Estimación de la precipitación en la cuenca hidrográfica del río Bolo con técnicas de inteligencia artificial
dc.contributor.advisor | Vargas Franco, Viviana | |
dc.contributor.advisor | González Salcedo, Luis Octavio | |
dc.contributor.author | Ruiz Hurtado, Andrés Felipe | |
dc.contributor.cvlac | Ruiz Hurtado, Andrés Felipe [0001604301] | spa |
dc.contributor.googlescholar | Andrés Felipe Ruiz Hurtado | spa |
dc.contributor.orcid | Ruiz Hurtado, Andrés [0000000312938736] | spa |
dc.contributor.researchgate | Andres Felipe Ruiz-Hurtado | spa |
dc.contributor.researchgroup | Monitoreo, Modelación y Gestión de Cuencas Hidrograficas | spa |
dc.coverage.country | http://vocab.getty.edu/page/tgn/7005078 | |
dc.date.accessioned | 2025-02-05T19:05:58Z | |
dc.date.available | 2025-02-05T19:05:58Z | |
dc.date.issued | 2023 | |
dc.description | Ilustraciones, figuras, tablas | spa |
dc.description.abstract | La complejidad de los sistemas hidroclimatológicos demuestra la necesidad del uso de herramientas de análisis más efectivas y contextualizadas al área de estudio que soporten la gestión a nivel de cuenca y subcuenca hidrográfica. La variabilidad natural y los efectos provocados por el cambio climático antropogénico requieren un análisis extensivo del comportamiento de variables como la precipitación y la ocurrencia de anomalías en sus patrones espaciales y temporales. Gracias a los avances recientes en distintas técnicas de inteligencia artificial, el objetivo de esta investigación fue evaluar un modelo de lógica difusa y un modelo de redes neuronales artificiales para la estimación de los patrones de precipitación en la cuenca hidrográfica del río Bolo en el Valle del Cauca. Se realizó una recopilación de datos de precipitación y un análisis exploratorio de datos a partir de los cuales se determinó la estimación de los patrones de precipitación como variable categórica objetivo de los modelos (periodos: extremadamente seco, muy seco, moderadamente seco, normal, moderadamente húmedo, muy húmedo, extremadamente húmedo). Estos modelos se enfocaron en el análisis mensual de la precipitación usando como línea base el Índice Estándar de precipitación mensual (SPI-1) y la comparación con el comportamiento esperado por el Índice Niño Oceánico (ONI). Se implementó un sistema de inferencia difuso con 3 variables explicativas y 48 reglas de implicación y se evaluaron varias configuraciones de redes neuronales obteniéndose los mejores resultados para el algoritmo de entrenamiento de regularización Bayesiana con un R de 0.8 seguido de Levenberg-Marquardt con un R de 0.76. El sistema de inferencia difuso generó resultados más alineados con lo esperado del análisis exploratorio y el comportamiento histórico de la precipitación en la cuenca del río Bolo, mientras que la red neuronal artificial demostró un sesgo en la estimación del tipo de evento extremo de precipitación. (Texto tomado de la fuente) | spa |
dc.description.abstract | The complexity of hydroclimatological systems demonstrates the need for more effective and context-specific analysis tools in the study area to support watershed and sub-watershed management. Natural variability and the effects of anthropogenic climate change require an extensive analysis of variables such as precipitation and the occurrence of anomalies in their spatial and temporal patterns. Given the recent advancement of various artificial intelligence techniques, the objective of this study was to evaluate a fuzzy logic model and an artificial neural network model for estimating precipitation patterns in Bolo river watershed in Valle del Cauca. Data collection and exploratory data analysis were conducted to determine the estimation of precipitation patterns as the categorical target variable for the models (periods: extremely dry, very dry, moderately dry, normal, moderately wet, very wet, and extremely wet). These models focused on monthly precipitation analysis using the monthly Standard Precipitation Index (SPI-1) as a baseline and comparing it with the expected behavior of the Oceanic Niño Index (ONI). A fuzzy inference system was implemented with 3 explanatory variables and 48 implication rules, and several neural network configurations were evaluated, with the best results obtained for the Bayesian regularization training algorithm with an R of 0.8 followed by Levenberg-Marquardt with an R of 0.76. The fuzzy inference system generated results that aligned more closely with the expected outcomes based on the exploratory analysis and the historical behavior of precipitation in the Bolo River. On the other hand, the artificial neural network demonstrated a bias in estimating the type of extreme precipitation event. | eng |
dc.description.curriculararea | Ingeniería.Sede Palmira | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería Ambiental | spa |
dc.description.methods | Gracias a los avances recientes en distintas técnicas de inteligencia artificial, el objetivo de esta investigación fue evaluar un modelo de lógica difusa y un modelo de redes neuronales artificiales para la estimación de los patrones de precipitación en la cuenca hidrográfica del río Bolo en el Valle del Cauca. Se realizó una recopilación de datos de precipitación y un análisis exploratorio de datos a partir de los cuales se determinó la estimación de los patrones de precipitación como variable categórica objetivo de los modelos (periodos: extremadamente seco, muy seco, moderadamente seco, normal, moderadamente húmedo, muy húmedo, extremadamente húmedo). Estos modelos se enfocaron en el análisis mensual de la precipitación usando como línea base el Índice Estándar de precipitación mensual (SPI-1) y la comparación con el comportamiento esperado por el Índice Niño Oceánico (ONI). Se implementó un sistema de inferencia difuso con 3 variables explicativas y 48 reglas de implicación y se evaluaron varias configuraciones de redes neuronales obteniéndose los mejores resultados para el algoritmo de entrenamiento de regularización Bayesiana con un R de 0.8 seguido de Levenberg-Marquardt con un R de 0.76. | spa |
dc.description.researcharea | Monitoreo, modelación y gestión de recursos naturales | spa |
dc.format.extent | xvi, 135 páginas + anexos | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87439 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Palmira | spa |
dc.publisher.faculty | Facultad de Ingeniería y Administración | spa |
dc.publisher.place | Palmira, Valle del Cauca, Colombia | spa |
dc.publisher.program | Palmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambiental | spa |
dc.relation.references | Abbas Fall, G., Mousavi-Ba, M., & Habibi Nok, M. (2009). Annual Rainfall Forecasting by Using Mamdani Fuzzy Inference System. Research Journal of Environmental Sciences, 3(4), 400–413. https://doi.org/10.3923/rjes.2009.400.413 | spa |
dc.relation.references | Abbot, J., & Marohasy, J. (2013). The application of artificial intelligence for monthly rainfall forecasting in the Brisbane Catchment, Queensland, Australia. 125–135. https://doi.org/10.2495/RBM130111 | spa |
dc.relation.references | Abbot, J., & Marohasy, J. (2014). Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmospheric Research, 138, 166–178. https://doi.org/10.1016/j.atmosres.2013.11.002 | spa |
dc.relation.references | Adewoyin, R., Dueben, P., Watson, P. A. G., He, Y., & Dutta, R. (2020). TRU-NET: A Deep Learning Approach to High Resolution Prediction of Rainfall. arXiv. https://research-information.bris.ac.uk/en/publications/tru-net-a-deep-learning-approach-to-high-resolution-prediction-of | spa |
dc.relation.references | Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., & Hickey, J. (2019). Machine Learning for Precipitation Nowcasting from Radar Images. 6. | spa |
dc.relation.references | Alvarado, D. (2007). Diagnóstico preliminar del componente de saneamiento ambiental de la cuenca hidrográfica del río Bolo – Valle del Cauca, Colombia. | spa |
dc.relation.references | Araghinejad, S. (2014). Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering (Vol. 67). Springer Netherlands. https://doi.org/10.1007/978-94-007-7506-0 | spa |
dc.relation.references | Asklany, S., Elhelow, K., Youssef, I., & El-Wahab, M. (2011). Rainfall events prediction using rule-based fuzzy inference system. Atmospheric Research - ATMOS RES, 101, 228–236. https://doi.org/10.1016/j.atmosres.2011.02.015 | spa |
dc.relation.references | Asobolo. (2021). Quienes somos. https://asobolo.org/quienes-somos/ | spa |
dc.relation.references | Azimi, S., & Azhdary-Moghaddam, M. (2020). Modeling Short Term Rainfall Forecast Using Neural Networks, and Gaussian Process Classification Based on the SPI Drought Index. Water Resources Management, 34(4), 1369–1405. https://doi.org/10.1007/s11269-020-02507-6 | spa |
dc.relation.references | Bakkay, M. C., Serrurier, M., Burda, V. K., Dupuy, F., Cabrera-Gutierrez, N. C., Zamo, M., Mader, M.-A., Mestre, O., Oller, G., Jouhaud, J.-C., & Terray, L. (2022). Precipitaion Nowcasting using Deep Neural Network. arXiv:2203.13263 [cs]. http://arxiv.org/abs/2203.13263 | spa |
dc.relation.references | Benevides, P., Catalao, J., & Nico, G. (2019). Neural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors. Remote Sensing, 11(8), Article 8. https://doi.org/10.3390/rs11080966 | spa |
dc.relation.references | Brasjen, A. M. (2014). Precipitation Estimation from Infrared Satellite Imagery. https://repository.tudelft.nl/islandora/object/uuid%3A63c4dc53-fdd2-47db-a9ed-d1ddc19366e8 | spa |
dc.relation.references | Carrera-Villacrés, D. V., Guevara-García, P. V., Tamayo-Bacacela, L. C., Balarezo-Aguilar, A. L., Narváez-Rivera, C. A., & Morocho-López, D. R. (2016). Filling series annual meteorological data by statistical methods in the coastal zone from Ecuador and Andes, and calculation of rainfall. Idesia (Arica), 34(3), 81–90. https://doi.org/10.4067/S0718-34292016000300010 | spa |
dc.relation.references | Carvajal-Escobar, Y. (2011). Inundaciones en Colombia ¿Estamos preparados para enfrentar la variabilidad y el cambio climático? Memorias, 9(16), 105–119. | spa |
dc.relation.references | Castro, J. (1999). The limits of fuzzy logic. Mathware & soft computing, ISSN 1134-5632, Vol. 6, No. 2-3, 1999, pags. 155-161. | spa |
dc.relation.references | Castro, J., & Calvo-Flores, M. (1996). Fuzzy Systems With Defuzzification Are Universal Approximators. IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society, 26, 149–152. https://doi.org/10.1109/3477.484447 | spa |
dc.relation.references | Çelik, Ö., Teke, A., & Yıldırım, H. B. (2016). The optimized artificial neural network model with Levenberg–Marquardt algorithm for global solar radiation estimation in Eastern Mediterranean Region of Turkey. Journal of Cleaner Production, 116(Supplement C), 1–12. https://doi.org/10.1016/j.jclepro.2015.12.082 | spa |
dc.relation.references | Cerón, W. L., Escobar, Y., & Montoya, O. (2015). Índice estandarizado de precipitación (SPI) para la caracterización de sequías meteorológicas en la cuenca del río Dagua-Colombia. Estudios Geográficos, 76, 557–578. https://doi.org/10.3989/estgeogr.201520 | spa |
dc.relation.references | Chang, C. L., Lo, S. L., & Yu, S. L. (2005). Applying fuzzy theory and genetic algorithm to interpolate precipitation. Journal of Hydrology, 314(1), 92–104. https://doi.org/10.1016/j.jhydrol.2005.03.034 | spa |
dc.relation.references | Chang, F., Chiang, Y.-M., Tsai, M.-J., Shieh, M.-C., Hsu, K.-L., & Sorooshian, S. (2014). Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information. Journal of Hydrology, 508, 374–384. https://doi.org/10.1016/j.jhydrol.2013.11.011 | spa |
dc.relation.references | Claesen, M., & De Moor, B. (2015). Hyperparameter Search in Machine Learning. arXiv:1502.02127 [cs, stat]. http://arxiv.org/abs/1502.02127 | spa |
dc.relation.references | Cooper, R. N., Houghton, J. T., McCarthy, J. J., & Metz, B. (2002). Climate Change 2001: The Scientific Basis. Foreign Affairs, 81(1), 208. https://doi.org/10.2307/20033020 | spa |
dc.relation.references | CVC. (2017). Balance oferta – demanda de agua cuenca del río Bolo. | spa |
dc.relation.references | CVC. (2019). Informe de Gestión Vigencia 2019—Consolidado Plan De Acción 2016-2019. | spa |
dc.relation.references | CVC, Secretaria de Ambiente, Agricultura y Pesca, & CIAT. (2018). Plan Integral de Cambio Climático para el Valle del Cauca PICC. | spa |
dc.relation.references | Damavandi, H. G., & Shah, R. (2019). A Learning Framework for An Accurate Prediction of Rainfall Rates. arXiv:1901.05885 [eess, stat]. http://arxiv.org/abs/1901.05885 | spa |
dc.relation.references | Dani, S., & Sharma, S. (2013). Forecasting rainfall of a region by using fuzzy time series. Asian Journal of Mathematics and Applications, 2013. | spa |
dc.relation.references | Das, M., & Ghosh, S. K. (2017). Data-driven approaches for meteorological time series prediction: A comparative study of the state-of-the-art computational intelligence techniques. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2017.08.009 | spa |
dc.relation.references | Davie, T. (2019). Fundamentals of hydrology (Third Edition). Routledge, Taylor & Francis Group. | spa |
dc.relation.references | de Campos Souza, P. V., Batista de Oliveira, L., & Ferreira do Nascimento, L. A. (2019). Fuzzy Rules to Help Predict Rains and Temperatures in a Brazilian Capital State Based on Data Collected from Satellites. Applied Sciences, 9(24), 5476. https://doi.org/10.3390/app9245476 | spa |
dc.relation.references | De Silva, C. W. (1995). Intelligent control: Fuzzy logic applications. CRC Press. | spa |
dc.relation.references | Deloitte. (2020). Global Artificial Intelligence Industry Whitepaper. Deloitte Technology, Media and Telecommunications Industry. | spa |
dc.relation.references | Diez-Sierra, J., & del Jesús, M. (2017). A rainfall analysis and forecasting tool. Environmental Modelling & Software, 97(Supplement C), 243–258. https://doi.org/10.1016/j.envsoft.2017.08.011 | spa |
dc.relation.references | DNP. (2012). Plan nacional de adaptación al cambio climático. | spa |
dc.relation.references | Du, K.-L., & Swamy, M. N. S. (2019). Neural Networks and Statistical Learning. https://doi.org/10.1007/978-1-4471-7452-3 | spa |
dc.relation.references | Duarte, O. G. (1999). Sistemas de lógica difusa: Fundamentos. Ingeniería e Investigación, 42, 22–30. | spa |
dc.relation.references | Espeholt, L., Agrawal, S., Sønderby, C., Kumar, M., Heek, J., Bromberg, C., Gazen, C., Hickey, J., Bell, A., & Kalchbrenner, N. (2021). Skillful Twelve Hour Precipitation Forecasts using Large Context Neural Networks. arXiv:2111.07470 [physics]. http://arxiv.org/abs/2111.07470 | spa |
dc.relation.references | Fang, W., Zhang, F., Sheng, V. S., & Ding, Y. (2021). SCENT: A New Precipitation Nowcasting Method Based on Sparse Correspondence and Deep Neural Network. Neurocomputing, S0925231221003283. https://doi.org/10.1016/j.neucom.2021.02.072 | spa |
dc.relation.references | Field, C. B., & IPCC (Eds.). (2012). Managing the risks of extreme events and disasters to advance climate change adaption: Special report of the Intergovernmental Panel on Climate Change. Cambridge University Press. | spa |
dc.relation.references | Franco, L. B., Almeida, C. D. G. C. de, Freire, M. M., Franco, G. B., & Silva, S. de A. (2019). Rainfall zoning for cocoa growing in Bahia state (Brazil) using fuzzy logic. Engenharia Agrícola, 39(spe), 48–55. https://doi.org/10.1590/1809-4430-eng.agric.v39nep48-55/2019 | spa |
dc.relation.references | Gil-Olcina, A., & Olcina-Cantos, J. (2017). Tratado de climatología. Universidad de Alicante. | spa |
dc.relation.references | Gocic, M., Shamshirband, S., Razak, Z., Petković, D., Ch, S., & Trajkovic, S. (2016). Long-Term Precipitation Analysis and Estimation of Precipitation Concentration Index Using Three Support Vector Machine Methods. Advances in Meteorology, 2016, 1–11. https://doi.org/10.1155/2016/7912357 | spa |
dc.relation.references | González-Salcedo, L. O., Gotay-Sardiñas, J., Roodschild, M., Ernesto-Will, A. L., & Rodríguez, S. (2017). Optimización en la elaboración de redes neuronales artifciales adaptativas usando una metodología de algoritmo de poda. Ingenio Magno, 8, 44–56. | spa |
dc.relation.references | Gorooh, V. A., Asanjan, A. A., Nguyen, P., Hsu, K., & Sorooshian, S. (2022). Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data. Journal of Hydrometeorology, 23(4), 597–617. https://doi.org/10.1175/JHM-D-21-0194.1 | spa |
dc.relation.references | Guillaume, S., & Charnomordic, B. (2011). Learning interpretable fuzzy inference systems with FisPro. Information Sciences, 181(20), 4409–4427. https://doi.org/10.1016/j.ins.2011.03.025 | spa |
dc.relation.references | Hagan, M. T., Demuth, H. B., Hudson, M., & Jesús, O. (2014). Neural Network Design. https://pdfs.semanticscholar.org/ee5d/5f138cb3220fbca642ec099d1bab9b41e410.pdf | spa |
dc.relation.references | Haq, D. Z., Rini Novitasari, D. C., Hamid, A., Ulinnuha, N., Arnita, Farida, Y., Nugraheni, RR. D., Nariswari, R., Ilham, Rohayani, H., Pramulya, R., & Widjayanto, A. (2021). Long Short-Term Memory Algorithm for Rainfall Prediction Based on El-Nino and IOD Data. Procedia Computer Science, 179, 829–837. https://doi.org/10.1016/j.procs.2021.01.071 | spa |
dc.relation.references | Hasan, M., Tsegaye, T., Shi, X., Schaefer, G., & Taylor, G. (2008). Model for predicting rainfall by fuzzy set theory using USDA scan data. Agricultural Water Management, 95(12), 1350–1360. https://doi.org/10.1016/j.agwat.2008.07.015 | spa |
dc.relation.references | Hashim, R., Roy, C., Motamedi, S., Shamshirband, S., Petković, D., Gocic, M., & Lee, S. C. (2016). Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology. Atmospheric Research, 171(Supplement C), 21–30. https://doi.org/10.1016/j.atmosres.2015.12.002 | spa |
dc.relation.references | Haupt, S. E., Pasini, A., & Marzban, C. (2009). Artificial Intelligence Methods in the Environmental Sciences. Springer Netherlands Springer e-books. | spa |
dc.relation.references | Helen, A., Gabriel, A., E., A., & Alese, B. (2013). Development of a fuzzy logic based rainfall prediction model. Int J Eng Tech, 3, 427–435. | spa |
dc.relation.references | Hessami, M., Anctil, F., & Viau, A. A. (2003). An adaptive neuro-fuzzy inference system for the post-calibration of weather radar rainfall estimation. Journal of Hydroinformatics, 5(1), 63–70. https://doi.org/10.2166/hydro.2003.0005 | spa |
dc.relation.references | Hingray, B., Picouet, C., Musy, A., & Hingray, B. (2014). Hydrology: A science for engineers. CRC Press, Taylor & Francis Group. | spa |
dc.relation.references | Hong, W. (2008). Rainfall forecasting by technological machine learning models. Applied Mathematics and Computation, 200(1), 41–57. https://doi.org/10.1016/j.amc.2007.10.046 | spa |
dc.relation.references | Hong, Y., Hsu, K.-L., Sorooshian, S., & Gao, X. (2004). Precipitation estimation from remotely sensed imagery using an Artificial Neural Network Cloud Classification System. Journal of Applied Meteorology, 12, 1834. | spa |
dc.relation.references | Hsu, K. L., Gao, X., Sorooshian, S., & Gupta, H. V. (1997). Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36(9), 1176–1190. https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2 | spa |
dc.relation.references | Hu, H., & Ayyub, B. M. (2019). Machine Learning for Projecting Extreme Precipitation Intensity for Short Durations in a Changing Climate. Geosciences, 9(5), 209. https://doi.org/10.3390/geosciences9050209 | spa |
dc.relation.references | IDEAM. (2013a). Lineamientos conceptuales y metodológicos para la Evaluación Regional del Agua—ERA. | spa |
dc.relation.references | IDEAM. (2013b). Zonificación y Codificación de Cuencas Hidrográficas. | spa |
dc.relation.references | IDEAM. (2018). Estudio Nacional del Agua. Centro de Ciencia y Tecnología de Antioquia - CTA. https://cta.org.co/biblionet/estudio-nacional-del-agua-2018/ | spa |
dc.relation.references | IDEAM. (2021). ¿Qué es el SIRH? http://www.siac.gov.co/sirh | spa |
dc.relation.references | IDEAM, Rivera, H. G., Romero Pinzon, H., Olaya Triana, G., Wilches Suarez, H., Contreras Trujillo, C., Niño Romero, R., MAVDT, & Costa, C. (2007). Protocolo para el monitoreo y seguimiento del agua. Imprenta Nacional de Colombia. | spa |
dc.relation.references | IDEAM, UNAL, Universidad Nacional de Colombia, & UNAL (Eds.). (2018). La Variabilidad Climática y el Cambio Climático en Colombia. IDEAM. | spa |
dc.relation.references | IDEAM, & UPME (Eds.). (2017). Atlas Climatológico de Colombia. IDEAM. | spa |
dc.relation.references | IPCC (Ed.). (2007). Climate change 2007: The physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. | spa |
dc.relation.references | IPCC. (2014). Technical summary. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. 60. | spa |
dc.relation.references | IPCC. (2018). Global Warming of 1.5°C. | spa |
dc.relation.references | Janarthanan, R., Balamurali, R., Annapoorani, A., & Vimala, V. (2021). Prediction of rainfall using fuzzy logic. Materials Today: Proceedings, 37, 959–963. https://doi.org/10.1016/j.matpr.2020.06.179 | spa |
dc.relation.references | Jang, J.-S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, Systems, Man and Cybernetics, IEEE Transactions on, IEEE Trans. Syst., Man, Cybern., 3, 665. https://doi.org/10.1109/21.256541 | spa |
dc.relation.references | Jenifer, M. A., & Jha, M. K. (2021). Assessment of precipitation trends and its implications in the semi-arid region of Southern India. Environmental Challenges, 5, 100269. https://doi.org/10.1016/j.envc.2021.100269 | spa |
dc.relation.references | Kaiornrit, J., Wong, K. W., & Fung, C. C. (2013). A modular technique for monthly rainfall time series prediction. 2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), 76–83. https://doi.org/10.1109/CIDUE.2013.6595775 | spa |
dc.relation.references | Kajornrit, J. (2014). Interpretable fuzzy systems for monthly rainfall spatial interpolation and time series prediction [Phd, Murdoch University]. En Kajornrit, Jesada <https://researchrepository.murdoch.edu.au/view/author/Kajornrit, Jesada.html> (2014) Interpretable fuzzy systems for monthly rainfall spatial interpolation and time series prediction. PhD thesis, Murdoch University. https://researchrepository.murdoch.edu.au/id/eprint/26220/ | spa |
dc.relation.references | Kajornrit, J., & Wong, K. W. (2013). Cluster validation methods for localization of spatial rainfall data in the northeast region of Thailand. 2013 International Conference on Machine Learning and Cybernetics, 04, 1637–1642. https://doi.org/10.1109/ICMLC.2013.6890861 | spa |
dc.relation.references | Kajornrit, J., Wong, K. W., & Fung, C. C. (2012a). Estimation of missing precipitation records using modular artificial neural networks. International Conference on Neural Information Processing, 52–59. https://link.springer.com/chapter/10.1007/978-3-642-34478-7_7 | spa |
dc.relation.references | Kajornrit, J., Wong, K. W., & Fung, C. C. (2012b). Rainfall prediction in the northeast region of Thailand using Modular Fuzzy Inference System. 2012 IEEE International Conference on Fuzzy Systems, 1–6. https://doi.org/10.1109/FUZZ-IEEE.2012.6250785 | spa |
dc.relation.references | Kar, A. K., Lohani, A. K., Goel, N. K., & Roy, G. P. (2015). Rain gauge network design for flood forecasting using multi-criteria decision analysis and clustering techniques in lower Mahanadi river basin, India. Journal of Hydrology: Regional Studies, 4, 313–332. https://doi.org/10.1016/j.ejrh.2015.07.003 | spa |
dc.relation.references | Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 24–49. https://doi.org/10.1016/j.isprsjprs.2020.12.010 | spa |
dc.relation.references | Keys, P. W., van der Ent, R. J., Gordon, L. J., Hoff, H., Nikoli, R., & Savenije, H. H. G. (2012). Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences, 9(2), 733–746. https://doi.org/10.5194/bg-9-733-2012 | spa |
dc.relation.references | Khan, R. S., & Bhuiyan, M. A. E. (2021). Artificial Intelligence-Based Techniques for Rainfall Estimation Integrating Multisource Precipitation Datasets. Atmosphere, 12(10), Article 10. https://doi.org/10.3390/atmos12101239 | spa |
dc.relation.references | Kirchner, J. W. (2009). Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resources Research, 45(2). https://doi.org/10.1029/2008WR006912 | spa |
dc.relation.references | Kolluru, V., Kolluru, S., Wagle, N., & Acharya, T. D. (2020). Secondary Precipitation Estimate Merging Using Machine Learning: Development and Evaluation over Krishna River Basin, India. Remote Sensing, 12(18), Article 18. https://doi.org/10.3390/rs12183013 | spa |
dc.relation.references | Krier, R., Matgen, P., Goergen, K., Pfister, L., Hoffmann, L., Kirchner, J. W., Uhlenbrook, S., & Savenije, H. H. G. (2012). Inferring catchment precipitation by doing hydrology backward: A test in 24 small and mesoscale catchments in Luxembourg. Water Resources Research, 48(10). https://doi.org/10.1029/2011WR010657 | spa |
dc.relation.references | Kumar, B., Chattopadhyay, R., Singh, M., Chaudhari, N., Kodari, K., & Barve, A. (2020). Deep-learning based down-scaling of summer monsoon rainfall data over Indian region. arXiv:2011.11313 [physics]. http://arxiv.org/abs/2011.11313 | spa |
dc.relation.references | LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), Article 7553. https://doi.org/10.1038/nature14539 | spa |
dc.relation.references | Lexcellent, C. (2019). Artificial intelligence versus human intelligence: Are humans going to be hacked? Springer. | spa |
dc.relation.references | Li, H., Wang, X., Zhang, K., Wu, S., Xu, Y., Liu, Y., Qiu, C., Zhang, J., Fu, E., & Li, L. (2021). A neural network-based approach for the detection of heavy precipitation using GNSS observations and surface meteorological data. Journal of Atmospheric and Solar-Terrestrial Physics, 225, 105763. https://doi.org/10.1016/j.jastp.2021.105763 | spa |
dc.relation.references | Li, W., Pan, B., Xia, J., & Duan, Q. (2022). Convolutional neural network-based statistical post-processing of ensemble precipitation forecasts. Journal of Hydrology, 605, 127301. https://doi.org/10.1016/j.jhydrol.2021.127301 | spa |
dc.relation.references | Loucks, D. P., & van Beek, E. (2017). Water Resource Systems Planning and Management. Springer International Publishing. https://doi.org/10.1007/978-3-319-44234-1 | spa |
dc.relation.references | Lucio, P. S., Conde, F. C., Cavalcanti, I. F. A., Serrano, A. I., Ramos, A. M., & Cardoso, A. O. (2007). Spatiotemporal monthly rainfall reconstruction via artificial neural network -case study: South of Brazil. Advances in Geosciences, 10, 67–76. | spa |
dc.relation.references | Luk, K. C., Ball, J. E., & Sharma, A. (2001). An application of artificial neural networks for rainfall forecasting. Mathematical and Computer Modelling, 33(6), 683–693. https://doi.org/10.1016/S0895-7177(00)00272-7 | spa |
dc.relation.references | Luo, X., Xu, Y., & Shi, Y. (2011). Comparison of interpolation methods for spatial precipitation under diverse orographic effects. 2011 19th International Conference on Geoinformatics, 1–5. https://doi.org/10.1109/GeoInformatics.2011.5980666 | spa |
dc.relation.references | MADS. (2014). Guía técnica para la formulación de los planes de ordenación y manejo de cuencas hidrográficas. Minambiente. | spa |
dc.relation.references | MAVDT. (2010). Política Nacional para la Gestión Integral del Recurso Hídrico. | spa |
dc.relation.references | Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2016). Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation. Journal of Atmospheric and Solar-Terrestrial Physics, 146, 215–227. https://doi.org/10.1016/j.jastp.2016.06.006 | spa |
dc.relation.references | Mehrvand, M., Baghanam, A. H., Razzaghzadeh, Z., & Nourani, V. (2017). AI-based (ANN and SVM) statistical downscaling methods for precipitation estimation under climate change scenarios. EGU General Assembly Conference Abstracts, 19, 15489. http://adsabs.harvard.edu/abs/2017EGUGA..1915489M | spa |
dc.relation.references | Montenegro Murillo, D. D., Pérez Ortiz, M. A., & Vargas Franco, V. (2019). Predicción de precipitación mensual mediante Redes Neuronales Artificiales para la cuenca del río Cali, Colombia. DYNA, 86(211), 122–130. https://doi.org/10.15446/dyna.v86n211.76079 | spa |
dc.relation.references | Moraux, A., Dewitte, S., Cornelis, B., & Munteanu, A. (2019). Deep Learning for Precipitation Estimation from Satellite and Rain Gauges Measurements. Remote Sensing, 11(21), Article 21. https://doi.org/10.3390/rs11212463 | spa |
dc.relation.references | Moraux, A., Dewitte, S., Cornelis, B., & Munteanu, A. (2021). A Deep Learning Multimodal Method for Precipitation Estimation. Remote Sensing, 13(16), Article 16. https://doi.org/10.3390/rs13163278 | spa |
dc.relation.references | Moustris, K. P., Larissi, I. K., Nastos, P. T., & Paliatsos, A. G. (2011). Precipitation Forecast Using Artificial Neural Networks in Specific Regions of Greece. Water Resources Management, 25(8), 1979–1993. https://doi.org/10.1007/s11269-011-9790-5 | spa |
dc.relation.references | Nadler, D. W. (2019). Decision support: Using machine learning through MATLAB to analyze environmental data. Journal of Environmental Studies and Sciences, 9(4), 419–428. https://doi.org/10.1007/s13412-019-00558-9 | spa |
dc.relation.references | Nastos, P. T., Paliatsos, A. G., Koukouletsos, K. V., Larissi, I. K., & Moustris, K. P. (2014). Artificial neural networks modeling for forecasting the maximum daily total precipitation at Athens, Greece. Atmospheric Research, 144, 141–150. https://doi.org/10.1016/j.atmosres.2013.11.013 | spa |
dc.relation.references | Neira, F. (2010). Elaboración de la cartografía climática de temperaturas y precipitación mediante redes neuronales artificiales: Caso de estudio en la Región del Libertador Bernardo O"Higgins. http://repositorio.uchile.cl/handle/2250/112354 | spa |
dc.relation.references | Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, 53, 102104. https://doi.org/10.1016/j.ijinfomgt.2020.102104 | spa |
dc.relation.references | NOAA’s Climate Prediction Center. (2021). NOAA’s Climate Prediction Center. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php | spa |
dc.relation.references | Paca, V. H. da M., Espinoza-Dávalos, G., Moreira, D., & Comair, G. (2020). Variability of Trends in Precipitation across the Amazon River Basin Determined from the CHIRPS Precipitation Product and from Station Records. Water, 12(5), 1244. https://doi.org/10.3390/w12051244 | spa |
dc.relation.references | Pan, B., Hsu, K., AghaKouchak, A., & Sorooshian, S. (2019). Improving Precipitation Estimation Using Convolutional Neural Network. Water Resources Research, 55(3), 2301–2321. https://doi.org/10.1029/2018WR024090 | spa |
dc.relation.references | Perianes-Rodriguez, A., Waltman, L., & van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195. https://doi.org/10.1016/j.joi.2016.10.006 | spa |
dc.relation.references | Petković, D., Gocić, M., & Shamshirband, S. (2016). Adaptive neuro-fuzzy computing technique for precipitation estimation. Facta Universitatis, Series: Mechanical Engineering, 14(2), 209–218. | spa |
dc.relation.references | Pizarro T, R., Ramirez B, C., & Flores V, J. P. (2003). Análisis comparativo de cinco métodos para la estimación de precipitaciones areales anuales en períodos extremos. Bosque (Valdivia), 24(3). https://doi.org/10.4067/S0717-92002003000300003 | spa |
dc.relation.references | Qi, H., Wu, Z., Zhang, L., Li, J., Zhou, J., Jun, Z., & Zhu, B. (2021). Monitoring of peanut leaves chlorophyll content based on drone-based multispectral image feature extraction. Computers and Electronics in Agriculture, 187, 106292. https://doi.org/10.1016/j.compag.2021.106292 | spa |
dc.relation.references | Rahman, A., Abbas, S., Gollapalli, M., Aftab, S., Ahmad, M., Khan, M., & Mosavi, A. (2022). Rainfall Prediction System Using Machine Learning Fusion for Smart Cities. Sensors, 22, 1–14. https://doi.org/10.3390/s22093504 | spa |
dc.relation.references | Rahman, M. A. (2020). Improvement of Rainfall Prediction Model by Using Fuzzy Logic. American Journal of Climate Change, 9(4), Article 4. https://doi.org/10.4236/ajcc.2020.94024 | spa |
dc.relation.references | Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., Brock, A., Simonyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas, A., & Mohamed, S. (2021). Skilful precipitation nowcasting using deep generative models of radar. Nature, 597(7878), 672–677. https://doi.org/10.1038/s41586-021-03854-z | spa |
dc.relation.references | Reina, D., Moscovitz, L. J., & Lorenz, F. U. K. (2008). Fundamentos de Matemática Difusa [Tesis de Grado. Fundación Universitaria Konrad Lorenz. Facultad de Matemáticas. Búsqueda realizada 18-19-10. Dirección electrónica http://www. konradlorenz. edu. co/images/stories/suma_digital_matematicas/EDICION_09_0I/trabajo_de_grado_daniel_reina. pdf]. http://www.konradlorenz.edu.co/images/stories/suma_digital_matematicas/EDICION_09_0I/trabajo_de_grado_daniel_reina.pdf | spa |
dc.relation.references | Ross, T. J. (2017). Fuzzy logic with engineering applications (Fourth edition). Wiley. | spa |
dc.relation.references | Russell, S., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd edition). Pearson. | spa |
dc.relation.references | Sadeghi, M., Nguyen, P., Hsu, K., & Sorooshian, S. (2020). Improving near real-time precipitation estimation using a U-Net convolutional neural network and geographical information. Environmental Modelling & Software, 134, 104856. https://doi.org/10.1016/j.envsoft.2020.104856 | spa |
dc.relation.references | Sangiorgio, M., Barindelli, S., Guglieri, V., Biondi, R., Solazzo, E., Realini, E., Venuti, G., & Guariso, G. (2020). A Comparative Study on Machine Learning Techniques for Intense Convective Rainfall Events Forecasting. En O. Valenzuela, F. Rojas, L. J. Herrera, H. Pomares, & I. Rojas (Eds.), Theory and Applications of Time Series Analysis (pp. 305–317). Springer International Publishing. https://doi.org/10.1007/978-3-030-56219-9_20 | spa |
dc.relation.references | Schroeter, B. J. E. (2016). Artificial Neural Networks in Precipitation Nowcasting: An Australian Case Study. En S. Shanmuganathan & S. Samarasinghe (Eds.), Artificial Neural Network Modelling (pp. 325–339). Springer International Publishing. https://doi.org/10.1007/978-3-319-28495-8_14 | spa |
dc.relation.references | Seo, Y., Kim, S., & Singh, V. P. (2015). Estimating Spatial Precipitation Using Regression Kriging and Artificial Neural Network Residual Kriging (RKNNRK) Hybrid Approach. Water Resources Management, 29(7), 2189–2204. https://doi.org/10.1007/s11269-015-0935-9 | spa |
dc.relation.references | Shamshirband, S., Gocic, M., Petkovic, D., Saboohi, H., Herawan, T., Mat Kiah, M. L., & Akib, S. (2014). Soft-Computing Methodologies for Precipitation Estimation: A Case Study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1–6. https://doi.org/10.1109/JSTARS.2014.2364075 | spa |
dc.relation.references | Sharma, S., Srivastava, P., Fang, X., & Kalin, L. (2016). Hydrologic simulation approach for El Niño Southern Oscillation (ENSO)-affected watershed with limited raingauge stations. Hydrological Sciences Journal, 61(6), 991–1000. https://doi.org/10.1080/02626667.2014.952640 | spa |
dc.relation.references | Shenify, M., Danesh, A. S., Gocić, M., Taher, R. S., Abdul Wahab, A. W., Gani, A., Shamshirband, S., & Petković, D. (2016). Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform. Water Resources Management, 30(2), 641–652. https://doi.org/10.1007/s11269-015-1182-9 | spa |
dc.relation.references | Shi, X. (2020). Enabling Smart Dynamical Downscaling of Extreme Precipitation Events With Machine Learning. Geophysical Research Letters, 47(19). https://doi.org/10.1029/2020GL090309 | spa |
dc.relation.references | Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.-Y., Wong, W., & Woo, W. (2017). Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model. 11. | spa |
dc.relation.references | Silver, M., Svoray, T., Karnieli, A., & Fred, E. (2019). Improving weather radar precipitation maps: A fuzzy logic approach. Atmospheric Research, 234, 104710. https://doi.org/10.1016/j.atmosres.2019.104710 | spa |
dc.relation.references | Singh, P. (2018). Rainfall and financial forecasting using fuzzy time series and neural networks based model. International Journal of Machine Learning and Cybernetics, 9(3), 491–506. https://doi.org/10.1007/s13042-016-0548-5 | spa |
dc.relation.references | Sinha, P., Mann, M. E., Fuentes, J. D., Mejia, A., Ning, L., Sun, W., He, T., & Obeysekera, J. (2018). Downscaled rainfall projections in south Florida using self-organizing maps. Science of The Total Environment, 635, 1110–1123. https://doi.org/10.1016/j.scitotenv.2018.04.144 | spa |
dc.relation.references | Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., & Demir, I. (2020). A Comprehensive Review of Deep Learning Applications in Hydrology and Water Resources. arXiv:2007.12269 [physics, stat]. http://arxiv.org/abs/2007.12269 | spa |
dc.relation.references | Solgi, A., Nourani, V., & Pourhaghi, A. (2014). Forecasting Daily Precipitation Using Hybrid Model of Wavelet-Artificial Neural Network and Comparison with Adaptive Neurofuzzy Inference System (Case Study: Verayneh Station, Nahavand). Advances in Civil Engineering, 2014, 1–12. https://doi.org/10.1155/2014/279368 | spa |
dc.relation.references | Sønderby, C. K., Espeholt, L., Heek, J., Dehghani, M., Oliver, A., Salimans, T., Hickey, J., Agrawal, S., & Kalchbrenner, N. (2020). MetNet: A Neural Weather Model for Precipitation Forecasting. Submission to journal. https://arxiv.org/abs/2003.12140 | spa |
dc.relation.references | Sözen, A., Kurt, M., Akçayol, M. A., & Özalp, M. (2004). Performance prediction of a solar driven ejector-absorption cycle using fuzzy logic. Renewable Energy, 29(1), 53–71. https://doi.org/10.1016/S0960-1481(03)00172-1 | spa |
dc.relation.references | Story, G. J. (2012). Estimating Precipitation from WSR-88D Observations and Rain Gauge Data: Potential for Drought Monitoring. Publications, Agencies and Staff of the U.S. Department of Commerce. https://digitalcommons.unl.edu/usdeptcommercepub/556 | spa |
dc.relation.references | Sun, A. Y., & Tang, G. (2020). Downscaling Satellite and Reanalysis Precipitation Products Using Attention-Based Deep Convolutional Neural Nets. Frontiers in Water, 2. https://www.frontiersin.org/article/10.3389/frwa.2020.536743 | spa |
dc.relation.references | Sutawinaya, I., Astawa, I. N. G., & Hariyanti, N. K. (2018). Comparison of Adaline and Multiple Linear Regression Methods for Rainfall Forecasting. Journal of Physics: Conference Series, 953, 1–8. https://doi.org/10.1088/1742-6596/953/1/012046 | spa |
dc.relation.references | Szcześniak, M., & Piniewski, M. (2015). Improvement of Hydrological Simulations by Applying Daily Precipitation Interpolation Schemes in Meso-Scale Catchments. Water, 7(2), Article 2. https://doi.org/10.3390/w7020747 | spa |
dc.relation.references | Tao, Y., Gao, X., Ihler, A., Hsu, K., & Sorooshian, S. (2016). Deep neural networks for precipitation estimation from remotely sensed information. Evolutionary Computation (CEC), 2016 IEEE Congress on, 1349–1355. http://ieeexplore.ieee.org/abstract/document/7743945/ | spa |
dc.relation.references | Tao, Y., Gao, X., Ihler, A., Sorooshian, S., & Hsu, K. (2017). Precipitation Identification with Bispectral Satellite Information Using Deep Learning Approaches. Journal of Hydrometeorology, 18(5), 1271–1283. https://doi.org/10.1175/JHM-D-16-0176.1 | spa |
dc.relation.references | Tch, A. (2017). The mostly complete chart of Neural Networks, explained. Medium. https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464 | spa |
dc.relation.references | Teegavarapu, R. S. V. (2012). Floods in a changing climate. Extreme precipitation. Cambridge University Press. | spa |
dc.relation.references | Terassi, P. M. de B., da Silva Oscar-Júnior, A. C., Galvani, E., de Oliveira-Júnior, J. F., Sobral, B. S., Biffi, V. H. R., & de Gois, G. (2022). Daily rainfall intensity and temporal trends in eastern Paraná state – Brazil. Urban Climate, 42, 101090. https://doi.org/10.1016/j.uclim.2022.101090 | spa |
dc.relation.references | Tobón, C. (2009). Los bosques andinos y el agua. | spa |
dc.relation.references | Trafalis, T. B., Richman, M. B., White, A., & Santosa, B. (2002). Data mining techniques for improved WSR-88D rainfall estimation. Computers & Industrial Engineering, 43(4), 775–786. https://doi.org/10.1016/S0360-8352(02)00139-0 | spa |
dc.relation.references | Trinh, T., Do, N., Nguyen, V. T., & Carr, K. (2021). Modeling high-resolution precipitation by coupling a regional climate model with a machine learning model: An application to Sai Gon–Dong Nai Rivers Basin in Vietnam. Climate Dynamics, 57(9), 2713–2735. https://doi.org/10.1007/s00382-021-05833-6 | spa |
dc.relation.references | Tzimopoulo, C., Mpallas, L., & Evangelide, C. (2008). Fuzzy Model Comparison to Extrapolate Rainfall Data. Journal of Environmental Science and Technology, 1(4), 214–224. https://doi.org/10.3923/jest.2008.214.224 | spa |
dc.relation.references | Umar, D. A., Ramli, M. F., Aris, A. Z., Jamil, N. R., & Aderemi, A. A. (2019). Evidence of climate variability from rainfall and temperature fluctuations in semi-arid region of the tropics. Atmospheric Research, 224, 52–64. https://doi.org/10.1016/j.atmosres.2019.03.023 | spa |
dc.relation.references | UNESCO (Ed.). (2020). Informe mundial de las Naciones Unidas sobre el desarrollo de los recursos hídricos 2020: Agua y cambio climático. UNESCO. | spa |
dc.relation.references | van Eck, N. J., & Waltman, L. (2021). VOSviewer Manual. | spa |
dc.relation.references | Vannitsem, S., Bremnes, J. B., Demaeyer, J., Evans, G. R., Flowerdew, J., Hemri, S., Lerch, S., Roberts, N., Theis, S., Atencia, A., Bouallègue, Z. B., Bhend, J., Dabernig, M., Cruz, L. D., Hieta, L., Mestre, O., Moret, L., Plenković, I. O., Schmeits, M., … Ylhaisi, J. (2021). Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World. Bulletin of the American Meteorological Society, 102(3), E681–E699. https://doi.org/10.1175/BAMS-D-19-0308.1 | spa |
dc.relation.references | Virant, J. (2000). Design Considerations of Time in Fuzzy Systems (Vol. 35). Springer US. https://doi.org/10.1007/978-1-4615-4673-3 | spa |
dc.relation.references | Wang, Y., Liu, J., Li, R., Suo, X., & Lu, E. (2020). Precipitation forecast of the Wujiang River Basin based on artificial bee colony algorithm and backpropagation neural network. Alexandria Engineering Journal, 59(3), 1473–1483. https://doi.org/10.1016/j.aej.2020.04.035 | spa |
dc.relation.references | Wolff, W., Duarte, S. N., & Fernandes, R. D. M. (2020). Spatialization of the annual and seasonal average precipitations in the state of Santa Catarina, Brazil. Journal of South American Earth Sciences, 103, 102735. https://doi.org/10.1016/j.jsames.2020.102735 | spa |
dc.relation.references | Wong, K. W., Wong, P. M., Gedeon, T. D., & Fung, C. C. (2003). Rainfall prediction model using soft computing technique. Soft Computing, 7(6), 434–438. https://doi.org/10.1007/s00500-002-0232-4 | spa |
dc.relation.references | Xu, R., Chen, N., Chen, Y., & Chen, Z. (2020). Downscaling and Projection of Multi-CMIP5 Precipitation Using Machine Learning Methods in the Upper Han River Basin. Advances in Meteorology, 2020, 1–17. https://doi.org/10.1155/2020/8680436 | spa |
dc.relation.references | Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W., Yang, Q., Wang, J., Gao, J., & Zhang, L. (2020). Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment, 241, 111716. https://doi.org/10.1016/j.rse.2020.111716 | spa |
dc.relation.references | Zacharov, P., & Rezacova, D. (2009). Using the fractions skill score to assess the relationship between an ensemble QPF spread and skill. Atmospheric Research, 94, 684–693. https://doi.org/10.1016/j.atmosres.2009.03.004 | spa |
dc.relation.references | Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X | spa |
dc.relation.references | Zadeh, L. A. (1968). Fuzzy algorithms. Information and Control, 12(2), 94–102. https://doi.org/10.1016/S0019-9958(68)90211-8 | spa |
dc.relation.references | Zare, M., Schumann, G. J.-P., Teferle, F. N., & Mansorian, R. (2021). Generating Flood Hazard Maps Based on an Innovative Spatial Interpolation Methodology for Precipitation. Atmosphere, 12(10), Article 10. https://doi.org/10.3390/atmos12101336 | spa |
dc.relation.references | Zhu, J., Chen, Y., & Zhang, S. (2020). Analysis of the Impact of Climate Change on National Vulnerability Based on Fuzzy Comprehensive Evaluation. Discrete Dynamics in Nature and Society, 2020, e3527540. https://doi.org/10.1155/2020/3527540 | spa |
dc.relation.references | Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8–36. https://doi.org/10.1109/MGRS.2017.2762307 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.agrovoc | Hidrometeorología | |
dc.subject.agrovoc | Hydrometeorology | |
dc.subject.agrovoc | Variabilidad del clima | |
dc.subject.agrovoc | Climate variability | |
dc.subject.agrovoc | Aprendizaje automático | |
dc.subject.agrovoc | Machine learning | |
dc.subject.agrovoc | Procesamiento de datos | |
dc.subject.agrovoc | Data processing | |
dc.subject.agrovoc | Sistemas de información geográfica | |
dc.subject.agrovoc | Geographical information systems | |
dc.subject.ddc | 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología | spa |
dc.subject.proposal | Precipitación | spa |
dc.subject.proposal | Eventos extremos | spa |
dc.subject.proposal | Lógica difusa | spa |
dc.subject.proposal | Redes neuronales artificiales | spa |
dc.subject.proposal | Inteligencia artificial | spa |
dc.subject.proposal | Precipitation | eng |
dc.subject.proposal | Extreme events | eng |
dc.subject.proposal | Fuzzy logic | eng |
dc.subject.proposal | Artificial neural networks | eng |
dc.subject.proposal | Artificial intelligence | eng |
dc.subject.unesco | Cambio climático | |
dc.subject.unesco | Climate change | |
dc.title | Estimación de la precipitación en la cuenca hidrográfica del río Bolo con técnicas de inteligencia artificial | spa |
dc.title.translated | Precipitation estimation at Bolo River watershed using artificial intelligence techniques | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo_Final_Estimación_Precipitación_Bolo_IA_Andrés_Felipe_Ruiz.pdf
- Tamaño:
- 5.21 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Maestría en Ingeniería Ambiental
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: