Existencia de soluciones de ecuaciones diferenciales estocásticas

Miniatura

Autores

Muñoz de Ozak, Myriam

Director

Tipo de contenido

Artículo de revista

Idioma del documento

Español

Fecha de publicación

1985

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

In classic theorems, when we have a stochastic differential equation of the form dXt = f(t,Xt)dt + G(t,Xt)dWt, Xt = ξ,  to ≤ t ≤ T and lt;  ∞, where Wt is a Wiener Process and ξ is a random variable independent of Wt-Wto for t ≥ to in order to have existence and uniqueness of solutions it is supposed the existence of a constant K such that: (Lipschitz condition) for all t ϵ [to,T], x,y ∈Rd, |f(t,x)-f(t,y)| + |G(t,x)-G(t,y)| ≤  K|x-y|· And for all t ∈|to,T | and x ∈ Rd, |f(t,x)|2+|G(t,x)|2≤ K2(1+|x|2). In this article we prove an existence theorem under weaker hypothesis: we require only that f and G be continuous in the second variable and the existence of a function m ϵ L2 [to,T] such that |f(t,x)|+|G(t,x)| ≤ m(t) for alI t ∈ [to,T] and x ∈ Rd.

Abstract

Descripción Física/Lógica/Digital

Palabras clave

Citación