A new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular values
Archivos
Autores
Sarria, Humberto
Martínez, Juan Carlos
Director
Tipo de contenido
Artículo de revista
Idioma del documento
EspañolFecha de publicación
2016-07-01
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
Using the standard deviation of the real samples μn ≥ … ≥ μ1 and λn ≥ … ≥ λ1, we refine the Chebyshev's inequality (refer to [5]),As a consequence, we obtain a new proof of the Benedetti's inequality (refer to [1], [2] and [4])where Cov[μ, λ], s(μ) and s(λ) denote the covariance, and the standard deviations (≠ 0) of the sample vectors μ = (μ1, …, μn) and λ = (λ1, …, λn), respectively.We can also get very interesting applications to eigenvalues and singular values perturbation theory. For some kinds of matrices, the result that we present improves the well known Homand-Weiland's inequality.