Forecast combination using Optimization techniques
Cargando...
Autores
Valencia-Cárdenas, Marisol
Correa-Morales, Juan Carlos
Director
Tipo de contenido
Document language:
Inglés
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
Actualmente existen diversas metodologías de pronóstico, que van desde el conocimiento empírico hasta métodos innovadores, individuales o combinados, que demuestran resultados óptimos. Este documento se deriva de un proceso de investigación y presenta alternativas relacionadas con las combinaciones de pronósticos, utilizando metaheurísticas, por ejemplo, mediante la búsqueda tabú y la programación evolutiva para optimizar el pronóstico. El documento presenta pronósticos combinados basados en la programación evolutiva utilizando mezclas de modelos de regresión bayesiana y modelos de regresión lineal clásico, el modelo de media móvil integrado autorregresivo, el suavizado exponencial y la regresión bayesiana.
El documento presenta dos artículos derivados de investigación, la primera compara el algoritmo combinado con los resultados individuales de estos modelos individuales y con la combinación de Bates y Granger utilizando un indicador de error y el valor simétrico de error absoluto medio. Esos modelos y la combinación se aplicaron a la simulación de series temporales y a un caso real de ventas de productos lácteos, generando así pronósticos combinados multiproductos tanto para la simulación como para el caso real. La nueva combinación combinada con la metaheurística evolutiva mostró mejores resultados que los de los otros que se utilizaron. La segunda investigación utiliza series de tiempo simuladas, diseñando dos metaheurísticas basadas en la lista Tabú, que aprenden de los datos con base en el comportamiento estadístico de éstos, como el cluster, así como del mismo valor optimizado del error de ajuste, y se comparan las combinaciones de pronósticos con resultados de modelos individuales a tres tipos de series de tiempo.
Abstract
Currently diverse forecasting methodologies exists, going from the empirical knowledge to the innovative methods, individual or combined, demonstrating optimal results.
This document is derived from a research process, and presents alternatives related to forecast combinations, using metaheuristics, for example, by using Tabu search and Evolutive programing to optimize forecasting.
One of the designed process consists of creating combination forecasts based on evolutionary programming using, first, a mixture of Bayesian regression models and, second, a mixture of the classical linear regression model, the autoregressive integrated moving average model, exponential smoothing and Bayesian regression. The first research compares the novel combined algorithm with the individual results of these individual models and with the Bates and Granger combination using an error indicator and the symmetrical mean absolute error value. Those models and the novel design were applied to time series simulation and to a real case of dairy products sales, thus generating multiproduct combination forecasts for both the simulation and the real case. The novel combination combined with the evolutionary metaheuristic showed better results than those of the others that were used. The second research uses simulated time series and other metaheuristic that learns from the data an statistical behavior.