Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature

Miniatura

Autores

Perdomo, Oscar

Director

Tipo de contenido

Artículo de revista

Idioma del documento

Español

Fecha de publicación

2002

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

In this paper we prove that if M ⊏ ℝn , n = 8 or n = 9, is a n  - 1 dimensional stable minimal complete cone such that its scalar curvature varies radially, then M must be either a hyperplane or a Clifford minimal cone. By Gauss' formula, the condition on the scalar curvature is equivalent to the condition that the function K1(m)2 + ... + Kn-1 (m)2 varies radially. Here the Ki are the principal curvatures at m ∈ M. Under the same hypothesis, for M ⊏ ℝ10  we prove that if not only K1(m)2 + ... + Kn-1 (m)2   varies radially but either K1(m)3 + ... + Kn-1 (m)3 varies radially or K1(m)4 + ... + Kn-1 (m)4 varies radially, then M must be either a hyperplane or a Clifford minimal cone.

Abstract

Descripción Física/Lógica/Digital

Palabras clave

Citación