Estimación de la precipitación en la cuenca hidrográfica del río Bolo con técnicas de inteligencia artificial

dc.contributor.advisorVargas Franco, Viviana
dc.contributor.advisorGonzález Salcedo, Luis Octavio
dc.contributor.authorRuiz Hurtado, Andrés Felipe
dc.contributor.cvlacRuiz Hurtado, Andrés Felipe [0001604301]spa
dc.contributor.googlescholarAndrés Felipe Ruiz Hurtadospa
dc.contributor.orcidRuiz Hurtado, Andrés [0000000312938736]spa
dc.contributor.researchgateAndres Felipe Ruiz-Hurtadospa
dc.contributor.researchgroupMonitoreo, Modelación y Gestión de Cuencas Hidrograficasspa
dc.coverage.countryhttp://vocab.getty.edu/page/tgn/7005078
dc.date.accessioned2025-02-05T19:05:58Z
dc.date.available2025-02-05T19:05:58Z
dc.date.issued2023
dc.descriptionIlustraciones, figuras, tablasspa
dc.description.abstractLa complejidad de los sistemas hidroclimatológicos demuestra la necesidad del uso de herramientas de análisis más efectivas y contextualizadas al área de estudio que soporten la gestión a nivel de cuenca y subcuenca hidrográfica. La variabilidad natural y los efectos provocados por el cambio climático antropogénico requieren un análisis extensivo del comportamiento de variables como la precipitación y la ocurrencia de anomalías en sus patrones espaciales y temporales. Gracias a los avances recientes en distintas técnicas de inteligencia artificial, el objetivo de esta investigación fue evaluar un modelo de lógica difusa y un modelo de redes neuronales artificiales para la estimación de los patrones de precipitación en la cuenca hidrográfica del río Bolo en el Valle del Cauca. Se realizó una recopilación de datos de precipitación y un análisis exploratorio de datos a partir de los cuales se determinó la estimación de los patrones de precipitación como variable categórica objetivo de los modelos (periodos: extremadamente seco, muy seco, moderadamente seco, normal, moderadamente húmedo, muy húmedo, extremadamente húmedo). Estos modelos se enfocaron en el análisis mensual de la precipitación usando como línea base el Índice Estándar de precipitación mensual (SPI-1) y la comparación con el comportamiento esperado por el Índice Niño Oceánico (ONI). Se implementó un sistema de inferencia difuso con 3 variables explicativas y 48 reglas de implicación y se evaluaron varias configuraciones de redes neuronales obteniéndose los mejores resultados para el algoritmo de entrenamiento de regularización Bayesiana con un R de 0.8 seguido de Levenberg-Marquardt con un R de 0.76. El sistema de inferencia difuso generó resultados más alineados con lo esperado del análisis exploratorio y el comportamiento histórico de la precipitación en la cuenca del río Bolo, mientras que la red neuronal artificial demostró un sesgo en la estimación del tipo de evento extremo de precipitación. (Texto tomado de la fuente)spa
dc.description.abstractThe complexity of hydroclimatological systems demonstrates the need for more effective and context-specific analysis tools in the study area to support watershed and sub-watershed management. Natural variability and the effects of anthropogenic climate change require an extensive analysis of variables such as precipitation and the occurrence of anomalies in their spatial and temporal patterns. Given the recent advancement of various artificial intelligence techniques, the objective of this study was to evaluate a fuzzy logic model and an artificial neural network model for estimating precipitation patterns in Bolo river watershed in Valle del Cauca. Data collection and exploratory data analysis were conducted to determine the estimation of precipitation patterns as the categorical target variable for the models (periods: extremely dry, very dry, moderately dry, normal, moderately wet, very wet, and extremely wet). These models focused on monthly precipitation analysis using the monthly Standard Precipitation Index (SPI-1) as a baseline and comparing it with the expected behavior of the Oceanic Niño Index (ONI). A fuzzy inference system was implemented with 3 explanatory variables and 48 implication rules, and several neural network configurations were evaluated, with the best results obtained for the Bayesian regularization training algorithm with an R of 0.8 followed by Levenberg-Marquardt with an R of 0.76. The fuzzy inference system generated results that aligned more closely with the expected outcomes based on the exploratory analysis and the historical behavior of precipitation in the Bolo River. On the other hand, the artificial neural network demonstrated a bias in estimating the type of extreme precipitation event.eng
dc.description.curricularareaIngeniería.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Ambientalspa
dc.description.methodsGracias a los avances recientes en distintas técnicas de inteligencia artificial, el objetivo de esta investigación fue evaluar un modelo de lógica difusa y un modelo de redes neuronales artificiales para la estimación de los patrones de precipitación en la cuenca hidrográfica del río Bolo en el Valle del Cauca. Se realizó una recopilación de datos de precipitación y un análisis exploratorio de datos a partir de los cuales se determinó la estimación de los patrones de precipitación como variable categórica objetivo de los modelos (periodos: extremadamente seco, muy seco, moderadamente seco, normal, moderadamente húmedo, muy húmedo, extremadamente húmedo). Estos modelos se enfocaron en el análisis mensual de la precipitación usando como línea base el Índice Estándar de precipitación mensual (SPI-1) y la comparación con el comportamiento esperado por el Índice Niño Oceánico (ONI). Se implementó un sistema de inferencia difuso con 3 variables explicativas y 48 reglas de implicación y se evaluaron varias configuraciones de redes neuronales obteniéndose los mejores resultados para el algoritmo de entrenamiento de regularización Bayesiana con un R de 0.8 seguido de Levenberg-Marquardt con un R de 0.76.spa
dc.description.researchareaMonitoreo, modelación y gestión de recursos naturalesspa
dc.format.extentxvi, 135 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87439
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ingeniería y Administraciónspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesAbbas Fall, G., Mousavi-Ba, M., & Habibi Nok, M. (2009). Annual Rainfall Forecasting by Using Mamdani Fuzzy Inference System. Research Journal of Environmental Sciences, 3(4), 400–413. https://doi.org/10.3923/rjes.2009.400.413spa
dc.relation.referencesAbbot, J., & Marohasy, J. (2013). The application of artificial intelligence for monthly rainfall forecasting in the Brisbane Catchment, Queensland, Australia. 125–135. https://doi.org/10.2495/RBM130111spa
dc.relation.referencesAbbot, J., & Marohasy, J. (2014). Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmospheric Research, 138, 166–178. https://doi.org/10.1016/j.atmosres.2013.11.002spa
dc.relation.referencesAdewoyin, R., Dueben, P., Watson, P. A. G., He, Y., & Dutta, R. (2020). TRU-NET: A Deep Learning Approach to High Resolution Prediction of Rainfall. arXiv. https://research-information.bris.ac.uk/en/publications/tru-net-a-deep-learning-approach-to-high-resolution-prediction-ofspa
dc.relation.referencesAgrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., & Hickey, J. (2019). Machine Learning for Precipitation Nowcasting from Radar Images. 6.spa
dc.relation.referencesAlvarado, D. (2007). Diagnóstico preliminar del componente de saneamiento ambiental de la cuenca hidrográfica del río Bolo – Valle del Cauca, Colombia.spa
dc.relation.referencesAraghinejad, S. (2014). Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering (Vol. 67). Springer Netherlands. https://doi.org/10.1007/978-94-007-7506-0spa
dc.relation.referencesAsklany, S., Elhelow, K., Youssef, I., & El-Wahab, M. (2011). Rainfall events prediction using rule-based fuzzy inference system. Atmospheric Research - ATMOS RES, 101, 228–236. https://doi.org/10.1016/j.atmosres.2011.02.015spa
dc.relation.referencesAsobolo. (2021). Quienes somos. https://asobolo.org/quienes-somos/spa
dc.relation.referencesAzimi, S., & Azhdary-Moghaddam, M. (2020). Modeling Short Term Rainfall Forecast Using Neural Networks, and Gaussian Process Classification Based on the SPI Drought Index. Water Resources Management, 34(4), 1369–1405. https://doi.org/10.1007/s11269-020-02507-6spa
dc.relation.referencesBakkay, M. C., Serrurier, M., Burda, V. K., Dupuy, F., Cabrera-Gutierrez, N. C., Zamo, M., Mader, M.-A., Mestre, O., Oller, G., Jouhaud, J.-C., & Terray, L. (2022). Precipitaion Nowcasting using Deep Neural Network. arXiv:2203.13263 [cs]. http://arxiv.org/abs/2203.13263spa
dc.relation.referencesBenevides, P., Catalao, J., & Nico, G. (2019). Neural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors. Remote Sensing, 11(8), Article 8. https://doi.org/10.3390/rs11080966spa
dc.relation.referencesBrasjen, A. M. (2014). Precipitation Estimation from Infrared Satellite Imagery. https://repository.tudelft.nl/islandora/object/uuid%3A63c4dc53-fdd2-47db-a9ed-d1ddc19366e8spa
dc.relation.referencesCarrera-Villacrés, D. V., Guevara-García, P. V., Tamayo-Bacacela, L. C., Balarezo-Aguilar, A. L., Narváez-Rivera, C. A., & Morocho-López, D. R. (2016). Filling series annual meteorological data by statistical methods in the coastal zone from Ecuador and Andes, and calculation of rainfall. Idesia (Arica), 34(3), 81–90. https://doi.org/10.4067/S0718-34292016000300010spa
dc.relation.referencesCarvajal-Escobar, Y. (2011). Inundaciones en Colombia ¿Estamos preparados para enfrentar la variabilidad y el cambio climático? Memorias, 9(16), 105–119.spa
dc.relation.referencesCastro, J. (1999). The limits of fuzzy logic. Mathware & soft computing, ISSN 1134-5632, Vol. 6, No. 2-3, 1999, pags. 155-161.spa
dc.relation.referencesCastro, J., & Calvo-Flores, M. (1996). Fuzzy Systems With Defuzzification Are Universal Approximators. IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society, 26, 149–152. https://doi.org/10.1109/3477.484447spa
dc.relation.referencesÇelik, Ö., Teke, A., & Yıldırım, H. B. (2016). The optimized artificial neural network model with Levenberg–Marquardt algorithm for global solar radiation estimation in Eastern Mediterranean Region of Turkey. Journal of Cleaner Production, 116(Supplement C), 1–12. https://doi.org/10.1016/j.jclepro.2015.12.082spa
dc.relation.referencesCerón, W. L., Escobar, Y., & Montoya, O. (2015). Índice estandarizado de precipitación (SPI) para la caracterización de sequías meteorológicas en la cuenca del río Dagua-Colombia. Estudios Geográficos, 76, 557–578. https://doi.org/10.3989/estgeogr.201520spa
dc.relation.referencesChang, C. L., Lo, S. L., & Yu, S. L. (2005). Applying fuzzy theory and genetic algorithm to interpolate precipitation. Journal of Hydrology, 314(1), 92–104. https://doi.org/10.1016/j.jhydrol.2005.03.034spa
dc.relation.referencesChang, F., Chiang, Y.-M., Tsai, M.-J., Shieh, M.-C., Hsu, K.-L., & Sorooshian, S. (2014). Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information. Journal of Hydrology, 508, 374–384. https://doi.org/10.1016/j.jhydrol.2013.11.011spa
dc.relation.referencesClaesen, M., & De Moor, B. (2015). Hyperparameter Search in Machine Learning. arXiv:1502.02127 [cs, stat]. http://arxiv.org/abs/1502.02127spa
dc.relation.referencesCooper, R. N., Houghton, J. T., McCarthy, J. J., & Metz, B. (2002). Climate Change 2001: The Scientific Basis. Foreign Affairs, 81(1), 208. https://doi.org/10.2307/20033020spa
dc.relation.referencesCVC. (2017). Balance oferta – demanda de agua cuenca del río Bolo.spa
dc.relation.referencesCVC. (2019). Informe de Gestión Vigencia 2019—Consolidado Plan De Acción 2016-2019.spa
dc.relation.referencesCVC, Secretaria de Ambiente, Agricultura y Pesca, & CIAT. (2018). Plan Integral de Cambio Climático para el Valle del Cauca PICC.spa
dc.relation.referencesDamavandi, H. G., & Shah, R. (2019). A Learning Framework for An Accurate Prediction of Rainfall Rates. arXiv:1901.05885 [eess, stat]. http://arxiv.org/abs/1901.05885spa
dc.relation.referencesDani, S., & Sharma, S. (2013). Forecasting rainfall of a region by using fuzzy time series. Asian Journal of Mathematics and Applications, 2013.spa
dc.relation.referencesDas, M., & Ghosh, S. K. (2017). Data-driven approaches for meteorological time series prediction: A comparative study of the state-of-the-art computational intelligence techniques. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2017.08.009spa
dc.relation.referencesDavie, T. (2019). Fundamentals of hydrology (Third Edition). Routledge, Taylor & Francis Group.spa
dc.relation.referencesde Campos Souza, P. V., Batista de Oliveira, L., & Ferreira do Nascimento, L. A. (2019). Fuzzy Rules to Help Predict Rains and Temperatures in a Brazilian Capital State Based on Data Collected from Satellites. Applied Sciences, 9(24), 5476. https://doi.org/10.3390/app9245476spa
dc.relation.referencesDe Silva, C. W. (1995). Intelligent control: Fuzzy logic applications. CRC Press.spa
dc.relation.referencesDeloitte. (2020). Global Artificial Intelligence Industry Whitepaper. Deloitte Technology, Media and Telecommunications Industry.spa
dc.relation.referencesDiez-Sierra, J., & del Jesús, M. (2017). A rainfall analysis and forecasting tool. Environmental Modelling & Software, 97(Supplement C), 243–258. https://doi.org/10.1016/j.envsoft.2017.08.011spa
dc.relation.referencesDNP. (2012). Plan nacional de adaptación al cambio climático.spa
dc.relation.referencesDu, K.-L., & Swamy, M. N. S. (2019). Neural Networks and Statistical Learning. https://doi.org/10.1007/978-1-4471-7452-3spa
dc.relation.referencesDuarte, O. G. (1999). Sistemas de lógica difusa: Fundamentos. Ingeniería e Investigación, 42, 22–30.spa
dc.relation.referencesEspeholt, L., Agrawal, S., Sønderby, C., Kumar, M., Heek, J., Bromberg, C., Gazen, C., Hickey, J., Bell, A., & Kalchbrenner, N. (2021). Skillful Twelve Hour Precipitation Forecasts using Large Context Neural Networks. arXiv:2111.07470 [physics]. http://arxiv.org/abs/2111.07470spa
dc.relation.referencesFang, W., Zhang, F., Sheng, V. S., & Ding, Y. (2021). SCENT: A New Precipitation Nowcasting Method Based on Sparse Correspondence and Deep Neural Network. Neurocomputing, S0925231221003283. https://doi.org/10.1016/j.neucom.2021.02.072spa
dc.relation.referencesField, C. B., & IPCC (Eds.). (2012). Managing the risks of extreme events and disasters to advance climate change adaption: Special report of the Intergovernmental Panel on Climate Change. Cambridge University Press.spa
dc.relation.referencesFranco, L. B., Almeida, C. D. G. C. de, Freire, M. M., Franco, G. B., & Silva, S. de A. (2019). Rainfall zoning for cocoa growing in Bahia state (Brazil) using fuzzy logic. Engenharia Agrícola, 39(spe), 48–55. https://doi.org/10.1590/1809-4430-eng.agric.v39nep48-55/2019spa
dc.relation.referencesGil-Olcina, A., & Olcina-Cantos, J. (2017). Tratado de climatología. Universidad de Alicante.spa
dc.relation.referencesGocic, M., Shamshirband, S., Razak, Z., Petković, D., Ch, S., & Trajkovic, S. (2016). Long-Term Precipitation Analysis and Estimation of Precipitation Concentration Index Using Three Support Vector Machine Methods. Advances in Meteorology, 2016, 1–11. https://doi.org/10.1155/2016/7912357spa
dc.relation.referencesGonzález-Salcedo, L. O., Gotay-Sardiñas, J., Roodschild, M., Ernesto-Will, A. L., & Rodríguez, S. (2017). Optimización en la elaboración de redes neuronales artifciales adaptativas usando una metodología de algoritmo de poda. Ingenio Magno, 8, 44–56.spa
dc.relation.referencesGorooh, V. A., Asanjan, A. A., Nguyen, P., Hsu, K., & Sorooshian, S. (2022). Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data. Journal of Hydrometeorology, 23(4), 597–617. https://doi.org/10.1175/JHM-D-21-0194.1spa
dc.relation.referencesGuillaume, S., & Charnomordic, B. (2011). Learning interpretable fuzzy inference systems with FisPro. Information Sciences, 181(20), 4409–4427. https://doi.org/10.1016/j.ins.2011.03.025spa
dc.relation.referencesHagan, M. T., Demuth, H. B., Hudson, M., & Jesús, O. (2014). Neural Network Design. https://pdfs.semanticscholar.org/ee5d/5f138cb3220fbca642ec099d1bab9b41e410.pdfspa
dc.relation.referencesHaq, D. Z., Rini Novitasari, D. C., Hamid, A., Ulinnuha, N., Arnita, Farida, Y., Nugraheni, RR. D., Nariswari, R., Ilham, Rohayani, H., Pramulya, R., & Widjayanto, A. (2021). Long Short-Term Memory Algorithm for Rainfall Prediction Based on El-Nino and IOD Data. Procedia Computer Science, 179, 829–837. https://doi.org/10.1016/j.procs.2021.01.071spa
dc.relation.referencesHasan, M., Tsegaye, T., Shi, X., Schaefer, G., & Taylor, G. (2008). Model for predicting rainfall by fuzzy set theory using USDA scan data. Agricultural Water Management, 95(12), 1350–1360. https://doi.org/10.1016/j.agwat.2008.07.015spa
dc.relation.referencesHashim, R., Roy, C., Motamedi, S., Shamshirband, S., Petković, D., Gocic, M., & Lee, S. C. (2016). Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology. Atmospheric Research, 171(Supplement C), 21–30. https://doi.org/10.1016/j.atmosres.2015.12.002spa
dc.relation.referencesHaupt, S. E., Pasini, A., & Marzban, C. (2009). Artificial Intelligence Methods in the Environmental Sciences. Springer Netherlands Springer e-books.spa
dc.relation.referencesHelen, A., Gabriel, A., E., A., & Alese, B. (2013). Development of a fuzzy logic based rainfall prediction model. Int J Eng Tech, 3, 427–435.spa
dc.relation.referencesHessami, M., Anctil, F., & Viau, A. A. (2003). An adaptive neuro-fuzzy inference system for the post-calibration of weather radar rainfall estimation. Journal of Hydroinformatics, 5(1), 63–70. https://doi.org/10.2166/hydro.2003.0005spa
dc.relation.referencesHingray, B., Picouet, C., Musy, A., & Hingray, B. (2014). Hydrology: A science for engineers. CRC Press, Taylor & Francis Group.spa
dc.relation.referencesHong, W. (2008). Rainfall forecasting by technological machine learning models. Applied Mathematics and Computation, 200(1), 41–57. https://doi.org/10.1016/j.amc.2007.10.046spa
dc.relation.referencesHong, Y., Hsu, K.-L., Sorooshian, S., & Gao, X. (2004). Precipitation estimation from remotely sensed imagery using an Artificial Neural Network Cloud Classification System. Journal of Applied Meteorology, 12, 1834.spa
dc.relation.referencesHsu, K. L., Gao, X., Sorooshian, S., & Gupta, H. V. (1997). Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36(9), 1176–1190. https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2spa
dc.relation.referencesHu, H., & Ayyub, B. M. (2019). Machine Learning for Projecting Extreme Precipitation Intensity for Short Durations in a Changing Climate. Geosciences, 9(5), 209. https://doi.org/10.3390/geosciences9050209spa
dc.relation.referencesIDEAM. (2013a). Lineamientos conceptuales y metodológicos para la Evaluación Regional del Agua—ERA.spa
dc.relation.referencesIDEAM. (2013b). Zonificación y Codificación de Cuencas Hidrográficas.spa
dc.relation.referencesIDEAM. (2018). Estudio Nacional del Agua. Centro de Ciencia y Tecnología de Antioquia - CTA. https://cta.org.co/biblionet/estudio-nacional-del-agua-2018/spa
dc.relation.referencesIDEAM. (2021). ¿Qué es el SIRH? http://www.siac.gov.co/sirhspa
dc.relation.referencesIDEAM, Rivera, H. G., Romero Pinzon, H., Olaya Triana, G., Wilches Suarez, H., Contreras Trujillo, C., Niño Romero, R., MAVDT, & Costa, C. (2007). Protocolo para el monitoreo y seguimiento del agua. Imprenta Nacional de Colombia.spa
dc.relation.referencesIDEAM, UNAL, Universidad Nacional de Colombia, & UNAL (Eds.). (2018). La Variabilidad Climática y el Cambio Climático en Colombia. IDEAM.spa
dc.relation.referencesIDEAM, & UPME (Eds.). (2017). Atlas Climatológico de Colombia. IDEAM.spa
dc.relation.referencesIPCC (Ed.). (2007). Climate change 2007: The physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.spa
dc.relation.referencesIPCC. (2014). Technical summary. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. 60.spa
dc.relation.referencesIPCC. (2018). Global Warming of 1.5°C.spa
dc.relation.referencesJanarthanan, R., Balamurali, R., Annapoorani, A., & Vimala, V. (2021). Prediction of rainfall using fuzzy logic. Materials Today: Proceedings, 37, 959–963. https://doi.org/10.1016/j.matpr.2020.06.179spa
dc.relation.referencesJang, J.-S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, Systems, Man and Cybernetics, IEEE Transactions on, IEEE Trans. Syst., Man, Cybern., 3, 665. https://doi.org/10.1109/21.256541spa
dc.relation.referencesJenifer, M. A., & Jha, M. K. (2021). Assessment of precipitation trends and its implications in the semi-arid region of Southern India. Environmental Challenges, 5, 100269. https://doi.org/10.1016/j.envc.2021.100269spa
dc.relation.referencesKaiornrit, J., Wong, K. W., & Fung, C. C. (2013). A modular technique for monthly rainfall time series prediction. 2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), 76–83. https://doi.org/10.1109/CIDUE.2013.6595775spa
dc.relation.referencesKajornrit, J. (2014). Interpretable fuzzy systems for monthly rainfall spatial interpolation and time series prediction [Phd, Murdoch University]. En Kajornrit, Jesada <https://researchrepository.murdoch.edu.au/view/author/Kajornrit, Jesada.html> (2014) Interpretable fuzzy systems for monthly rainfall spatial interpolation and time series prediction. PhD thesis, Murdoch University. https://researchrepository.murdoch.edu.au/id/eprint/26220/spa
dc.relation.referencesKajornrit, J., & Wong, K. W. (2013). Cluster validation methods for localization of spatial rainfall data in the northeast region of Thailand. 2013 International Conference on Machine Learning and Cybernetics, 04, 1637–1642. https://doi.org/10.1109/ICMLC.2013.6890861spa
dc.relation.referencesKajornrit, J., Wong, K. W., & Fung, C. C. (2012a). Estimation of missing precipitation records using modular artificial neural networks. International Conference on Neural Information Processing, 52–59. https://link.springer.com/chapter/10.1007/978-3-642-34478-7_7spa
dc.relation.referencesKajornrit, J., Wong, K. W., & Fung, C. C. (2012b). Rainfall prediction in the northeast region of Thailand using Modular Fuzzy Inference System. 2012 IEEE International Conference on Fuzzy Systems, 1–6. https://doi.org/10.1109/FUZZ-IEEE.2012.6250785spa
dc.relation.referencesKar, A. K., Lohani, A. K., Goel, N. K., & Roy, G. P. (2015). Rain gauge network design for flood forecasting using multi-criteria decision analysis and clustering techniques in lower Mahanadi river basin, India. Journal of Hydrology: Regional Studies, 4, 313–332. https://doi.org/10.1016/j.ejrh.2015.07.003spa
dc.relation.referencesKattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 24–49. https://doi.org/10.1016/j.isprsjprs.2020.12.010spa
dc.relation.referencesKeys, P. W., van der Ent, R. J., Gordon, L. J., Hoff, H., Nikoli, R., & Savenije, H. H. G. (2012). Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences, 9(2), 733–746. https://doi.org/10.5194/bg-9-733-2012spa
dc.relation.referencesKhan, R. S., & Bhuiyan, M. A. E. (2021). Artificial Intelligence-Based Techniques for Rainfall Estimation Integrating Multisource Precipitation Datasets. Atmosphere, 12(10), Article 10. https://doi.org/10.3390/atmos12101239spa
dc.relation.referencesKirchner, J. W. (2009). Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resources Research, 45(2). https://doi.org/10.1029/2008WR006912spa
dc.relation.referencesKolluru, V., Kolluru, S., Wagle, N., & Acharya, T. D. (2020). Secondary Precipitation Estimate Merging Using Machine Learning: Development and Evaluation over Krishna River Basin, India. Remote Sensing, 12(18), Article 18. https://doi.org/10.3390/rs12183013spa
dc.relation.referencesKrier, R., Matgen, P., Goergen, K., Pfister, L., Hoffmann, L., Kirchner, J. W., Uhlenbrook, S., & Savenije, H. H. G. (2012). Inferring catchment precipitation by doing hydrology backward: A test in 24 small and mesoscale catchments in Luxembourg. Water Resources Research, 48(10). https://doi.org/10.1029/2011WR010657spa
dc.relation.referencesKumar, B., Chattopadhyay, R., Singh, M., Chaudhari, N., Kodari, K., & Barve, A. (2020). Deep-learning based down-scaling of summer monsoon rainfall data over Indian region. arXiv:2011.11313 [physics]. http://arxiv.org/abs/2011.11313spa
dc.relation.referencesLeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), Article 7553. https://doi.org/10.1038/nature14539spa
dc.relation.referencesLexcellent, C. (2019). Artificial intelligence versus human intelligence: Are humans going to be hacked? Springer.spa
dc.relation.referencesLi, H., Wang, X., Zhang, K., Wu, S., Xu, Y., Liu, Y., Qiu, C., Zhang, J., Fu, E., & Li, L. (2021). A neural network-based approach for the detection of heavy precipitation using GNSS observations and surface meteorological data. Journal of Atmospheric and Solar-Terrestrial Physics, 225, 105763. https://doi.org/10.1016/j.jastp.2021.105763spa
dc.relation.referencesLi, W., Pan, B., Xia, J., & Duan, Q. (2022). Convolutional neural network-based statistical post-processing of ensemble precipitation forecasts. Journal of Hydrology, 605, 127301. https://doi.org/10.1016/j.jhydrol.2021.127301spa
dc.relation.referencesLoucks, D. P., & van Beek, E. (2017). Water Resource Systems Planning and Management. Springer International Publishing. https://doi.org/10.1007/978-3-319-44234-1spa
dc.relation.referencesLucio, P. S., Conde, F. C., Cavalcanti, I. F. A., Serrano, A. I., Ramos, A. M., & Cardoso, A. O. (2007). Spatiotemporal monthly rainfall reconstruction via artificial neural network -case study: South of Brazil. Advances in Geosciences, 10, 67–76.spa
dc.relation.referencesLuk, K. C., Ball, J. E., & Sharma, A. (2001). An application of artificial neural networks for rainfall forecasting. Mathematical and Computer Modelling, 33(6), 683–693. https://doi.org/10.1016/S0895-7177(00)00272-7spa
dc.relation.referencesLuo, X., Xu, Y., & Shi, Y. (2011). Comparison of interpolation methods for spatial precipitation under diverse orographic effects. 2011 19th International Conference on Geoinformatics, 1–5. https://doi.org/10.1109/GeoInformatics.2011.5980666spa
dc.relation.referencesMADS. (2014). Guía técnica para la formulación de los planes de ordenación y manejo de cuencas hidrográficas. Minambiente.spa
dc.relation.referencesMAVDT. (2010). Política Nacional para la Gestión Integral del Recurso Hídrico.spa
dc.relation.referencesMehdizadeh, S., Behmanesh, J., & Khalili, K. (2016). Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation. Journal of Atmospheric and Solar-Terrestrial Physics, 146, 215–227. https://doi.org/10.1016/j.jastp.2016.06.006spa
dc.relation.referencesMehrvand, M., Baghanam, A. H., Razzaghzadeh, Z., & Nourani, V. (2017). AI-based (ANN and SVM) statistical downscaling methods for precipitation estimation under climate change scenarios. EGU General Assembly Conference Abstracts, 19, 15489. http://adsabs.harvard.edu/abs/2017EGUGA..1915489Mspa
dc.relation.referencesMontenegro Murillo, D. D., Pérez Ortiz, M. A., & Vargas Franco, V. (2019). Predicción de precipitación mensual mediante Redes Neuronales Artificiales para la cuenca del río Cali, Colombia. DYNA, 86(211), 122–130. https://doi.org/10.15446/dyna.v86n211.76079spa
dc.relation.referencesMoraux, A., Dewitte, S., Cornelis, B., & Munteanu, A. (2019). Deep Learning for Precipitation Estimation from Satellite and Rain Gauges Measurements. Remote Sensing, 11(21), Article 21. https://doi.org/10.3390/rs11212463spa
dc.relation.referencesMoraux, A., Dewitte, S., Cornelis, B., & Munteanu, A. (2021). A Deep Learning Multimodal Method for Precipitation Estimation. Remote Sensing, 13(16), Article 16. https://doi.org/10.3390/rs13163278spa
dc.relation.referencesMoustris, K. P., Larissi, I. K., Nastos, P. T., & Paliatsos, A. G. (2011). Precipitation Forecast Using Artificial Neural Networks in Specific Regions of Greece. Water Resources Management, 25(8), 1979–1993. https://doi.org/10.1007/s11269-011-9790-5spa
dc.relation.referencesNadler, D. W. (2019). Decision support: Using machine learning through MATLAB to analyze environmental data. Journal of Environmental Studies and Sciences, 9(4), 419–428. https://doi.org/10.1007/s13412-019-00558-9spa
dc.relation.referencesNastos, P. T., Paliatsos, A. G., Koukouletsos, K. V., Larissi, I. K., & Moustris, K. P. (2014). Artificial neural networks modeling for forecasting the maximum daily total precipitation at Athens, Greece. Atmospheric Research, 144, 141–150. https://doi.org/10.1016/j.atmosres.2013.11.013spa
dc.relation.referencesNeira, F. (2010). Elaboración de la cartografía climática de temperaturas y precipitación mediante redes neuronales artificiales: Caso de estudio en la Región del Libertador Bernardo O"Higgins. http://repositorio.uchile.cl/handle/2250/112354spa
dc.relation.referencesNishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, 53, 102104. https://doi.org/10.1016/j.ijinfomgt.2020.102104spa
dc.relation.referencesNOAA’s Climate Prediction Center. (2021). NOAA’s Climate Prediction Center. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.phpspa
dc.relation.referencesPaca, V. H. da M., Espinoza-Dávalos, G., Moreira, D., & Comair, G. (2020). Variability of Trends in Precipitation across the Amazon River Basin Determined from the CHIRPS Precipitation Product and from Station Records. Water, 12(5), 1244. https://doi.org/10.3390/w12051244spa
dc.relation.referencesPan, B., Hsu, K., AghaKouchak, A., & Sorooshian, S. (2019). Improving Precipitation Estimation Using Convolutional Neural Network. Water Resources Research, 55(3), 2301–2321. https://doi.org/10.1029/2018WR024090spa
dc.relation.referencesPerianes-Rodriguez, A., Waltman, L., & van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195. https://doi.org/10.1016/j.joi.2016.10.006spa
dc.relation.referencesPetković, D., Gocić, M., & Shamshirband, S. (2016). Adaptive neuro-fuzzy computing technique for precipitation estimation. Facta Universitatis, Series: Mechanical Engineering, 14(2), 209–218.spa
dc.relation.referencesPizarro T, R., Ramirez B, C., & Flores V, J. P. (2003). Análisis comparativo de cinco métodos para la estimación de precipitaciones areales anuales en períodos extremos. Bosque (Valdivia), 24(3). https://doi.org/10.4067/S0717-92002003000300003spa
dc.relation.referencesQi, H., Wu, Z., Zhang, L., Li, J., Zhou, J., Jun, Z., & Zhu, B. (2021). Monitoring of peanut leaves chlorophyll content based on drone-based multispectral image feature extraction. Computers and Electronics in Agriculture, 187, 106292. https://doi.org/10.1016/j.compag.2021.106292spa
dc.relation.referencesRahman, A., Abbas, S., Gollapalli, M., Aftab, S., Ahmad, M., Khan, M., & Mosavi, A. (2022). Rainfall Prediction System Using Machine Learning Fusion for Smart Cities. Sensors, 22, 1–14. https://doi.org/10.3390/s22093504spa
dc.relation.referencesRahman, M. A. (2020). Improvement of Rainfall Prediction Model by Using Fuzzy Logic. American Journal of Climate Change, 9(4), Article 4. https://doi.org/10.4236/ajcc.2020.94024spa
dc.relation.referencesRavuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., Brock, A., Simonyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas, A., & Mohamed, S. (2021). Skilful precipitation nowcasting using deep generative models of radar. Nature, 597(7878), 672–677. https://doi.org/10.1038/s41586-021-03854-zspa
dc.relation.referencesReina, D., Moscovitz, L. J., & Lorenz, F. U. K. (2008). Fundamentos de Matemática Difusa [Tesis de Grado. Fundación Universitaria Konrad Lorenz. Facultad de Matemáticas. Búsqueda realizada 18-19-10. Dirección electrónica http://www. konradlorenz. edu. co/images/stories/suma_digital_matematicas/EDICION_09_0I/trabajo_de_grado_daniel_reina. pdf]. http://www.konradlorenz.edu.co/images/stories/suma_digital_matematicas/EDICION_09_0I/trabajo_de_grado_daniel_reina.pdfspa
dc.relation.referencesRoss, T. J. (2017). Fuzzy logic with engineering applications (Fourth edition). Wiley.spa
dc.relation.referencesRussell, S., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd edition). Pearson.spa
dc.relation.referencesSadeghi, M., Nguyen, P., Hsu, K., & Sorooshian, S. (2020). Improving near real-time precipitation estimation using a U-Net convolutional neural network and geographical information. Environmental Modelling & Software, 134, 104856. https://doi.org/10.1016/j.envsoft.2020.104856spa
dc.relation.referencesSangiorgio, M., Barindelli, S., Guglieri, V., Biondi, R., Solazzo, E., Realini, E., Venuti, G., & Guariso, G. (2020). A Comparative Study on Machine Learning Techniques for Intense Convective Rainfall Events Forecasting. En O. Valenzuela, F. Rojas, L. J. Herrera, H. Pomares, & I. Rojas (Eds.), Theory and Applications of Time Series Analysis (pp. 305–317). Springer International Publishing. https://doi.org/10.1007/978-3-030-56219-9_20spa
dc.relation.referencesSchroeter, B. J. E. (2016). Artificial Neural Networks in Precipitation Nowcasting: An Australian Case Study. En S. Shanmuganathan & S. Samarasinghe (Eds.), Artificial Neural Network Modelling (pp. 325–339). Springer International Publishing. https://doi.org/10.1007/978-3-319-28495-8_14spa
dc.relation.referencesSeo, Y., Kim, S., & Singh, V. P. (2015). Estimating Spatial Precipitation Using Regression Kriging and Artificial Neural Network Residual Kriging (RKNNRK) Hybrid Approach. Water Resources Management, 29(7), 2189–2204. https://doi.org/10.1007/s11269-015-0935-9spa
dc.relation.referencesShamshirband, S., Gocic, M., Petkovic, D., Saboohi, H., Herawan, T., Mat Kiah, M. L., & Akib, S. (2014). Soft-Computing Methodologies for Precipitation Estimation: A Case Study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1–6. https://doi.org/10.1109/JSTARS.2014.2364075spa
dc.relation.referencesSharma, S., Srivastava, P., Fang, X., & Kalin, L. (2016). Hydrologic simulation approach for El Niño Southern Oscillation (ENSO)-affected watershed with limited raingauge stations. Hydrological Sciences Journal, 61(6), 991–1000. https://doi.org/10.1080/02626667.2014.952640spa
dc.relation.referencesShenify, M., Danesh, A. S., Gocić, M., Taher, R. S., Abdul Wahab, A. W., Gani, A., Shamshirband, S., & Petković, D. (2016). Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform. Water Resources Management, 30(2), 641–652. https://doi.org/10.1007/s11269-015-1182-9spa
dc.relation.referencesShi, X. (2020). Enabling Smart Dynamical Downscaling of Extreme Precipitation Events With Machine Learning. Geophysical Research Letters, 47(19). https://doi.org/10.1029/2020GL090309spa
dc.relation.referencesShi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.-Y., Wong, W., & Woo, W. (2017). Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model. 11.spa
dc.relation.referencesSilver, M., Svoray, T., Karnieli, A., & Fred, E. (2019). Improving weather radar precipitation maps: A fuzzy logic approach. Atmospheric Research, 234, 104710. https://doi.org/10.1016/j.atmosres.2019.104710spa
dc.relation.referencesSingh, P. (2018). Rainfall and financial forecasting using fuzzy time series and neural networks based model. International Journal of Machine Learning and Cybernetics, 9(3), 491–506. https://doi.org/10.1007/s13042-016-0548-5spa
dc.relation.referencesSinha, P., Mann, M. E., Fuentes, J. D., Mejia, A., Ning, L., Sun, W., He, T., & Obeysekera, J. (2018). Downscaled rainfall projections in south Florida using self-organizing maps. Science of The Total Environment, 635, 1110–1123. https://doi.org/10.1016/j.scitotenv.2018.04.144spa
dc.relation.referencesSit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., & Demir, I. (2020). A Comprehensive Review of Deep Learning Applications in Hydrology and Water Resources. arXiv:2007.12269 [physics, stat]. http://arxiv.org/abs/2007.12269spa
dc.relation.referencesSolgi, A., Nourani, V., & Pourhaghi, A. (2014). Forecasting Daily Precipitation Using Hybrid Model of Wavelet-Artificial Neural Network and Comparison with Adaptive Neurofuzzy Inference System (Case Study: Verayneh Station, Nahavand). Advances in Civil Engineering, 2014, 1–12. https://doi.org/10.1155/2014/279368spa
dc.relation.referencesSønderby, C. K., Espeholt, L., Heek, J., Dehghani, M., Oliver, A., Salimans, T., Hickey, J., Agrawal, S., & Kalchbrenner, N. (2020). MetNet: A Neural Weather Model for Precipitation Forecasting. Submission to journal. https://arxiv.org/abs/2003.12140spa
dc.relation.referencesSözen, A., Kurt, M., Akçayol, M. A., & Özalp, M. (2004). Performance prediction of a solar driven ejector-absorption cycle using fuzzy logic. Renewable Energy, 29(1), 53–71. https://doi.org/10.1016/S0960-1481(03)00172-1spa
dc.relation.referencesStory, G. J. (2012). Estimating Precipitation from WSR-88D Observations and Rain Gauge Data: Potential for Drought Monitoring. Publications, Agencies and Staff of the U.S. Department of Commerce. https://digitalcommons.unl.edu/usdeptcommercepub/556spa
dc.relation.referencesSun, A. Y., & Tang, G. (2020). Downscaling Satellite and Reanalysis Precipitation Products Using Attention-Based Deep Convolutional Neural Nets. Frontiers in Water, 2. https://www.frontiersin.org/article/10.3389/frwa.2020.536743spa
dc.relation.referencesSutawinaya, I., Astawa, I. N. G., & Hariyanti, N. K. (2018). Comparison of Adaline and Multiple Linear Regression Methods for Rainfall Forecasting. Journal of Physics: Conference Series, 953, 1–8. https://doi.org/10.1088/1742-6596/953/1/012046spa
dc.relation.referencesSzcześniak, M., & Piniewski, M. (2015). Improvement of Hydrological Simulations by Applying Daily Precipitation Interpolation Schemes in Meso-Scale Catchments. Water, 7(2), Article 2. https://doi.org/10.3390/w7020747spa
dc.relation.referencesTao, Y., Gao, X., Ihler, A., Hsu, K., & Sorooshian, S. (2016). Deep neural networks for precipitation estimation from remotely sensed information. Evolutionary Computation (CEC), 2016 IEEE Congress on, 1349–1355. http://ieeexplore.ieee.org/abstract/document/7743945/spa
dc.relation.referencesTao, Y., Gao, X., Ihler, A., Sorooshian, S., & Hsu, K. (2017). Precipitation Identification with Bispectral Satellite Information Using Deep Learning Approaches. Journal of Hydrometeorology, 18(5), 1271–1283. https://doi.org/10.1175/JHM-D-16-0176.1spa
dc.relation.referencesTch, A. (2017). The mostly complete chart of Neural Networks, explained. Medium. https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464spa
dc.relation.referencesTeegavarapu, R. S. V. (2012). Floods in a changing climate. Extreme precipitation. Cambridge University Press.spa
dc.relation.referencesTerassi, P. M. de B., da Silva Oscar-Júnior, A. C., Galvani, E., de Oliveira-Júnior, J. F., Sobral, B. S., Biffi, V. H. R., & de Gois, G. (2022). Daily rainfall intensity and temporal trends in eastern Paraná state – Brazil. Urban Climate, 42, 101090. https://doi.org/10.1016/j.uclim.2022.101090spa
dc.relation.referencesTobón, C. (2009). Los bosques andinos y el agua.spa
dc.relation.referencesTrafalis, T. B., Richman, M. B., White, A., & Santosa, B. (2002). Data mining techniques for improved WSR-88D rainfall estimation. Computers & Industrial Engineering, 43(4), 775–786. https://doi.org/10.1016/S0360-8352(02)00139-0spa
dc.relation.referencesTrinh, T., Do, N., Nguyen, V. T., & Carr, K. (2021). Modeling high-resolution precipitation by coupling a regional climate model with a machine learning model: An application to Sai Gon–Dong Nai Rivers Basin in Vietnam. Climate Dynamics, 57(9), 2713–2735. https://doi.org/10.1007/s00382-021-05833-6spa
dc.relation.referencesTzimopoulo, C., Mpallas, L., & Evangelide, C. (2008). Fuzzy Model Comparison to Extrapolate Rainfall Data. Journal of Environmental Science and Technology, 1(4), 214–224. https://doi.org/10.3923/jest.2008.214.224spa
dc.relation.referencesUmar, D. A., Ramli, M. F., Aris, A. Z., Jamil, N. R., & Aderemi, A. A. (2019). Evidence of climate variability from rainfall and temperature fluctuations in semi-arid region of the tropics. Atmospheric Research, 224, 52–64. https://doi.org/10.1016/j.atmosres.2019.03.023spa
dc.relation.referencesUNESCO (Ed.). (2020). Informe mundial de las Naciones Unidas sobre el desarrollo de los recursos hídricos 2020: Agua y cambio climático. UNESCO.spa
dc.relation.referencesvan Eck, N. J., & Waltman, L. (2021). VOSviewer Manual.spa
dc.relation.referencesVannitsem, S., Bremnes, J. B., Demaeyer, J., Evans, G. R., Flowerdew, J., Hemri, S., Lerch, S., Roberts, N., Theis, S., Atencia, A., Bouallègue, Z. B., Bhend, J., Dabernig, M., Cruz, L. D., Hieta, L., Mestre, O., Moret, L., Plenković, I. O., Schmeits, M., … Ylhaisi, J. (2021). Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World. Bulletin of the American Meteorological Society, 102(3), E681–E699. https://doi.org/10.1175/BAMS-D-19-0308.1spa
dc.relation.referencesVirant, J. (2000). Design Considerations of Time in Fuzzy Systems (Vol. 35). Springer US. https://doi.org/10.1007/978-1-4615-4673-3spa
dc.relation.referencesWang, Y., Liu, J., Li, R., Suo, X., & Lu, E. (2020). Precipitation forecast of the Wujiang River Basin based on artificial bee colony algorithm and backpropagation neural network. Alexandria Engineering Journal, 59(3), 1473–1483. https://doi.org/10.1016/j.aej.2020.04.035spa
dc.relation.referencesWolff, W., Duarte, S. N., & Fernandes, R. D. M. (2020). Spatialization of the annual and seasonal average precipitations in the state of Santa Catarina, Brazil. Journal of South American Earth Sciences, 103, 102735. https://doi.org/10.1016/j.jsames.2020.102735spa
dc.relation.referencesWong, K. W., Wong, P. M., Gedeon, T. D., & Fung, C. C. (2003). Rainfall prediction model using soft computing technique. Soft Computing, 7(6), 434–438. https://doi.org/10.1007/s00500-002-0232-4spa
dc.relation.referencesXu, R., Chen, N., Chen, Y., & Chen, Z. (2020). Downscaling and Projection of Multi-CMIP5 Precipitation Using Machine Learning Methods in the Upper Han River Basin. Advances in Meteorology, 2020, 1–17. https://doi.org/10.1155/2020/8680436spa
dc.relation.referencesYuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W., Yang, Q., Wang, J., Gao, J., & Zhang, L. (2020). Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment, 241, 111716. https://doi.org/10.1016/j.rse.2020.111716spa
dc.relation.referencesZacharov, P., & Rezacova, D. (2009). Using the fractions skill score to assess the relationship between an ensemble QPF spread and skill. Atmospheric Research, 94, 684–693. https://doi.org/10.1016/j.atmosres.2009.03.004spa
dc.relation.referencesZadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-Xspa
dc.relation.referencesZadeh, L. A. (1968). Fuzzy algorithms. Information and Control, 12(2), 94–102. https://doi.org/10.1016/S0019-9958(68)90211-8spa
dc.relation.referencesZare, M., Schumann, G. J.-P., Teferle, F. N., & Mansorian, R. (2021). Generating Flood Hazard Maps Based on an Innovative Spatial Interpolation Methodology for Precipitation. Atmosphere, 12(10), Article 10. https://doi.org/10.3390/atmos12101336spa
dc.relation.referencesZhu, J., Chen, Y., & Zhang, S. (2020). Analysis of the Impact of Climate Change on National Vulnerability Based on Fuzzy Comprehensive Evaluation. Discrete Dynamics in Nature and Society, 2020, e3527540. https://doi.org/10.1155/2020/3527540spa
dc.relation.referencesZhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8–36. https://doi.org/10.1109/MGRS.2017.2762307spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocHidrometeorología
dc.subject.agrovocHydrometeorology
dc.subject.agrovocVariabilidad del clima
dc.subject.agrovocClimate variability
dc.subject.agrovocAprendizaje automático
dc.subject.agrovocMachine learning
dc.subject.agrovocProcesamiento de datos
dc.subject.agrovocData processing
dc.subject.agrovocSistemas de información geográfica
dc.subject.agrovocGeographical information systems
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.proposalPrecipitaciónspa
dc.subject.proposalEventos extremosspa
dc.subject.proposalLógica difusaspa
dc.subject.proposalRedes neuronales artificialesspa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalPrecipitationeng
dc.subject.proposalExtreme eventseng
dc.subject.proposalFuzzy logiceng
dc.subject.proposalArtificial neural networkseng
dc.subject.proposalArtificial intelligenceeng
dc.subject.unescoCambio climático
dc.subject.unescoClimate change
dc.titleEstimación de la precipitación en la cuenca hidrográfica del río Bolo con técnicas de inteligencia artificialspa
dc.title.translatedPrecipitation estimation at Bolo River watershed using artificial intelligence techniqueseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo_Final_Estimación_Precipitación_Bolo_IA_Andrés_Felipe_Ruiz.pdf
Tamaño:
5.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: