An ontology-based information extractor for data-rich documents in the information technology domain
Archivos
Autores
Jiménez Vargas, Sergio Gonzalo
González Osorio, Fabio Augusto
Director
Tipo de contenido
Artículo de revista
Idioma del documento
EspañolFecha de publicación
2008
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
This paper presents an information extraction method, suitable for data-rich documents, based on the knowledge represented in a domain ontology. The extractor combines a fuzzy string matcher and a word sense disambiguation (WSD) algorithm. The fuzzy string matcher finds mentions of terms combining character-level and token-level similarity measures dealing with non-standardized acronyms and inconsistent abbreviation styles. We propose a new character-level edit distance sensitive to prefixes called root distance and a token-level similarity algorithm for fuzzy acronym detection. Additionally, a WSD strategy using an ontology-based semantic relatedness measure is used to solve the inherent ambiguity of some entities. The WSD module finds a sense combination over all the document length optimizing the document semantic coherence. Our approach seems to be suitable to extract information from data-rich documents describing Orly one main object (i.e. product) by document. The results showed a precision of 78.9% with 99.5% recall using documents and an ontology related to laptop computers domain.