Existencia de soluciones de ecuaciones diferenciales estocásticas
Archivos
Autores
Muñoz de Ozak, Myriam
Director
Tipo de contenido
Artículo de revista
Idioma del documento
EspañolFecha de publicación
1985
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
In classic theorems, when we have a stochastic differential equation of the form dXt = f(t,Xt)dt + G(t,Xt)dWt, Xt = ξ, to ≤ t ≤ T and lt; ∞, where Wt is a Wiener Process and ξ is a random variable independent of Wt-Wto for t ≥ to in order to have existence and uniqueness of solutions it is supposed the existence of a constant K such that: (Lipschitz condition) for all t ϵ [to,T], x,y ∈Rd, |f(t,x)-f(t,y)| + |G(t,x)-G(t,y)| ≤ K|x-y|· And for all t ∈|to,T | and x ∈ Rd, |f(t,x)|2+|G(t,x)|2≤ K2(1+|x|2). In this article we prove an existence theorem under weaker hypothesis: we require only that f and G be continuous in the second variable and the existence of a function m ϵ L2 [to,T] such that |f(t,x)|+|G(t,x)| ≤ m(t) for alI t ∈ [to,T] and x ∈ Rd.