Cubic multivariate cryptosystems based on big field constructions and their vulnerability to a min-rank attack
Type
Trabajo de grado - Maestría
Document language
EspañolPublication Date
2019Metadata
Show full item recordSummary
In this work we analyze the security of cubic cryptographic constructions with respect to rank weakness. We detail how to extend the big field idea from quadratic to cubic, and show that the same rank defect occurs. We extend the min-rank problem and propose an algorithm to solve it in this setting. We show that for fixed small rank, the complexity is even lower than for the quadratic case. However, the rank of a cubic polynomial in n variables can be larger than n, and in this case the algorithm is very inefficient. We show that the rank of the differential is not necessarily smaller, rendering this line of attack useless if the rank is large enough. Similarly, the algebraic attack is exponential in the rank, thus useless for high rank.Summary
Resumen: En este trabajo analizamos la seguridad de construcciones criptogr´aficas c´ubicas con respecto a la debilidad del rango. Detallamos c´omo extender la idea de campo grande de cuadr´atico a c´ubico, y mostramos que la misma ca´ıda de rango ocurre. Extendemos el problema de rango m´ınimo y proponemos un algoritmo para resolverlo en este contexto. Mostramos que para rango bajo fijo, la complejidad es incluso m´as baja que en el caso cuadr´atico. Sin embargo, el rando de un polinomio c´ubico en n variables puede ser m´as grande que n, y en este caso el algoritmo es muy ineficiente. Mostramos que el rango del diferencial no es necesariamente m´as peque˜no, lo cual vuelve in´util esta l´ınea de ataque si el rango es lo suficientemente grande. Similarmente, el ataque algebr´aico es exponencial en el rango, y por lo tanto es in´util para rango alto.Keywords
Collections
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit