Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature
Archivos
Autores
Perdomo, Oscar
Director
Tipo de contenido
Artículo de revista
Idioma del documento
EspañolFecha de publicación
2002
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
In this paper we prove that if M ⊏ ℝn , n = 8 or n = 9, is a n - 1 dimensional stable minimal complete cone such that its scalar curvature varies radially, then M must be either a hyperplane or a Clifford minimal cone. By Gauss' formula, the condition on the scalar curvature is equivalent to the condition that the function K1(m)2 + ... + Kn-1 (m)2 varies radially. Here the Ki are the principal curvatures at m ∈ M. Under the same hypothesis, for M ⊏ ℝ10 we prove that if not only K1(m)2 + ... + Kn-1 (m)2 varies radially but either K1(m)3 + ... + Kn-1 (m)3 varies radially or K1(m)4 + ... + Kn-1 (m)4 varies radially, then M must be either a hyperplane or a Clifford minimal cone.