On the ubiquity of the Petersen Graph : a journey through History, properties, and applications

dc.contributor.advisorMontoya Arguello, Juan Andrés
dc.contributor.authorRodriguez Nempeque, Paula Ximena
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0002007985
dc.contributor.researchgatehttps://www.researchgate.net/profile/Paula-Rodriguez-Nempeque
dc.date.accessioned2025-12-17T15:34:09Z
dc.date.available2025-12-17T15:34:09Z
dc.date.issued2025-09
dc.descriptionilustraciones, diagramas a color, fotografíasspa
dc.description.abstractEsta tesis se centra en la factorización de grafos cúbicos, con especial énfasis en el grafo de Petersen y en familias relacionadas, como los snarks, los grafos generalizados de Petersen (𝐺𝑃) y los nanotubos de carbono (𝑁𝑛). Se exploran conceptos y propiedades vinculadas al coloreo de grafos —particularmente el coloreo de aristas—, al conteo de ciclos —con atención al girth, la hamiltonianidad y la hipohamiltonianidad—, así como a la conectividad —𝑘-arista-conectividad y 𝑘-arista-conectividad cíclica. Junto con la exposición teórica, se incluye un análisis histórico que sitúa estas propiedades en su contexto original, con el fin de comprender mejor su desarrollo. Asimismo, se presentan implementaciones interactivas que permiten manipular parámetros de los grafos 𝐺𝑃, visualizar factorizaciones y realizar conteo de ciclos. Dichas implementaciones fueron desarrolladas desde cero, sin el uso de librerías de teoría de grafos (excepto aquellas para visualización), con el propósito de profundizar en las propiedades hasta el punto de poder codificarlas directamente. Finalmente, se estudia la representación, dentro de la teoría de grafos, de ciertas estructuras químicas de gran interés: los fullerenos, en particular los nanotubos de carbono. El objetivo principal es el conteo de emparejamientos perfectos en estas estructuras. Para ello, se emplean autómatas y el método de Schützenberger en el conteo de ciclos hamiltonianos, lo que permite obtener una cota inferior del número de emparejamientos perfectos en los 𝑁𝑛, mostrando que los mostrando que los nanotubos de carbono son estables y poseen más ciclos hamiltonianos que los grafos GP(2m,2) (Texto tomado de la fuente).spa
dc.description.abstractThis thesis investigates the factorization of cubic graphs, with particular emphasis on the Petersen graph, as well as on families of graphs closely related to it, such as snarks, generalized Petersen graphs (𝐺𝑃), and carbon nanotubes (𝑁𝑛). The study focuses on several key aspects of graph theory, including graph coloring—with special attention to edge coloring—, cycle enumeration—emphasizing girth, Hamiltonicity, and hypohamiltonicity—, and connectivity, in particular 𝑘-edge-connectivity and cyclic 𝑘-edge-connectivity. Alongside the formal discussion of these properties, their historical development is also examined in order to provide a deeper contextual understanding. The document further includes interactive code implementations that allow one to manipulate the parameters of 𝐺𝑃 graphs, visualize their factorizations, and analyze cycle counts. These codes were developed entirely from scratch, without the aid of graph theory libraries (except for visualization purposes), with the aim of achieving a thorough understanding of these properties, making their implementation possible without external tools. All these considerations serve to study the representation, within graph theory, of fascinating chemical structures: fullerenes, and in particular carbon nanotubes. The main goal is to count the number of perfect matchings in these structures. To accomplish this, automata and the Schützenberger method are employed to enumerate Hamiltonian cycles, thereby providing a lower bound for the number of perfect matchings in 𝑁𝑛. This analysis demonstrates that carbon nanotubes are stable and contain more Hamiltonian cycles than the graphs GP(2m,2).eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Matemática Aplicada
dc.format.extent154 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89225
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemática Aplicada
dc.relation.referencesH. Zhang, D. Ye, and Y. Liu. A combination of Clar number and Kekulé count as an indicator of relative stability of fullerene isomers of c60. Journal of Mathematical Chemistry, 48(3):733–740, 2010.
dc.relation.referencesR. Wilson. Four Colors Suffice: How the Map Problem Was Solved-Revised Color Edition. Princeton Science Library, 2014.
dc.relation.referencesM. E. Watkins. A Theorem on Tait Colorings with an Application to the Generalized Petersen Graphs. Journal of Combinatorial Theory, 6(2):152–164, 1969.
dc.relation.referencesW. T. Tutte. On Hamiltonian circuits. Journal of the London Mathematical Society, 1(2):98–101, 1946.
dc.relation.referencesN. Trinajstic. Chemical Graph Theory. Taylor and Francis, London edition, 1992.
dc.relation.referencesR. Thomas. Recent excluded minor theorems for graphs. Surveys in Combinatorics, pages 201–222, 1999.
dc.relation.referencesP. G. Tait. Note on a theorem in the geometry of position. Transactions of the Royal Society of Edinburgh, 29:657–660, 1880.
dc.relation.referencesJ. J. Sylvester. Chemistry and algebra. Nature, 17:284, 1878.
dc.relation.referencesM. Sipser. Introduction to the Theory of Computation. Cengage Learning, 2013.
dc.relation.referencesG. Sabidussi. Correspondence between Sylvester, Petersen, Hilbert and Klein on invariants and the factorisation of graphs 1889-1891. Discrete Math., 100:99–155, 1992.
dc.relation.referencesN. Robertson, P. Seymour, and R. Thomas. Excluded minors in cubic graphs. Journal of Combinatorial Theory, Series B, 138:219–285, 2019.
dc.relation.referencesD.H. Rouvray. The pioneering contributions of Cayley and Sylvester to the mathematical description of chemical structure. Journal of Molecular Structure: THEOCHEM, 185:1–14, 1989.
dc.relation.referencesI. Pivotto and G. Royle. Highly-connected planar cubic graphs with few or many hamilton cycles. Discrete Mathematics, 342(12):111608, 2019.
dc.relation.referencesJ. Petersen. Sur le théorème de Tait. Intermed. Math., 5:225–227, 1898.
dc.relation.referencesJ. Petersen. Die Theorie der regulären Graphs. Acta Math., 15:193–220, 1891.
dc.relation.referencesJ. Petersen. Methods and Theories for the Solution of Problems of Geometrical Constructions Applied to 410 Problems. A.F. Høst, 1879.
dc.relation.referencesE. Osawa. Perspectives of Fullerene Nanotechnology. Springer Netherlands, 2002.
dc.relation.referencesTapas R. Nayak, Yin Zhang, and Weibo Cai. Chapter 19 - Cancer Theranostics with Carbon-Based Nanoplatforms. In Cancer Theranostics, pages 347–361. Academic Press, Oxford, 2014.
dc.relation.referencesH. M. Mulder. Julius Petersen’s theory of regular graphs. Discrete Mathematics, 100:157–175, 1992.
dc.relation.referencesB. D. McKay and C. E. Praeger. Vertex-transitive graphs which are not Cayley graphs. Journal of the Australian Mathematical Society, 56(1):53–63, 1994.
dc.relation.referencesR. Milan. Nenad Trinajstic - Pionner of Chemical Graph Theory. Croatica Chemica Acta, 77 edition, 2004.
dc.relation.referencesJ. Ltitzen, G. Sabidussi, and B. Toft. Julius Petersen 1839-1910: A Biography. Discrete Mathematics, 100:9–82, 1992.
dc.relation.referencesL. Lovász and M.D. Plummer. Matching Theory. Number n.º 121 in Annals of discrete mathematics. North-Holland, 1986.
dc.relation.referencesD. E. Knuth. The Art of Computer Programming, volume 4A. Addison-Wesley, 2011.
dc.relation.referencesK. Kutnar and D. Marusic. On cyclic edge-connectivity of fullerenes. Discrete Applied Mathematics, 156(10):1661–1669, 2008.
dc.relation.referencesF. Kardoš, D. Král’, and J. Sereni. Exponentially many perfect matchings in cubic graphs. SIAM Journal on Discrete Mathematics, 25(3):1334–1351, 2011.
dc.relation.referencesF. Kardoš, D. Král’, J. Miškuf, and J. Sereni. Fullerene graphs have exponentially many perfect matchings. Journal of Mathematical Chemistry, 45(2):398–423, 2009.
dc.relation.referencesH. Kroto, J. Heath, S. O’Brien, R. F. Curl, and R. E. Smalley. C60: Buckminsterfullerene. Nature, 318:162–163, 1985.
dc.relation.referencesA. B. Kempe. A Memoir on the Theory of Mathematical Form. Transactions of the Royal Society of London, 177:1–70, 1886.
dc.relation.referencesA. D. Holton and J. Sheehan. The Petersen Graph. Cambridge University Press, 1993.
dc.relation.referencesN. Hartsfield and G. Ringel. Pearls in Graph Theory: A Comprehensive Introduction. Academic Press., 1990.
dc.relation.referencesC. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.
dc.relation.referencesP. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
dc.relation.referencesJ.B. Fraleigh and V.J. Katz. A First Course in Abstract Algebra. Addison-Wesley series in mathematics. Addison-Wesley, 2003.
dc.relation.referencesL. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Imperialis Petropolitanae, 8:128–141, 1741.
dc.relation.referencesK. Edwards, D. Sanders, P. Seymour, and R. Thomas. Three-edge-colouring doublecross cubic graphs. Journal of Combinatorial Theory, Series B, 119:66–95, 2016.
dc.relation.referencesR. Diestel. Graph Theory. Springer, 5th edition, 2017.
dc.relation.referencesM.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund. Science of Fullerenes and Carbon Nanotubes. Academic Press, 1996.
dc.relation.referencesG. L. Chia and C. Thomassen. On the Number of Longest and Almost Longest Cycles in Cubic Graphs. Ars Comb., 104:307–320, 2012.
dc.relation.referencesK. Appel, W. Haken, and J. Koch. Every Planar Map is Four Colorable. Part ii: Reducibility. Illinois Journal of Mathematics, 21(3):491–567, September 1977.
dc.relation.referencesB. Alspach. The Classification of Hamiltonian Generalized Petersen Graphs. Journal of Combinatorial Theory, Series B, 34(3):293–312, 1983.
dc.relation.referencesB. Alspach, P. J. Robinson, and M. Rosenfeld. A Result on Hamiltonian Cycles in Generalized Petersen Graphs. Journal of Combinatorial Theory, Series B, 31(2):225– 231, 1981.
dc.relation.referencesC. Arthur. On the Analytical Forms Called Trees, with Application to the Theory of Chemical Combinations, page 427–460. Cambridge Library Collection - Mathematics. Cambridge University Press, 2009.
dc.relation.referencesW. W. Rouse Ball. Mathematical Recreations and Problems of Past and Present Times (later entitled Mathematical Recreations and Essays. London. Macmillan., 1892.
dc.relation.referencesK. Bannai. Hamiltonian cycles in generalized Petersen graphs. Journal of Combinatorial Theory, Series B, 24:181–188, 1978.
dc.relation.referencesM. Behzad and G. Chartrand. Introduction to the Theory of Graphs. Allyn and Bacon, Boston, 1971.
dc.relation.referencesS. Belcastro. The Continuing Saga of Snarks. The College Mathematics Journal, 43(1):82–87, 2012.
dc.relation.referencesJ. A. Bondy. Variations of the Hamiltonian Theme. Canadian Mathematical Bulletin, 16(2):159–164, 1973.
dc.relation.referencesG. Chartrand, H. Hevia, and R. J. Wilson. The ubiquitous Petersen graph. Discrete Mathematics, 100:303–311, 1992.
dc.relation.referencesF. Castagna and G. Prins. Every generalized Petersen graph has a Tait coloring. Pacific Journal of Mathematics, 40(1):53–58, 1972.
dc.relation.referencesN. Chomsky and M. Schützenberger. The Algebraic Theory of Context-Free Languages. In Peter Braffort and Douglas Hirschberg, editors, Computer Programming and Formal Systems, pages 118–161. North-Holland, 1963.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.subject.lembANALISIS COMBINATORIOspa
dc.subject.lembCombinatorial analysiseng
dc.subject.lembCOMBINACIONES (MATEMATICAS)spa
dc.subject.lembCombinationseng
dc.subject.lembPROBABILIDADESspa
dc.subject.lembProbabilitieseng
dc.subject.lembTEORIA DE GRAFOSspa
dc.subject.lembGraph theoryeng
dc.subject.proposalCubic graph factorizationeng
dc.subject.proposalThe Petersen grapheng
dc.subject.proposalSnarkseng
dc.subject.proposalGeneralized Petersen graphseng
dc.subject.proposalGraph coloringeng
dc.subject.proposalHamiltonicityspa
dc.subject.proposalPerfect matchingseng
dc.subject.proposalCarbon nanotubeseng
dc.subject.proposalAutomataeng
dc.subject.proposalSchützenberger methodeng
dc.subject.proposalFactorización de grafos cúbicosspa
dc.subject.proposalEl grafo de Petersenspa
dc.subject.proposalGrafos generalizados de Petersenspa
dc.subject.proposalColoreo de grafosspa
dc.subject.proposalCiclos hamiltonianosspa
dc.subject.proposalEmparejamiento perfectospa
dc.subject.proposalNanotubos de carbonospa
dc.subject.proposalAutómatasspa
dc.subject.proposalMétodo de Schützenbergerspa
dc.titleOn the ubiquity of the Petersen Graph : a journey through History, properties, and applicationseng
dc.title.translatedSobre la ubicuidad del grafo de Petersen : un viaje a través de la historia, propiedades y aplicacionesspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.contentSoftware
dc.type.contentImage
dc.type.contentInteractiveResource
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
ON_THE_UBIQUITY_OF_THE_PETERSEN_GRAPH__A_JOURNEY_THROUGH_HISTORY__PROPERTIES__AND_APPLICATIONS.pdf
Tamaño:
13.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Matemática Aplicada

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: