Zero localization and asymptotic behavior of orthogonal polynomials of jacobi-sobolev

Miniatura

Autores

Pijeira, Héctor
Quintana, Yamilet
Urbina, Wilfredo

Director

Tipo de contenido

Artículo de revista

Idioma del documento

Español

Fecha de publicación

2001

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

In this article we consider the Sobolev orthogonal polynomials associated to the Jacobi's measure on [-1, 1]. It is proven that for the class of monic Jacobi-Sobolev orthogonal polynomials, the smallest closed interval that contains its real zeros is [-√(1+2C, √ 1+2C] with C a constant explicitly determined. The asymptotic distribution of those zeros is studied and also we analyze the asymptotic comparative behavior between the sequence of monic Jacobi-Sobolev orthogonal polynomials and the sequence of monic Jacobi ortogonal polynomials under certain restrictions.

Abstract

Descripción Física/Lógica/Digital

Palabras clave

Citación