An association rule based model for information extraction from protein sequence data

Miniatura

Autores

Becerra, David
Cantor Monroy, Giovanni Antonio
Niño, Luis Fernando
Gómez Perdomo, Jonatan
Bobadilla, Leonardo

Director

Tipo de contenido

Artículo de revista

Idioma del documento

Español

Fecha de publicación

2008

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

In this paper, a data mining technique for protein sequence pattern extraction is developed. Specifically, the aim is to explore the use of association rules as a basis to build successful secondary structure predictors, in a sequencestructure layer. No heuristic or biological infor mation is taken into account in the present study and only the information given by the association rules is used as a basis for building a secondary structure predictor. This work gives some insights about secondary structure prediction features to be used in learning algorithms; this is expected to be useful to achieve substantial improvements of accuracy in protein secondary structure prediction.

Abstract

Descripción Física/Lógica/Digital

Palabras clave

Citación