Zero localization and asymptotic behavior of orthogonal polynomials of jacobi-sobolev
Archivos
Autores
Pijeira, Héctor
Quintana, Yamilet
Urbina, Wilfredo
Director
Tipo de contenido
Artículo de revista
Idioma del documento
EspañolFecha de publicación
2001
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
In this article we consider the Sobolev orthogonal polynomials associated to the Jacobi's measure on [-1, 1]. It is proven that for the class of monic Jacobi-Sobolev orthogonal polynomials, the smallest closed interval that contains its real zeros is [-√(1+2C, √ 1+2C] with C a constant explicitly determined. The asymptotic distribution of those zeros is studied and also we analyze the asymptotic comparative behavior between the sequence of monic Jacobi-Sobolev orthogonal polynomials and the sequence of monic Jacobi ortogonal polynomials under certain restrictions.