Modeling variability in generalized linear models
Summary
This work proposes joint modeling of parameters in the biparametric exponential family, including heteroscedastic linear regression (non linear regression) models; with joint modeling of the mean and precision (the variance) parameters; beta regression models, longitudinal date analysis (including modeling of the covariance matrix) and hierarchical models. This work presents results of the classic approach to fit regression models for both mean and precision parameters in biparametric exponential family of distributions, which includes Bayesian methods for fitting the proposed models. And also extensions of the Bayesian methods to fit nonlinear regression models. Finally, proposes to use a Bayesian approach for modeling the covariance matrix in normal regression models when the observations are not independent. This document includes the following chapters: Chapter 1 is a introduction. Chapter 2 presents a summary of generalized linear models and the classical and Bayesian approaches to the parameters estimation, presenting the Fisher score method and a Bayesian approach using the Metropolis-Hastings algorithm. In Chapter 3, the heteroscedastic normal linear regression models are considered, including summaries of the classic method and Bayesian method proposed to fit these models. Chapter 4 is an extension of Chapter 3, which studies the regression models in the biparametric exponential family of distribution for mean and precision parameters. The following examples are included. 1. Gamma regression models with regression structures in the mean and precision (variance). 2. Beta regression models with regression structures in both mean and dispersion parameter. Several simulation studies were performed to illustrate these models and the proposed Bayesian methods. Chapter 5 discusses normal nonlinear heteroskedastic regression models. Chapter 6 include a Bayesian proposal to fit longitudinal regression models, where regression structures are assumed for the mean and the variance-covariance matrix of observations with Normal distribution (longitudinal data) Chapter 7 presents an extension of the methodology proposed in the previous chapters for adjusting hierarchical models.
Collections

Related items
Showing items related by title, author, creator and subject.
-
Escala de vulnerabilidad de muerte por infección respiratoria aguda, en menores de un año, en Bogotá según determinantes sociales de la salud.
Nuñez Forero, Lilian MaritzaObjetivos: Desarrollar una escala de probabilidad de morir por Infección respiratoria aguda en menores de un año, según los determinantes sociales de la salud. Metodología: Se revisó y analizó la información de la ...Universidad Nacional de Colombia Sede Bogotá Facultad de Medicina Instituto de Investigaciones Clínicas. -
Modelos epidemiológicos estocásticos y su inferencia: casos SIS y SEIR
Ríos Gutiérrez, Andrés SebastiánEn este trabajo, se presentan dos modelos epidemiológicos con perturbación aleatoria, basados en los modelos epidemiológicos deterministas de tipo SIS y SEIR. Se discute la definición de número reproductivo básico en ambos ...Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística. -
Framework de evaluación de la efectividad de los modelos estratégicos del negocio basados en los estándares BMM (Business Motivation Model) y BPMN (Business Process Model and Notation)
Collazos Serrano, Víctor EdwinEl Modelado Empresarial según Lapkin, et al. (2008) se puede definir como “el proceso de traducir la visión y estrategia del negocio en un cambio efectivo para la organización mediante la creación, comunicación y mejora ...Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas.