante la adolescencia aumenta los efectos de las drogas psicoactivas; sin embargo, existen pocos reportes sobre el impacto del aislamiento social sobre los efectos de la nicotina. El presente estudio evaluó los efectos del aislamiento social durante la adolescencia sobre (1) la acumulación del factor de transcripción ΔFosB en la corteza prelímbica, el núcleo accumbens y el núcleo paraventricular del tálamo, (2) la sensibilización a los efectos locomotores de la nicotina tras su administración repetida y (3) la preferencia condicionada de lugar inducida por diferentes dosis de nicotina (0,1 o 0,3 mg/kg). Los resultados indican que los animales aislados acumulan menos ΔFosB en las estructuras del circuito de recompensa evaluadas. El aislamiento no afectó los procesos de sensibilización locomotora inducida por dosis bajas de nicotina, pero sí se observó un efecto sobre la inducción de una mayor preferencia por lugares asociados con la nicotina. Dicho cambio se mantuvo por más de cuatro sesiones de extinción, únicamente para la dosis más baja. No se observaron incrementos significativos durante el restablecimiento de la asociación para ninguna de las dosis. Los resultados sugieren que el aislamiento social durante la adolescencia no afecta los procesos subyacentes a la expresión de la sensibilización locomotora, pero aumenta la sensibilidad de los animales a los efectos asociativos de la nicotina, incrementando el valor de incentivo de los contextos asociados con la misma. Este efecto podría estar mediado por reducciones en la acumulación de ΔFosB en las estructuras del circuito de recompensa. (Texto tomado de la fuente)spa
dc.description.abstractSocial interaction is essential for the proper development of the nervous system and the acquisition of survival skills. Preventing social interactions during adolescence has been shown to increase the effects of psychoactive drugs; however, there are few reports on the impact of social isolation on the effects of nicotine. The present study evaluated the effects of social isolation during adolescence on (1) the accumulation of the transcription factor ΔFosB in the prelimbic cortex, nucleus accumbens, and paraventricular nucleus of the thalamus, (2) sensitization to the locomotor effects of nicotine after repeated administration, and (3) conditioned place preference induced by different doses of nicotine (0.1 or 0.3 mg/kg). The results indicate that isolated animals accumulated less ΔFosB in the reward circuit structures evaluated. Isolation did not affect locomotor sensitization processes induced by low doses of nicotine but an effect on the induction of increased preference for nicotine-associated locations was observed. Such a change was maintained for more than four extinction sessions, only for the lowest dose. No significant increases were observed during reinstatement of the association for any of the doses. The results suggest that social isolation during adolescence does not affect the processes underlying the expression of locomotor sensitization but increases the sensitivity of animals to the associative effects of nicotine, increasing the incentive value of nicotine-associated contexts. This effect could be mediated by reductions in the accumulation of ΔFosB in reward circuit structures.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Psicologíaspa
dc.format.extent104 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84265
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Humanasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Humanas - Maestría en Psicologíaspa
dc.relation.referencesAhsan, H. M., I. de la Peña, J. B., Botanas, C. J., Kim, H. J., Yu, G. Y., & Cheong, J. H. (2014). Conditioned Place Preference and Self-Administration Induced by Nicotine in Adolescent and Adult Rats. Biomolecules & Therapeutics, 22(5), 460–466. https://doi.org/10.4062/biomolther.2014.056spa
dc.relation.referencesAlajaji, M., Lazenka, M. f., Kota, D., Wise, L. E., Younis, R. M., Carroll, F. I., Levine, A., Selley, D. E., Sim-Selley, L. J., & Damaj, M. I. (2016). Early adolescent nicotine exposure affects later-life cocaine reward in mice. Neuropharmacology, 105, 308–317. https://doi.org/10.1016/j.neuropharm.2016.01.032spa
dc.relation.referencesArain, M., Mathur, P., Rais, A., Nel, W., Sandhu, R., Haque, M., Johal, L., & Sharma, S. (2013). Maturation of the Adolescent Brain. Neuropsychiatric Disease and Treatment, 9(9), 449–461. https://doi.org/10.2147/ndt.s39776spa
dc.relation.referencesArakawa, H. (2018). Ethological approach to social isolation effects in behavioral studies of laboratory rodents. Behavioural Brain Research, 341, 98–108. https://doi.org/10.1016/j.bbr.2017.12.022spa
dc.relation.referencesAshokan, A., Lim, J. W. H., Hang, N., & Mitra, R. (2018). Complex housing causes a robust increase in dendritic complexity and spine density of medial prefrontal cortical neurons. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-25399-4spa
dc.relation.referencesBaarendse, P. J. J., Counotte, D. S., O’Donnell, P., & Vanderschuren, L. J. M. J. (2013). Early Social Experience Is Critical for the Development of Cognitive Control and Dopamine Modulation of Prefrontal Cortex Function. Neuropsychopharmacology, 38(8), 1485–1494. https://doi.org/10.1038/npp.2013.47spa
dc.relation.referencesBallesteros-Acosta, H., Martinez, M. A., Martin, V., Cortes-Patiño, D., & Lamprea, M. R. (2022, September 12). PLASTIC CHANGES ASSOCIATED WITH JUVENILE SOCIAL ISOLATION AND ITS EFFECTS OVER CONTEXT-CUE REWARD ASSOCIATIONS. 3rd FALAN Congress, Belém, Brazil.spa
dc.relation.referencesBastle, R. M., Peartree, N. A., Goenaga, J., Hatch, K. N., Henricks, A., Scott, S., Hood, L. E., & Neisewander, J. L. (2016). Immediate early gene expression reveals interactions between social and nicotine rewards on brain activity in adolescent male rats. Behavioural Brain Research, 313, 244–254. https://doi.org/10.1016/j.bbr.2016.07.024spa
dc.relation.referencesBelluzzi, J., Lee, A., Oliff, H., & Leslie, F. (2004). Age-dependent effects of nicotine on locomotor activity and conditioned place preference in rats. Psychopharmacology, 174(3). https://doi.org/10.1007/s00213-003-1758-6spa
dc.relation.referencesBendersky, C. J., Milian, A. A., Andrus, M. D., De La Torre, U., & Walker, D. M. (2021). Long-Term Impacts of Post-weaning Social Isolation on Nucleus Accumbens Function. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.745406spa
dc.relation.referencesBockman, C. S., Zeng, W., Hall, J., Mittelstet, B., Schwarzkopf, L., & Stairs, D. J. (2018). Nicotine drug discrimination and nicotinic acetylcholine receptors in differentially reared rats. Psychopharmacology, 235(5), 1415–1426. https://doi.org/10.1007/s00213-018-4850-7spa
dc.relation.referencesBressan, R. A., & Crippa, J. A. (2005). The role of dopamine in reward and pleasure behaviour--review of data from preclinical research. Acta Psychiatrica Scandinavica. Supplementum, 111(427), 14–21. https://doi.org/10.1111/j.1600-0447.2005.00540.xspa
dc.relation.referencesBurke, A. R., & Miczek, K. A. (2015). Escalation of cocaine self-administration in adulthood after social defeat of adolescent rats: role of social experience and adaptive coping behavior. Psychopharmacology, 232(16), 3067–3079. https://doi.org/10.1007/s00213-015-3947-5spa
dc.relation.referencesCarola, V., D’Olimpio, F., Brunamonti, E., Mangia, F., & Renzi, P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behavioural Brain Research, 134(1), 49–57. https://doi.org/10.1016/S0166-4328(01)00452-1spa
dc.relation.referencesCaruso, M. J., Seemiller, L. R., Fetherston, T. B., Miller, C. N., Reiss, D. E., Cavigelli, S. A., & Kamens, H. M. (2018). Adolescent social stress increases anxiety-like behavior and ethanol consumption in adult male and female C57BL/6J mice. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28381-2spa
dc.relation.referencesCavazos‐Rehg, P., Li, X., Kasson, E., Kaiser, N., Borodovsky, J., & Grucza, R. A. (2021). Investigating the role of familial and peer‐related factors on electronic nicotine delivery systems (ENDS) use among U.S. adolescents. Journal of Adolescence, 87(1), 98–105. https://doi.org/10.1016/j.adolescence.2021.01.003spa
dc.relation.referencesChen, J., Kelz, M. B., Hope, B. T., Nakabeppu, Y., & Nestler, E. J. (1997). Chronic Fos-Related Antigens: Stable Variants of ΔFosB Induced in Brain by Chronic Treatments. Journal of Neuroscience, 17(13), 4933–4941. https://doi.org/10.1523/JNEUROSCI.17-13-04933.1997spa
dc.relation.referencesCounotte, D. S., Spijker, S., Van de Burgwal, L. H., Hogenboom, F., Schoffelmeer, A. N. M., De Vries, T. J., Smit, A. B., & Pattij, T. (2009). Long-lasting cognitive deficits resulting from adolescent nicotine exposure in rats. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 34(2), 299–306. https://doi.org/10.1038/npp.2008.96spa
dc.relation.referencesCrofton, E. J., Zhang, Y., & Green, T. A. (2015). Inoculation stress hypothesis of environmental enrichment. Neuroscience & Biobehavioral Reviews, 49, 19–31. https://doi.org/10.1016/j.neubiorev.2014.11.017spa
dc.relation.referencesDi Ciano, P., Robbins, T. W., & Everitt, B. J. (2008). Differential Effects of Nucleus Accumbens Core, Shell, or Dorsal Striatal Inactivations on the Persistence, Reacquisition, or Reinstatement of Responding for a Drug-Paired Conditioned Reinforcer. Neuropsychopharmacology, 33(6), 1413–1425. https://doi.org/10.1038/sj.npp.1301522spa
dc.relation.referencesDiFranza, J., & Wellman, R. (2007). Sensitization to nicotine: How the animal literature might inform future human research. Nicotine & Tobacco Research, 9(1), 9–20. https://doi.org/10.1080/14622200601078277spa
dc.relation.referencesDoremus-Fitzwater, T. L., Varlinskaya, E. I., & Spear, L. P. (2010). Motivational systems in adolescence: Possible implications for age differences in substance abuse and other risk-taking behaviors. Brain and Cognition, 72(1), 114–123. https://doi.org/10.1016/j.bandc.2009.08.008spa
dc.relation.referencesDouglas, L. A., Varlinskaya, E. I., & Spear, L. P. (2004). Rewarding properties of social interactions in adolescent and adult male and female rats: Impact of social versus isolate housing of subjects and partners. Developmental Psychobiology, 45(3), 153–162. https://doi.org/10.1002/dev.20025spa
dc.relation.referencesD’Souza, M. S., & Markou, A. (2013). The “Stop” and “Go” of Nicotine Dependence: Role of GABA and Glutamate. Cold Spring Harbor Perspectives in Medicine, 3(6), a012146–a012146. https://doi.org/10.1101/cshperspect.a012146spa
dc.relation.referencesDuRant, R. H., Smith, J. A., Kreiter, S. R., & Krowchuk, D. P. (1999). The Relationship Between Early Age of Onset of Initial Substance Use and Engaging in Multiple Health Risk Behaviors Among Young Adolescents. Archives of Pediatrics & Adolescent Medicine, 153(3). https://doi.org/10.1001/archpedi.153.3.286spa
dc.relation.referencesEddy, M. C., & Green, J. T. (2017). Running wheel exercise reduces renewal of extinguished instrumental behavior and alters medial prefrontal cortex neurons in adolescent, but not adult, rats. Behavioral Neuroscience, 131(6), 460–469. https://doi.org/10.1037/bne0000218spa
dc.relation.referencesEliasson, B. (2005). Los efectos del tabaco sobre las complicaciones diabéticas. Rev. Diabetes Voice, 50. https://diabetesmadrid.org/spa
dc.relation.referencesEl Rawas, R., Amaral, I. M., & Hofer, A. (2020). Social interaction reward: A resilience approach to overcome vulnerability to drugs of abuse. European Neuropsychopharmacology, 37, 12–28. https://doi.org/10.1016/j.euroneuro.2020.06.008spa
dc.relation.referencesEl Rawas, R., Klement, S., Kummer, K. K., Fritz, M., Dechant, G., Saria, A., & Zernig, G. (2012). Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction. Frontiers in Behavioral Neuroscience, 6. https://doi.org/10.3389/fnbeh.2012.00063spa
dc.relation.referencesEl Rawas, R., Thiriet, N., Lardeux, V., Jaber, M., & Solinas, M. (2009). Environmental enrichment decreases the rewarding but not the activating effects of heroin. Psychopharmacology, 203(3), 561–570. https://doi.org/10.1007/s00213-008-1402-6spa
dc.relation.referencesEveritt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience, 8(11), 1481–1489. https://doi.org/10.1038/nn1579spa
dc.relation.referencesEwin, S. E., Kangiser, M. M., & Stairs, D. J. (2015). The effects of environmental enrichment on nicotine condition place preference in male rats. Experimental and Clinical Psychopharmacology, 23(5), 387–394. https://doi.org/10.1037/pha0000024spa
dc.relation.referencesFaraday, M. M., Elliott, B. M., Phillips, J. M., & Grunberg, N. E. (2003). Adolescent and adult male rats differ in sensitivity to nicotine’s activity effects. Pharmacology Biochemistry and Behavior, 74(4), 917–931. https://doi.org/10.1016/s0091-3057(03)00024-8spa
dc.relation.referencesFaure, P., Tolu, S., Valverde, S., & Naudé, J. (2014). Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience, 282, 86–100. https://doi.org/10.1016/j.neuroscience.2014.05.040spa
dc.relation.referencesFeja, M., Hayn, L., & Koch, M. (2014). Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 54, 31–42. https://doi.org/10.1016/j.pnpbp.2014.04.012spa
dc.relation.referencesFenoglio, K. A., Chen, Y., & Baram, T. Z. (2006). Neuroplasticity of the hypothalamic–pituitary–adrenal (HPA) axis early in life requires recurrent recruitment of stress-regulating brain regions. Frontiers in Neuroendocrinology, 27(1), 50–51. https://doi.org/10.1016/j.yfrne.2006.03.103spa
dc.relation.referencesFerdman, N., Murmu, R., Bock, J., Braun, K., & Leshem, M. (2007). Weaning age, social isolation, and gender, interact to determine adult explorative and social behavior, and dendritic and spine morphology in prefrontal cortex of rats. Behavioural Brain Research, 180(2), 174–182. https://doi.org/10.1016/j.bbr.2007.03.011spa
dc.relation.referencesFosnocht, A. Q., Lucerne, K. E., Ellis, A. S., Olimpo, N. A., & Briand, L. A. (2019). Adolescent social isolation increases cocaine seeking in male and female mice. Behavioural Brain Research, 359, 589–596. https://doi.org/10.1016/j.bbr.2018.10.007spa
dc.relation.referencesFudala, P. J., Teoh, K. W., & Iwamoto, E. T. (1985). Pharmacologic characterization of nicotine-induced conditioned place preference. Pharmacology Biochemistry and Behavior, 22(2), 237–241. https://doi.org/10.1016/0091-3057(85)90384-3spa
dc.relation.referencesGobierno de Colombia. (2020). Encuesta nacional de consumo de sustanciaspsicoactivas (ENCSPA). Resultados 2019 [National survey on psychoactivesubstances consumption. Results 2019]. DANE, Gobierno de Colombia.https://bit.ly/3z9ywwrspa
dc.relation.referencesGomez, A. M., Midde, N. M., Mactutus, C. F., Booze, R. M., & Zhu, J. (2012). Environmental Enrichment Alters Nicotine-Mediated Locomotor Sensitization and Phosphorylation of DARPP-32 and CREB in Rat Prefrontal Cortex. PLoS ONE, 7(8), e44149. https://doi.org/10.1371/journal.pone.0044149spa
dc.relation.referencesGomez, A. M., Sun, W.-L., Midde, N. M., Harrod, S. B., & Zhu, J. (2015). Effects of environmental enrichment on ERK1/2 phosphorylation in the rat prefrontal cortex following nicotine-induced sensitization or nicotine self-administration. European Journal of Neuroscience, 41(1), 109–119. https://doi.org/10.1111/ejn.12758spa
dc.relation.referencesGoriounova, N. A., & Mansvelder, H. D. (2012). Short- and Long-Term Consequences of Nicotine Exposure during Adolescence for Prefrontal Cortex Neuronal Network Function. Cold Spring Harbor Perspectives in Medicine, 2(12). https://doi.org/10.1101/cshperspect.a012120spa
dc.relation.referencesGould, T. J., & Leach, P. T. (2014). Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiology of Learning and Memory, 107, 108–132. https://doi.org/10.1016/j.nlm.2013.08.004spa
dc.relation.referencesGreen, T. A., Cain, M. E., Thompson, M., & Bardo, M. T. (2003). Environmental enrichment decreases nicotine-induced hyperactivity in rats. Psychopharmacology, 170(3), 235–241. https://doi.org/10.1007/s00213-003-1538-3spa
dc.relation.referencesGrueter, B. A., Robison, A. J., Neve, R. L., Nestler, E. J., & Malenka, R. C. (2012). FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proceedings of the National Academy of Sciences, 110(5), 1923–1928. https://doi.org/10.1073/pnas.1221742110spa
dc.relation.referencesHachimine-Merli, P. (2017). The Role of Glutamate Neurotransmission in the Ventral Tegmental Area in the Expression of Conditioned Approach Learning [Thesis].spa
dc.relation.referencesHaight, J. L., & Flagel, S. B. (2014). A potential role for the paraventricular nucleus of the thalamus in mediating individual variation in Pavlovian conditioned responses. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00079spa
dc.relation.referencesHaj-Mirzaian, A., Nikbakhsh, R., Ramezanzadeh, K., Rezaee, M., Amini-Khoei, H., Haj-Mirzaian, A., Ghesmati, M., Afshari, K., Haddadi, N.-S., & Dehpour, A. R. (2019). Involvement of opioid system in behavioral despair induced by social isolation stress in mice. Biomedicine & Pharmacotherapy, 109, 938–944. https://doi.org/10.1016/j.biopha.2018.10.144spa
dc.relation.referencesHall, S., Deurveilher, S., Ko, K. R., Burns, J., & Semba, K. (2017). Region-specific increases in FosB/ΔFosB immunoreactivity in the rat brain in response to chronic sleep restriction. Behavioural Brain Research, 322, 9–17. https://doi.org/10.1016/j.bbr.2017.01.024spa
dc.relation.referencesHearing, M. C., Jedynak, J., Ebner, S. R., Ingebretson, A., Asp, A. J., Fischer, R. A., Schmidt, C., Larson, E. B., & Thomas, M. J. (2016). Reversal of morphine-induced cell-type–specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement. Proceedings of the National Academy of Sciences, 113(3), 757–762. https://doi.org/10.1073/pnas.1519248113spa
dc.relation.referencesHenley, J. M., & Wilkinson, K. A. (2016). Synaptic AMPA receptor composition in development, plasticity and disease. Nature Reviews Neuroscience, 17(6), 337–350. https://doi.org/10.1038/nrn.2016.37spa
dc.relation.referencesHolliday, E., & Gould, T. J. (2016). Nicotine, adolescence, and stress: A review of how stress can modulate the negative consequences of adolescent nicotine abuse. Neuroscience & Biobehavioral Reviews, 65, 173–184. https://doi.org/10.1016/j.neubiorev.2016.04.003spa
dc.relation.referencesHoops, D., & Flores, C. (2017). Making Dopamine Connections in Adolescence. Trends in Neurosciences, 40(12), 709–719. https://doi.org/10.1016/j.tins.2017.09.004spa
dc.relation.referencesHuston, J. P., Silva, M. A. de S., Topic, B., & Müller, C. P. (2013). What’s conditioned in conditioned place preference? Trends in Pharmacological Sciences, 34(3), 162–166. https://doi.org/10.1016/j.tips.2013.01.004spa
dc.relation.referencesIglesias, A. G., & Flagel, S. B. (2021). The Paraventricular Thalamus as a Critical Node of Motivated Behavior via the Hypothalamic-Thalamic-Striatal Circuit. Frontiers in Integrative Neuroscience, 15. https://doi.org/10.3389/fnint.2021.706713spa
dc.relation.referencesIñiguez, S. D., Warren, B. L., Parise, E. M., Alcantara, L. F., Schuh, B., Maffeo, M. L., Manojlovic, Z., & Bolaños-Guzmán, C. A. (2009). Nicotine Exposure during Adolescence Induces a Depression-Like State in Adulthood. Neuropsychopharmacology, 34(6), 1609–1624. https://doi.org/10.1038/npp.2008.220spa
dc.relation.referencesJentsch, J. D., Ashenhurst, J. R., Cervantes, M. C., James, A. S., Groman, S. M., & Pennington, Z. T. (2014). Dissecting Impulsivity and its Relationships to Drug Addictions. Annals of the New York Academy of Sciences, 1327, 1–26. https://doi.org/10.1111/nyas.12388spa
dc.relation.referencesJeong, Y. H., Kim, J. M., Yoo, J., Lee, S. H., Kim, H.-S., & Suh, Y.-H. (2011). Environmental enrichment compensates for the effects of stress on disease progression in Tg2576 mice, an Alzheimer’s disease model. Journal of Neurochemistry, 119(6), 1282–1293. https://doi.org/10.1111/j.1471-4159.2011.07514.xspa
dc.relation.referencesKandel, E. R., & Kandel, D. B. (2014). A Molecular Basis for Nicotine as a Gateway Drug. New England Journal of Medicine, 371(10), 932–943. https://doi.org/10.1056/nejmsa1405092spa
dc.relation.referencesKarkhanis, A. N., Leach, A. C., Yorgason, J. T., Uneri, A., Barth, S., Niere, F., Alexander, N. J., Weiner, J. L., McCool, B. A., Raab-Graham, K. F., Ferris, M. J., & Jones, S. R. (2018). Chronic Social Isolation Stress during Peri-Adolescence Alters Presynaptic Dopamine Terminal Dynamics via Augmentation in Accumbal Dopamine Availability. ACS Chemical Neuroscience, 10(4), 2033–2044. https://doi.org/10.1021/acschemneuro.8b00360spa
dc.relation.referencesKelz, M. B., Chen, J., Carlezon Jr, W. A., Whisler, K., Gilden, L., Beckmann, A. M., ... & Nestler, E. J. (1999). Expression of the transcription factor? FosB in the brain controls sensitivity to cocaine. Nature, 401(6750), 272-276. DOI: 10.1038/45790spa
dc.relation.referencesKenney, J. W., & Gould, T. J. (2008). Nicotine enhances context learning but not context-shock associative learning. Behavioral Neuroscience, 122(5), 1158–1165. https://doi.org/10.1037/a0012807spa
dc.relation.referencesKim, S., Kwok, S., Mayes, L. C., Potenza, M. N., Rutherford, H. J. V., & Strathearn, L. (2017). Early adverse experience and substance addiction: dopamine, oxytocin, and glucocorticoid pathways. Annals of the New York Academy of Sciences, 1394(1), 74–91. https://doi.org/10.1111/nyas.13140spa
dc.relation.referencesKirouac, G. (2015). Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neuroscience & Biobehavioral Reviews, 56, 315–329. https://doi.org/10.1016/j.neubiorev.2015.08.005spa
dc.relation.referencesKo, J.-H. (2017). Social isolation effect on nicotine consumption in adolescent mice [Thesis].spa
dc.relation.referencesKooiker, C. L., Birnie, M. T., & Baram, T. Z. (2021). The Paraventricular Thalamus: A Potential Sensor and Integrator of Emotionally Salient Early-Life Experiences. Frontiers in Behavioral Neuroscience, 15. https://doi.org/10.3389/fnbeh.2021.673162spa
dc.relation.referencesKowiański, P., Lietzau, G., Steliga, A., Czuba, E., Ludkiewicz, B., Waśkow, M., Spodnik, J. H., & Moryś, J. (2018). Nicotine-induced CREB and DeltaFosB activity is modified by caffeine in the brain reward system of the rat. Journal of Chemical Neuroanatomy, 88, 1–12. https://doi.org/10.1016/j.jchemneu.2017.10.005spa
dc.relation.referencesKupferschmidt, D. A., Funk, D., Erb, S., & Lê, A. D. (2010). Age-related effects of acute nicotine on behavioural and neuronal measures of anxiety. Behavioural Brain Research, 213(2), 288–292. https://doi.org/10.1016/j.bbr.2010.05.022spa
dc.relation.referencesLapiz, A. Fulford, S. Muchimapura, R. Mason, T. Parker, C.A. Marsden (2003) Influence of Postweaning Social Isolation in the Rat on Brain Development,Conditioned Behavior, and Neurotransmission, Neurosci. Behav. Physiol. 33 13–29, https://doi.org/10.1023/A:1021171129766.spa
dc.relation.referencesLaviola, G., Macri, S., Morley-Fletcher, S., & Adriani, W. (2003). Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neuroscience & Biobehavioral Reviews, 27(1-2), 19–31. https://doi.org/10.1016/s0149-7634(03)00006-xspa
dc.relation.referencesLee, H., Jang, M., Kim, W., & Noh, J. (2017). Differential effects of pair housing on voluntary nicotine consumption: a comparison between male and female adolescent rats. Psychopharmacology, 234(16), 2463–2473. https://doi.org/10.1007/s00213-017-4636-3spa
dc.relation.referencesLe Foll, B., & Goldberg, S. R. (2005). Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology, 178(4), 481–492. https://doi.org/10.1007/s00213-004-2021-5spa
dc.relation.referencesLe Foll, B., Schwartz, J-C., & Sokoloff, P. (2003). Disruption of nicotine conditioning by dopamine D3 receptor ligands. Molecular Psychiatry, 8(2), 225–230. https://doi.org/10.1038/sj.mp.4001202spa
dc.relation.referencesLehmann, M. L., & Herkenham, M. (2011). Environmental Enrichment Confers Stress Resiliency to Social Defeat through an Infralimbic Cortex-Dependent Neuroanatomical Pathway. Journal of Neuroscience, 31(16), 6159–6173. https://doi.org/10.1523/jneurosci.0577-11.2011spa
dc.relation.referencesLeslie, F. M. (2020). Unique, long-term effects of nicotine on adolescent brain. Pharmacology Biochemistry and Behavior, 197(173010), 173010. https://doi.org/10.1016/j.pbb.2020.173010spa
dc.relation.referencesLiu, Y., & McNally, G. P. (2021). Dopamine and relapse to drug seeking. Journal of Neurochemistry, 157(5), 1572–1584. https://doi.org/10.1111/jnc.15309spa
dc.relation.referencesLobo, M. K., Zaman, S., Damez-Werno, D. M., Koo, J. W., Bagot, R. C., DiNieri, J. A., Nugent, A., Finkel, E., Chaudhury, D., Chandra, R., Riberio, E., Rabkin, J., Mouzon, E., Cachope, R., Cheer, J. F., Han, M.-H. ., Dietz, D. M., Self, D. W., Hurd, Y. L., & Vialou, V. (2013). FosB Induction in Striatal Medium Spiny Neuron Subtypes in Response to Chronic Pharmacological, Emotional, and Optogenetic Stimuli. Journal of Neuroscience, 33(47), 18381–18395. https://doi.org/10.1523/jneurosci.1875-13.2013spa
dc.relation.referencesLukkes, J. L., Mokin, M. V., Scholl, J. L., & Forster, G. L. (2009). Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Hormones and Behavior, 55(1), 248–256. https://doi.org/10.1016/j.yhbeh.2008.10.014spa
dc.relation.referencesLukkes, J. L., Watt, M., Lowry, C., & Forster, G. (2009). Consequences of post-weaning social isolation on anxiety behavior and related neural circuits in rodents. Frontiers in Behavioral Neuroscience, 3. https://doi.org/10.3389/neuro.08.018.2009spa
dc.relation.referencesMan, H.-Y. (2011). GluA2-lacking, calcium-permeable AMPA receptors — inducers of plasticity? Current Opinion in Neurobiology, 21(2), 291–298. https://doi.org/10.1016/j.conb.2011.01.001spa
dc.relation.referencesMartin, V., Mejia, L. V., Martinez, M. A., Ballesteros-Acosta, H., Cortés-Patiño, D., & Lamprea, M. (2022, September 12). Modulatory role of social isolation on the effects of acute nicotine in behavioral inhibition and basal corticosterone levels. 3rd FALAN Congress, Belém, Brazil.spa
dc.relation.referencesMarttila, K., Raattamaa, H., & Ahtee, L. (2006). Effects of chronic nicotine administration and its withdrawal on striatal FosB/ΔFosB and c-Fos expression in rats and mice. Neuropharmacology, 51(1), 44–51. https://doi.org/10.1016/j.neuropharm.2006.02.014spa
dc.relation.referencesMastrogiovanni, N. A., Wheeler, A. K., & Clemens, K. J. (2021). Social isolation enhances cued-reinstatement of sucrose and nicotine seeking, but this is reversed by a return to social housing. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81966-2spa
dc.relation.referencesMatta, S. G., Balfour, D. J., Benowitz, N. L., Boyd, R. T., Buccafusco, J. J., Caggiula, A. R., ... & Zirger, J. M. (2007). Guidelines on nicotine dose selection for in vivo research. Psychopharmacology, 190, 269-319. DOI: 10.1007/s00213-006-0441-0spa
dc.relation.referencesMcClung, C. A., & Nestler, E. J. (2003). Regulation of gene expression and cocaine reward by CREB and ΔFosB. Nature Neuroscience, 6(11), 1208–1215. https://doi.org/10.1038/nn1143spa
dc.relation.referencesMcCormick, C. M., & Ibrahim, F. N. (2007). Locomotor activity to nicotine and Fos immunoreactivity in the paraventricular nucleus of the hypothalamus in adolescent socially-stressed rats. Pharmacology Biochemistry and Behavior, 86(1), 92–102. https://doi.org/10.1016/j.pbb.2006.12.012spa
dc.relation.referencesMcCutcheon, J. E., & Marinelli, M. (2009). Age matters. European Journal of Neuroscience, 29(5), 997–1014. https://doi.org/10.1111/j.1460-9568.2009.06648.xspa
dc.relation.referencesMcFarland, K., & Kalivas, P. W. (2001). The Circuitry Mediating Cocaine-Induced Reinstatement of Drug-Seeking Behavior. The Journal of Neuroscience, 21(21), 8655–8663. https://doi.org/10.1523/jneurosci.21-21-08655.2001spa
dc.relation.referencesMcKendrick, G., & Graziane, N. M. (2020). Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Frontiers in Behavioral Neuroscience, 14. https://doi.org/10.3389/fnbeh.2020.582147spa
dc.relation.referencesMeir Drexler, S., Merz, C. J., Jentsch, V. L., & Wolf, O. T. (2019). How stress and glucocorticoids timing-dependently affect extinction and relapse. Neuroscience & Biobehavioral Reviews, 98, 145–153. https://doi.org/10.1016/j.neubiorev.2018.12.029spa
dc.relation.referencesMiguel-Aguilar, C. F., Rodríguez-Bolaños, R. D. los Á., Caballero, M., Arillo-Santillán, E., & Reynales-Shigematsu, L. M. (2017). Fumar entre adolescentes: análisis cuantitativo y cualitativo de factores psicosociales asociados con la decisión de fumar en escolares mexicanos. Salud Pública de México, 59, 63. https://doi.org/10.21149/7835spa
dc.relation.referencesMosaferi, B., Babri, S., Ebrahimi, H., & Mohaddes, G. (2015). Enduring effects of post-weaning rearing condition on depressive- and anxiety-like behaviors and motor activity in male rats. Physiology & Behavior, 142, 131–136. https://doi.org/10.1016/j.physbeh.2015.02.015spa
dc.relation.referencesMukhara, D., Banks, M. L., & Neigh, G. N. (2018). Stress as a Risk Factor for Substance Use Disorders: A Mini-Review of Molecular Mediators. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00309spa
dc.relation.referencesMuller, D. L., & Unterwald, E. M. (2005). D1 Dopamine Receptors Modulate ΔFosB Induction in Rat Striatum after Intermittent Morphine Administration. Journal of Pharmacology and Experimental Therapeutics, 314(1), 148–154. https://doi.org/10.1124/jpet.105.083410spa
dc.relation.referencesMumtaz, F., Khan, M. I., Zubair, M., & Dehpour, A. R. (2018). Neurobiology and consequences of social isolation stress in animal model—A comprehensive review. Biomedicine & Pharmacotherapy, 105, 1205–1222. https://doi.org/10.1016/j.biopha.2018.05.086spa
dc.relation.referencesNader, J., Claudia, C., Rawas, R. E., Favot, L., Jaber, M., Thiriet, N., & Solinas, M. (2012). Loss of Environmental Enrichment Increases Vulnerability to Cocaine Addiction. Neuropsychopharmacology, 37(7), 1579–1587. https://doi.org/10.1038/npp.2012.2spa
dc.relation.referencesNestler, E. J. (2015). ΔFosB: a transcriptional regulator of stress and antidepressant responses. European Journal of Pharmacology, 753, 66–72. https://doi.org/10.1016/j.ejphar.2014.10.034spa
dc.relation.referencesNestler, E. J., Barrot, M., & Self, D. W. (2001). ΔFosB: A sustained molecular switch for addiction. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11042–11046. https://doi.org/10.1073/pnas.191352698spa
dc.relation.referencesNiedhammer, I., David, S., Degioanni, S., Drummond, A., & Philip, P. (2010). Workplace Bullying and Psychotropic Drug Use: The Mediating Role of Physical and Mental Health Status. The Annals of Occupational Hygiene, 55(2). https://doi.org/10.1093/annhyg/meq086spa
dc.relation.referencesNoback, M., Zhang, G., White, N., Barrow, J. C., & Carr, G. V. (2021). Post-weaning social isolation increases ΔFosB/FosB protein expression in sex-specific patterns in the prelimbic/infralimbic cortex and hippocampus in mice. Neuroscience Letters, 740, 135423. https://doi.org/10.1016/j.neulet.2020.135423spa
dc.relation.referencesNoschang, C., Lampert, C., Krolow, R., & de Almeida, R. M. M. (2021). Social isolation at adolescence: a systematic review on behaviour related to cocaine, amphetamine and nicotine use in rats and mice. Psychopharmacology, 238(4), 927–947. https://doi.org/10.1007/s00213-021-05777-zspa
dc.relation.referencesNovak, G., Seeman, P., & Le Foll, B. (2010). Exposure to Nicotine Produces an Increase in Dopamine D2HighReceptors: A Possible Mechanism for Dopamine Hypersensitivity. International Journal of Neuroscience, 120(11), 691–697. https://doi.org/10.3109/00207454.2010.513462spa
dc.relation.referencesNovoa, C., Solano, J. L., Ballesteros-Acosta, H. N., Lamprea, M. R., & Ortega, L. A. (2022). Nicotine Differentially Modulates Emotional-Locomotor Interactions for Adult or Adolescent Rats. Revista Colombiana de Psicología, 31(1), 13–22. https://doi.org/10.15446/rcp.v31n1.89822spa
dc.relation.referencesOficina de Naciones Unidas Contra la Droga y el Delito (UNODC). (2017). Tercer estudio epidemiológico andino sobre consumo de drogas en la población universitaria de Colombia 2016. https://www.unodc.org/colombia/es/press/2017/octubre/estudio-consumo-de-drogas-en-poblacion-universitaria.html.spa
dc.relation.referencesOhmura, Y., Tsutsui-Kimura, I., & Yoshioka, M. (2012). Impulsive Behavior and Nicotinic Acetylcholine Receptors. Journal of Pharmacological Sciences, 118(4), 413–422. https://doi.org/10.1254/jphs.11r06crspa
dc.relation.referencesOrtega, L. A., Tracy, B. A., Gould, T. J., & Parikh, V. (2013). Effects of chronic low- and high-dose nicotine on cognitive flexibility in C57BL/6J mice. Behavioural Brain Research, 238, 134–145. https://doi.org/10.1016/j.bbr.2012.10.032spa
dc.relation.referencesO’Dell, L. E. (2009). A psychobiological framework of the substrates that mediate nicotine use during adolescence. Neuropharmacology, 56 Suppl 1, 263–278. https://doi.org/10.1016/j.neuropharm.2008.07.039spa
dc.relation.referencesPalmatier, M. I., Matteson, G. L., Black, J. J., Liu, X., Caggiula, A. R., Craven, L., Donny, E. C., & Sved, A. F. (2007). The reinforcement enhancing effects of nicotine depend on the incentive value of non-drug reinforcers and increase with repeated drug injections. Drug and Alcohol Dependence, 89(1), 52–59. https://doi.org/10.1016/j.drugalcdep.2006.11.020spa
dc.relation.referencesPang, T. Y. C., & Hannan, A. J. (2013). Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology, 64, 515–528. https://doi.org/10.1016/j.neuropharm.2012.06.029spa
dc.relation.referencesPascual, M. M., Pastor, V., & Bernabeu, R. O. (2009). Nicotine-conditioned place preference induced CREB phosphorylation and Fos expression in the adult rat brain. Psychopharmacology, 207(1), 57–71. https://doi.org/10.1007/s00213-009-1630-4spa
dc.relation.referencesPawlak, C., & Schwarting, R. (2002). Object preference and nicotine consumption in rats with high vs. low rearing activity in a novel open field. Pharmacology Biochemistry and Behavior, 73(3), 679–687. https://doi.org/10.1016/s0091-3057(02)00852-3spa
dc.relation.referencesPaxinos, G., & Watson, C. (2018). The rat brain in stereotaxic coordinates. Elsevier Academic Press.spa
dc.relation.referencesPerrotti, L. I., Hadeishi, Y., Ulery, P., Barrot, M., Monteggia, L., Duman, R., & Nestler, E. (2004). Induction of FosB in Reward-Related Brain Structures after Chronic Stress. Journal of Neuroscience, 24(47), 10594–10602. https://doi.org/10.1523/jneurosci.2542-04.2004spa
dc.relation.referencesPerrotti, L. I., Weaver, R. R., Robison, B., Renthal, W., Maze, I., Yazdani, S., Elmore, R. G., Knapp, D. J., Selley, D. E., Martin, B. R., Sim-Selley, L., Bachtell, R. K., Self, D. W., & Nestler, E. J. (2008). Distinct patterns of ΔFosB induction in brain by drugs of abuse. Synapse, 62(5), 358–369. https://doi.org/10.1002/syn.20500spa
dc.relation.referencesPeters, J., LaLumiere, R. T., & Kalivas, P. W. (2008). Infralimbic Prefrontal Cortex Is Responsible for Inhibiting Cocaine Seeking in Extinguished Rats. Journal of Neuroscience, 28(23), 6046–6053. https://doi.org/10.1523/jneurosci.1045-08.2008spa
dc.relation.referencesPhillipson, O. T. (1979). Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: A horseradish peroxidase study in the rat. The Journal of Comparative Neurology, 187(1), 117–143. https://doi.org/10.1002/cne.901870108spa
dc.relation.referencesPicciotto, M. R., Addy, N. A., Mineur, Y. S., & Brunzell, D. H. (2008). It’s not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Progress in Neurobiology, 84(4), 329–342. https://doi.org/10.1016/j.pneurobio.2007.12.005spa
dc.relation.referencesPicciotto, M. R., Brunzell, D. H., & Caldarone, B. J. (2002). Effect of nicotine and nicotinic receptors on anxiety and depression. Neuroreport, 13(9), 1097–1106. https://doi.org/10.1097/00001756-200207020-00006spa
dc.relation.referencesPistillo, F., Clementi, F., Zoli, M., & Gotti, C. (2015). Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: Focus on nicotine effects. Progress in Neurobiology, 124, 1–27. https://doi.org/10.1016/j.pneurobio.2014.10.002spa
dc.relation.referencesPistillo, F., Fasoli, F., Moretti, M., McClure-Begley, T., Zoli, M., Marks, M. J., & Gotti, C. (2016). Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner. Pharmacological Research, 103, 167–176. https://doi.org/10.1016/j.phrs.2015.11.016spa
dc.relation.referencesPitchers, K. K., Vialou, V., Nestler, E. J., Laviolette, S. R., Lehman, M. N., & Coolen, L. M. (2013). Natural and Drug Rewards Act on Common Neural Plasticity Mechanisms with FosB as a Key Mediator. Journal of Neuroscience, 33(8), 3434–3442. https://doi.org/10.1523/jneurosci.4881-12.2013spa
dc.relation.referencesPulgar Muñoz, S., & Fernández-Luna, A. (2018). Práctica de actividad física, consumo de tabaco y alcohol y sus efectos en la salud respiratoria de los jóvenes universitarios (Physical activity, smoking and alcohol consumption and their effects on the respiratory health of college students). Retos, 35, 130–135. https://doi.org/10.47197/retos.v0i35.60603spa
dc.relation.referencesPushkin, A. N., Eugene, A. J., Lallai, V., Torres-Mendoza, A., Fowler, J. P., Chen, E., & Fowler, C. D. (2019). Cannabinoid and nicotine exposure during adolescence induces sex-specific effects on anxiety- and reward-related behaviors during adulthood. PLOS ONE, 14(1), e0211346. https://doi.org/10.1371/journal.pone.0211346spa
dc.relation.referencesRibeiro Do Couto, B., Aguilar, M. A., Lluch, J., Rodríguez-Arias, M., & Miñarro, J. (2009). Social experiences affect reinstatement of cocaine-induced place preference in mice. Psychopharmacology, 207(3), 485–498. https://doi.org/10.1007/s00213-009-1678-1spa
dc.relation.referencesRobison, A. J., & Nestler, E. J. (2021). ΔFOSB: A Potentially Druggable Master Orchestrator of Activity-Dependent Gene Expression. ACS Chemical Neuroscience, 13(3), 296–307. https://doi.org/10.1021/acschemneuro.1c00723spa
dc.relation.referencesRomeo, R. D. (2010). Pubertal maturation and programming of hypothalamic–pituitary–adrenal reactivity. Frontiers in Neuroendocrinology, 31(2), 232–240. https://doi.org/10.1016/j.yfrne.2010.02.004spa
dc.relation.referencesRuffle, J. K. (2014). Molecular neurobiology of addiction: what’s all the (Δ)FosB about? The American Journal of Drug and Alcohol Abuse, 40(6), 428–437. https://doi.org/10.3109/00952990.2014.933840spa
dc.relation.referencesRuiz, A. M., Gómez, I. R., Rubio, C., Revert, C., & Hardisson, A. (2004). Efectos tóxicos del tabaco. Revista de toxicología, 21(2-3), 64-71.spa
dc.relation.referencesRupprecht LE, Smith TT, Schassburger RL, Buffalari DM, Sved AF, Donny EC. Behavioral mechanisms underlying nicotine reinforcement. In: The Neuropharmacology of Nicotine Dependence. Switzerland: Springer International Publishing; 2015:19–53spa
dc.relation.referencesRusso, S. J., Mazei-Robison, M. S., Ables, J. L., & Nestler, E. J. (2009). Neurotrophic factors and structural plasticity in addiction. Neuropharmacology, 56, 73–82. https://doi.org/10.1016/j.neuropharm.2008.06.059spa
dc.relation.referencesRusso, S. J., Wilkinson, M. B., Mazei-Robison, M. S., Dietz, D. M., Maze, I., Krishnan, V., Renthal, W., Graham, A., Birnbaum, S. G., Green, T. A., Robison, B., Lesselyong, A., Perrotti, L. I., Bolanos, C. A., Kumar, A., Clark, M. S., Neumaier, J. F., Neve, R. L., Bhakar, A. L., & Barker, P. A. (2009). Nuclear Factor B Signaling Regulates Neuronal Morphology and Cocaine Reward. Journal of Neuroscience, 29(11), 3529–3537. https://doi.org/10.1523/jneurosci.6173-08.2009spa
dc.relation.referencesRuxton, G. D., & Beauchamp, G. (2008). Time for some a priori thinking about post hoc testing. Behavioral Ecology, 19(3), 690–693. https://doi.org/10.1093/beheco/arn020spa
dc.relation.referencesSalgado, S., & Kaplitt, M. G. (2015). The Nucleus Accumbens: A Comprehensive Review. Stereotactic and Functional Neurosurgery, 93(2), 75–93. https://doi.org/10.1159/000368279spa
dc.relation.referencesSaunders, B. T., O’Donnell, E. G., Aurbach, E. L., & Robinson, T. E. (2014). A Cocaine Context Renews Drug Seeking Preferentially in a Subset of Individuals. Neuropsychopharmacology, 39(12), 2816–2823. https://doi.org/10.1038/npp.2014.131spa
dc.relation.referencesSchiltz, C. A., Bremer, Q. Z., Landry, C. F., & Kelley, A. E. (2007). Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression. BMC Biology, 5(1). https://doi.org/10.1186/1741-7007-5-16spa
dc.relation.referencesSchneider, M. (2013). Adolescence as a vulnerable period to alter rodent behavior. Cell and Tissue Research, 354(1), 99–106. https://doi.org/10.1007/s00441-013-1581-2spa
dc.relation.referencesSchrijver, N. C. A., Bahr, N. I., Weiss, I. C., & Würbel, H. (2002). Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacology Biochemistry and Behavior, 73(1), 209–224. https://doi.org/10.1016/s0091-3057(02)00790-6spa
dc.relation.referencesSellings, L. H. L., & Clarke, P. B. S. (2003). Segregation of Amphetamine Reward and Locomotor Stimulation between Nucleus Accumbens Medial Shell and Core. The Journal of Neuroscience, 23(15), 6295–6303. https://doi.org/10.1523/jneurosci.23-15-06295.2003spa
dc.relation.referencesShepherd, J. D., & Huganir, R. L. (2007). The cell biology of synaptic plasticity: AMPA receptor trafficking. Annual Review of Cell and Developmental Biology, 23, 613–643. https://doi.org/10.1146/annurev.cellbio.23.090506.123516spa
dc.relation.referencesShram, M. J., Funk, D., Li, Z., & Lê, A. D. (2006). Periadolescent and adult rats respond differently in tests measuring the rewarding and aversive effects of nicotine. Psychopharmacology, 186(2), 201–208. https://doi.org/10.1007/s00213-006-0373-8spa
dc.relation.referencesShram, M. J., & Lê, A. D. (2010). Adolescent male Wistar rats are more responsive than adult rats to the conditioned rewarding effects of intravenously administered nicotine in the place conditioning procedure. Behavioural Brain Research, 206(2), 240–244. https://doi.org/10.1016/j.bbr.2009.09.018spa
dc.relation.referencesSinclair, D., Purves-Tyson, T. D., Allen, K. M., & Weickert, C. S. (2014). Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology, 231(8), 1581–1599. https://doi.org/10.1007/s00213-013-3415-zspa
dc.relation.referencesSmail, M. A., Smith, B. L., Nawreen, N., & Herman, J. P. (2020). Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacology Biochemistry and Behavior, 197, 172993. https://doi.org/10.1016/j.pbb.2020.172993spa
dc.relation.referencesSolano, J. L. (2019). MODULACIÓN DE LA RESPUESTA EMOCIONAL Y LA MEMORIA ESPACIAL EN LA ADULTEZ POR EXPOSICIÓN TEMPRANA A NICOTINA [Thesis].spa
dc.relation.referencesSolinas, M., Thiriet, N., Chauvet, C., & Jaber, M. (2010). Prevention and treatment of drug addiction by environmental enrichment. Progress in Neurobiology, 92(4), 572–592. https://doi.org/10.1016/j.pneurobio.2010.08.002spa
dc.relation.referencesSpear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24(4), 417–463. https://doi.org/10.1016/s0149-7634(00)00014-2spa
dc.relation.referencesTabbara, R. I., & Fletcher, P. J. (2019). Nicotine enhances responding for conditioned reinforcement via α4β2 nicotinic acetylcholine receptors in the ventral tegmental area, but not the nucleus accumbens or the prefrontal cortex. Neuropharmacology, 148, 68–76. https://doi.org/10.1016/j.neuropharm.2018.12.011spa
dc.relation.referencesTan, H., Bishop, S. F., Lauzon, N. M., Sun, N., & Laviolette, S. R. (2009). Chronic nicotine exposure switches the functional role of mesolimbic dopamine transmission in the processing of nicotine’s rewarding and aversive effects. Neuropharmacology, 56(4), 741–751. https://doi.org/10.1016/j.neuropharm.2008.12.008spa
dc.relation.referencesTarazi, F. I., & Baldessarini, R. J. (2000). Comparative postnatal development of dopamine D1, D2 and D4 receptors in rat forebrain. International Journal of Developmental Neuroscience, 18(1), 29–37. https://doi.org/10.1016/s0736-5748(99)00108-2spa
dc.relation.referencesTaylor, J. R., Lynch, W. J., Sanchez, H., Olausson, P., Nestler, E. J., & Bibb, J. A. (2007). Inhibition of Cdk5 in the nucleus accumbens enhances the locomotor-activating and incentive-motivational effects of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 4147–4152. https://doi.org/10.1073/pnas.0610288104spa
dc.relation.referencesTeegarden, S. L., Nestler, E. J., & Bale, T. L. (2008). ΔFosB-Mediated Alterations in Dopamine Signaling Are Normalized by a Palatable High-Fat Diet. Biological Psychiatry, 64(11), 941–950. https://doi.org/10.1016/j.biopsych.2008.06.007spa
dc.relation.referencesThiel, K. J., Sanabria, F., & Neisewander, J. L. (2009). Synergistic interaction between nicotine and social rewards in adolescent male rats. Psychopharmacology, 204(3), 391–402. https://doi.org/10.1007/s00213-009-1470-2spa
dc.relation.referencesThorpe, H. H. A., Hamidullah, S., Jenkins, B. W., & Khokhar, J. Y. (2020). Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacology & Therapeutics, 206, 107431. https://doi.org/10.1016/j.pharmthera.2019.107431spa
dc.relation.referencesTirelli, E., Laviola, G., & Adriani, W. (2003). Ontogenesis of behavioral sensitization and conditioned place preference induced by psychostimulants in laboratory rodents. Neuroscience & Biobehavioral Reviews, 27(1-2), 163–178. https://doi.org/10.1016/s0149-7634(03)00018-6spa
dc.relation.referencesTorres, O., Tejeda, H., Natividad, L., & O’Dell, L. (2008). Enhanced vulnerability to the rewarding effects of nicotine during the adolescent period of development. Pharmacology Biochemistry and Behavior, 90(4), 658–663. https://doi.org/10.1016/j.pbb.2008.05.009spa
dc.relation.referencesTzschentke, T. M. (2007). Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addiction Biology, 12(3-4), 227–462. https://doi.org/10.1111/j.1369-1600.2007.00070.xspa
dc.relation.referencesVargas-López, V., Lamprea, M. R., & Múnera, A. (2011). Characterizing spatial extinction in an abbreviated version of the Barnes maze. Behavioural Processes, 86(1), 30–38. https://doi.org/10.1016/j.beproc.2010.08.002spa
dc.relation.referencesVarty, G. B., Paulus, M. P., Braff, D. L., & Geyer, M. A. (2000). Environmental enrichment and isolation rearing in the rat: effects on locomotor behavior and startle response plasticity. Biological Psychiatry, 47(10), 864–873. https://doi.org/10.1016/s0006-3223(99)00269-3spa
dc.relation.referencesVastola, B. J., Douglas, L. A., Varlinskaya, E. I., & Spear, L. P. (2002). Nicotine-induced conditioned place preference in adolescent and adult rats. Physiology & Behavior, 77(1), 107–114. https://doi.org/10.1016/s0031-9384(02)00818-1spa
dc.relation.referencesVenebra-Muñoz, A., Corona-Morales, A., Santiago-García, J., Melgarejo-Gutiérrez, M., Caba, M., & García-García, F. (2014). Enriched environment attenuates nicotine self-administration and induces changes in ΔFosB expression in the rat prefrontal cortex and nucleus accumbens. NeuroReport, 25(9), 688–692. https://doi.org/10.1097/wnr.0000000000000157spa
dc.relation.referencesVialou, V., Bagot, R. C., Cahill, M. E., Ferguson, D., Robison, A. J., Dietz, D. M., Fallon, B., Mazei-Robison, M., Ku, S. M., Harrigan, E., Winstanley, C. A., Joshi, T., Feng, J., Berton, O., & Nestler, E. J. (2014). Prefrontal Cortical Circuit for Depression- and Anxiety-Related Behaviors Mediated by Cholecystokinin: Role of FosB. Journal of Neuroscience, 34(11), 3878–3887. https://doi.org/10.1523/jneurosci.1787-13.2014spa
dc.relation.referencesVialou, V., Robison, A. J., LaPlant, Q. C., Covington, H. E., Dietz, D. M., Ohnishi, Y. N., Mouzon, E., Rush, A. J., Watts, E. L., Wallace, D. L., Iñiguez, S. D., Ohnishi, Y. H., Steiner, M. A., Warren, B. L., Krishnan, V., Bolaños, C. A., Neve, R. L., Ghose, S., Berton, O., & Tamminga, C. A. (2010). ΔFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nature Neuroscience, 13(6), 745–752. https://doi.org/10.1038/nn.2551spa
dc.relation.referencesVolkow, N. D., Wang, G.-J. . Fowler, J. S., Tomasi, D., & Telang, F. (2011). Addiction: Beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences, 108(37), 15037–15042. https://doi.org/10.1073/pnas.1010654108spa
dc.relation.referencesWahlstrom, D., White, T., & Luciana, M. (2010). Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neuroscience & Biobehavioral Reviews, 34(5), 631–648. https://doi.org/10.1016/j.neubiorev.2009.12.007spa
dc.relation.referencesWahlstrom, D., White, T., & Luciana, M. (2010). Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neuroscience & Biobehavioral Reviews, 34(5), 631–648. https://doi.org/10.1016/j.neubiorev.2009.12.007spa
dc.relation.referencesWalker, D. M., Cunningham, A. M., Gregory, J. K., & Nestler, E. J. (2019). Long-Term Behavioral Effects of Post-weaning Social Isolation in Males and Females. Frontiers in Behavioral Neuroscience, 13. https://doi.org/10.3389/fnbeh.2019.00066spa
dc.relation.referencesWang, Y.-C., Ho, U.-C., Ko, M.-C., Liao, C.-C., & Lee, L.-J. (2012). Differential neuronal changes in medial prefrontal cortex, basolateral amygdala and nucleus accumbens after postweaning social isolation. Brain Structure & Function, 217(2), 337–351. https://doi.org/10.1007/s00429-011-0355-4spa
dc.relation.referencesWatanasriyakul, W. T., Normann, M. C., Akinbo, O. I., Colburn, W., Dagner, A., & Grippo, A. J. (2019). Protective neuroendocrine effects of environmental enrichment and voluntary exercise against social isolation: evidence for mediation by limbic structures. Stress, 22(5), 603–618. https://doi.org/10.1080/10253890.2019.1617691spa
dc.relation.referencesWatterson, E., Daniels, C. W., Watterson, L. R., Mazur, G. J., Brackney, R. J., Olive, M. F., & Sanabria, F. (2015). Nicotine-induced place conditioning and locomotor activity in an adolescent animal model of attention deficit/hyperactivity disorder (ADHD). Behavioural Brain Research, 291, 184–188. https://doi.org/10.1016/j.bbr.2015.05.031spa
dc.relation.referencesWeissenborn, R., Robbins, T. W., & Everitt, B. J. (1997). Effects of medial prefrontal or anterior cingulate cortex lesions on responding for cocaine under fixed-ratio and second-order schedules of reinforcement in rats. Psychopharmacology, 134(3), 242–257. https://doi.org/10.1007/s002130050447spa
dc.relation.referencesWeiss, J. W., Mouttapa, M., Cen, S., Johnson, C. A., & Unger, J. (2011). Longitudinal Effects of Hostility, Depression, and Bullying on Adolescent Smoking Initiation. Journal of Adolescent Health, 48(6), 591–596. https://doi.org/10.1016/j.jadohealth.2010.09.012spa
dc.relation.referencesWerme, M., Messer, C., Olson, L., Gilden, L., Thorén, P., Nestler, E. J., & Brené, S. (2002). ΔFosBRegulates Wheel Running. The Journal of Neuroscience, 22(18), 8133–8138. https://doi.org/10.1523/jneurosci.22-18-08133.2002spa
dc.relation.referencesWhitaker, Leslie R., Degoulet, M., & Morikawa, H. (2013). Social Deprivation Enhances VTA Synaptic Plasticity and Drug-Induced Contextual Learning. Neuron, 77(2), 335–345. https://doi.org/10.1016/j.neuron.2012.11.022spa
dc.relation.referencesWilar, G., Shinoda, Y., Sasaoka, T., & Fukunaga, K. (2019). Crucial Role of Dopamine D2 Receptor Signaling in Nicotine-Induced Conditioned Place Preference. Molecular Neurobiology, 56(12), 7911–7928. https://doi.org/10.1007/s12035-019-1635-xspa
dc.relation.referencesWolter, M. (2021). Neuropharmacological Mechanisms of Enhancement of Memory Consolidation by Nicotine, Cocaine, Heroin, and their Conditioned Stimuli (Doctoral dissertation, University of Guelph).spa
dc.relation.referencesWongwitdecha, N., & Alexander Marsden, C. (1996). Effects of social isolation rearing on learning in the morris water maze. Brain Research, 715(1-2), 119–124. https://doi.org/10.1016/0006-8993(95)01578-7spa
dc.relation.referencesYazdanfar, N., Farnam, A., Sadigh-Eteghad, S., Mahmoudi, J., & Sarkaki, A. (2021). Enriched environment and social isolation differentially modulate addiction-related behaviors in male offspring of morphine-addicted dams: The possible role of μ-opioid receptors and ΔFosB in the brain reward pathway. Brain Research Bulletin, 170, 98–105. https://doi.org/10.1016/j.brainresbull.2021.02.005spa
dc.relation.referencesYuan, M., Cross, S. J., Loughlin, S. E., & Leslie, F. M. (2015). Nicotine and the adolescent brain. The Journal of Physiology, 593(16), 3397–3412. https://doi.org/10.1113/jp270492spa
dc.relation.referencesZakharova, E., Miller, J., Unterwald, E., Wade, D., & Izenwasser, S. (2009). Social and physical environment alter cocaine conditioned place preference and dopaminergic markers in adolescent male rats. Neuroscience, 163(3), 890–897. https://doi.org/10.1016/j.neuroscience.2009.06.068spa
dc.relation.referencesZarrindast, M. R., Aghamohammadi-Sereshki, A., Rezayof, A., & Rostami, P. (2012). Nicotine-induced anxiogenic-like behaviours of rats in the elevated plus-maze: possible role of NMDA receptors of the central amygdala. Journal of Psychopharmacology, 26(4), 555–563. https://doi.org/10.1177/0269881111412094spa
dc.relation.referencesZhang, Y., Crofton, E. J., Li, D., Lobo, M. K., Fan, X., Nestler, E. J., & Green, T. A. (2014). Overexpression of DeltaFosB in nucleus accumbens mimics the protective addiction phenotype, but not the protective depression phenotype of environmental enrichment. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00297spa
dc.relation.referencesZhao-Shea, R., Liu, L., Soll, L. G., Improgo, M. R., Meyers, E. E., McIntosh, J. M., Grady, S. R., Marks, M. J., Gardner, P. D., & Tapper, A. R. (2011). Nicotine-Mediated Activation of Dopaminergic Neurons in Distinct Regions of the Ventral Tegmental Area. Neuropsychopharmacology, 36(5), 1021–1032. https://doi.org/10.1038/npp.2010.240spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc150 - Psicología::156 - Psicología comparadaspa
dc.subject.decsPsicología del Adolescentespa
dc.subject.decsPsychology, Adolescenteng
dc.subject.decsConducta del Adolescentespa
dc.subject.decsAdolescent Behavioreng
dc.subject.proposalAdolescenciaspa
dc.subject.proposalAislamiento socialspa
dc.subject.proposalNicotinaspa
dc.subject.proposalΔFosBspa
dc.subject.proposalSensibilización locomotoraspa
dc.subject.proposalPreferencia condicionada de lugarspa
dc.subject.proposalAdolescenceeng
dc.subject.proposalSocial isolationeng
dc.subject.proposalNicotineeng
dc.subject.proposalΔFosBeng
dc.subject.proposalLocomotor sensitizationeng
dc.subject.proposalConditioned place preferenceeng
dc.titleEfectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotinaspa
dc.title.translatedEffects of social isolation on the induction of plasticity processes and the learning of nicotine-associated contextual stimulieng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleConvocatoria pacto para la generación de nuevo conocimiento a través de proyectos de investigación científica en ciencias médicas y de la salud 2019 Proyecto Código 67701spa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015448642_2023.pdf
Tamaño:
2.15 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Psicología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: