• Correo ElectrónicoCorreo Electrónico
  • Dirección Nacional de Información AcadémicaDNINFOA - SIA
  • BibliotecaBibliotecas
  • ConvocatoriasConvocatorias
  • Identidad U.N.Identidad U.N.
Escudo de la República de ColombiaEscudo de la República de Colombia
  • English 
    • español
    • English
    • português (Brasil)
  • Aspirantes
  • Estudiantes
  • Egresados
  • Docentes
  • Administrativos
repositorio.unal.edu.co
Bibliotecas
  • Mapa de sedes
  • Amazonía
  • Bogotá
  • Caribe
  • Manizales
  • Medellín
  • Orinoquía
  • Palmira
Biblioteca Digital
  • Repositorio Institucional
  • Entrega de tesis y publicación en línea
  • Digitalización de documentos
  • Normatividad publicación en línea
  • Portal de Revistas UN
  • Suscripción a contenidos UN
  • Contáctenos
Recursos Bibliográficos
  • Recursos electrónicos
  • Catálogo UN
  • Diccionarios y enciclopedias
  • Herramientas bibliográficas
  • Libros electrónicos
  • Descubridor
  • Índices bibliográficos
  • Adquisicion de material bibliografico
Formación
  • Agenda de formación
  • Solicitud de nuevo taller
  • Guía de autoarchivo de documentos
Acerca de
  • Misión y visión
  • Dirección Nacional de Bibliotecas
  • Convenios y redes
  • Video del Sinab
  • Preguntas frecuentes
Sedes
  • Amazonia
  • Bogotá
  • Caribe
  • De La Paz
  • Manizales
  • Medellín
  • Orinoquia
  • Palmira
  • Tumaco
Servicios
Perfiles
Home
    • español
    • English
    • português (Brasil)
  • Login
View Item 
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Bogotá
  • Facultad de Ciencias
  • Departamento de Matemáticas
  • View Item
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Bogotá
  • Facultad de Ciencias
  • Departamento de Matemáticas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

El funtor espectro y su relación con el proceso de adjunción de unidad

Thumbnail
Ibethmarcelarubioperilla.2012._Parte_1.pdf (6.848Mb)
Ibethmarcelarubioperilla.2012._Parte_3.pdf (14.60Mb)
Ibethmarcelarubioperilla.2012._Parte_2.pdf (13.24Mb)
Ibethmarcelarubioperilla.2012._Parte_4.pdf (10.30Mb)
Date published
2012
Author
Rubio Perilla, Ibeth Marcela
Metadata
Show full item record

Summary
Se estudia la relación que existe entre el proceso algebraico de adjuntar unidad a un anillo y el proceso topológico de compactar un espacio. Esta relación se estudia a través del funtor espectro, el cual pone en contacto estos dos ambientes. Se obtiene que en general, si R es una extensión unitaria del anillo S, el espectro primo de R no necesariamente es una compactación del espectro primo de S. Cuando el anillo unitario R es una I-extensión de S, es decir, S es un ideal de R, se encuentra una función que permite ver que el espectro primo de S es un sub-espacio del espectro primo de R. A través de esta observación se tiene naturalmente una compactación de Spec (S) incluida en Spec ( R) y se determina un mecanismo que permite producir dicha compactación directamente como el espectro primo de un cociente particular de R, a la cual llamamos R-nil-compactación de S. Se estudia la relación que existe entre diferentes nil-compactaciones del anillo S, determinadas por sus diferentes I -extensiones y se encuentran condiciones bajo las cuales dos de ellas resultan homeomorfas. Por otra parte, se establece un criterio para determinar cuándo un anillo de von N eumann tiene espectro compacto, el cual generaliza un resultado ya conocido para anillos de Boole. Se estudia el comportamiento de las nil-compactaciones en el caso particular de los anillos de von N eumann y cuando estos son de característica no nula se encuentran características importantes con respecto a sus nil-compactaciones, entre ellas que las nil-compactaciones son compactaciones estelares por finitos puntos, para las cuales es posible establecer el número de puntos adicionales. Finalmente se establecen algunas propiedades de las construcciones realizadas, desde el punto de vista de la teoría de categorías. / Abstract: We study the relationship between the algebraic process of adjoint identity to a ring and the topological process to compactify a topological space. This relationship is studied through the spectrum functor which allows us to put in contact these two environments. We obtain that in general, if R is a unitary extension of the ring S, the prime spectrum of R is not necessarily a compactification of the prime spectrum of S. If the unitary ring R is an I –extension of S, namely, S is an ideal of R, we find a function that shows that the prime spectrum of S is a sub-space of the prime spectrum of R. Through this observation, there is a natural compactification of Spec (S) included in Spec ( R). We establish a mechanism to find this compactification directly as the prime spectrum of a special quotient of R. We call this compactification the R-nil-compactification of S. We study the relationship between different nil-compactifications of the ring S, determinated by different I –extensions and we find conditions under which two of them are homeomorphic. On the other hand, we establish a criteria for determining when a von Neumann ring has compact spectrum, which generalizes a result already known for Boolean rings. We study the behavior of nil-compactifications in the particular case of von N eumann rings. When these rings are of non zero characteristic, we find important characteristics about its nil-compactifications, between them that its nil-compactifications are star compactifications by finite points, for which is possible to establish the number of additional points. Finally we set sorne properties of these constructions, from the point of view of categories theory.
Subject
Anillo unitario ; ideal ; Adjunción de unidad ; Anillo regular de von Neumann ; I–extensión ; Compactación ; Espectro primo / Unitary ring ; Ideal ; Adjunction of identity ; Von Neumann regular ring ; I –extension ; Compactification ; Prime spectrum ;
URI
https://repositorio.unal.edu.co/handle/unal/11533
Collections
  • Departamento de Matemáticas [354]

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesKnowledge AreasThis CollectionBy Issue DateAuthorsTitlesKnowledge Areas

My Account

LoginRegister

Statistics

View Google Analytics Statistics
Régimen Legal
Talento humano
Contratación
Ofertas de empleo
Rendición de cuentas
Concurso docente
Pago Virtual
Control interno
Calidad
Buzón de notificaciones
Correo institucional
Mapa del sitio
Redes Sociales
FAQ
Quejas y reclamos
Atención en línea
Encuesta
Contáctenos
Estadísticas
Glosario

Contacto página web:
Carrera 45 # 26-85
Edif. Uriel Gutiérrez
Bogotá D.C., ; Colombia
(+57 1) 316 5000

© Copyright 2014
Algunos derechos reservados.
mediosdigitales@unal.edu.co
Acerca de este sitio web

Actualización: 04/10/19

Orgullo UNOrgullo UNAgencia de noticiasAgencia de noticias
Trámites en líneaContaduría General de la República