A model for general video game learning with HTM
Type
Trabajo de grado - Maestría
Document language
EspañolPublication Date
2016-09-08Metadata
Show full item recordSummary
Abstract. A model-based agent, for general game playing in the context of Artificial General Intelligence is proposed. That agent is structured as an utility agent, that models the games through two functions, Transition and Reward. With these functions, a planning phase is proposed using a tree of actions. The agent is tested with two Atari games, Breakout and Pong.Summary
Se propone un agente basado en modelos para el aprendizaje general de video juegos. El agente se estructura con dos funciones, de transición y de recompenza, que se usan en una fase de planeación. El modelo propuesto se prueba con dos juegos de Atari, Breakout y Pong.Keywords
Artificial General Intelligence ; AGI ; Video Game Playing ; Atari ; Pong ; Breakout ; Hierarchical Temporal Memory ; HTM ; Cortical Learning Algorithm ; CLA ; Model-based ; Avatar ; Environment ; Dynamic Objects ; Inteligencia artificial general ; Agente basado en modelos ; Avatar ; Ambiente ; Objetos dinamicos ;
Collections
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit