Best approximation in vector valued function spaces

Miniatura

Autores

Khalil, Roshdi

Director

Tipo de contenido

Artículo de revista

Idioma del documento

Español

Fecha de publicación

1985

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

Let T be the unit circle, and m be the normalized Lebesgue measure on T. If H is a separable Hilbert space, we let L∞T,H) be the space of essentially bounded functions on T with values in H. Continuous functions with values in H are denoted by C(T,H), and H∞(T,H) is the space of bounded holomorphic functions in the unit disk with values in H. The object of this paper is to prove that (H∞+C)(T,H) is proximinal in L∞(T,H). This generalizes the scalar valued case done by Axler, S. et al. We also prove that (H∞+C)(T,l∞) |H∞(T,l∞) is an M-ideal of L∞(T,l∞) | H∞ (T, l∞), and V(T,l∞) is an M-ideal of L∞(T, l∞)whenever V is an M-ideal of L∞, where V(T,l∞) {g ϵ L∞(T,l∞): and lt;g(t), δn and gt; ϵ V for all n}.

Abstract

Descripción Física/Lógica/Digital

Palabras clave

Citación