Nonlinear optics Pulse propagation in fiber optics filled with gases, liquids, and organic dyes.
Author
Type
Trabajo de grado - Maestría
Document language
EspañolPublication Date
2019-02-01Metadata
Show full item recordSummary
The characterization of nonlinear optical material properties, such as nonlinear refractive index and nonlinear absorption coefficient, is one of the most important subjects in nonlinear optics due to its application in many fields such as spectroscopy, material processing, biophysics, atmospheric sensing and metrology, among others. Besides the possibility of creating new technology. In this thesis, the Z-scan technique was implemented and calibrated. It remains one of the most widely used techniques to obtain both nonlinear refractive index and the absorption coefficient of a material. Moreover, nonlinear phenomena inside optical fiber is well known due to their applications and advantages like the low input energy required to generate supercontinuum, four wave mixing, dispersive wave, among others. In this work, several simulations were performed with new fiber geometries, material responses and different noble gases infiltrated in fiber. Different simulation regimes were considered as well by varying input power, pulse width and pressure. Nonlinear parameters for organic dyes, multi-walled carbon nanotubes, and CS2 were reported, pointing out the main reasons behind each result and addressing possible new phenomena involved. The nonlinear output response in both time and frequency domains was reported for several simulations, obtaining the nonlinear pulse output for the new CS2 response function. A novel consideration was proposed in which the final pulse depends on the propagation distance for non-instantaneous materials and the nonlinear constant (γ) must be recalculated at each step. It was demonstrated how the output pulse can be controlled by changing the fiber length. Among the most important results, it was found there exists a possibility to change between modulation instability and four wave mixing by only varying the propagation distance. Finally, it was also found that a special type of fiber, namely negative curvature hollow core fiber, can be used to obtain a broad band spectrum when it is filled with noble gases and they can be tuned with pressure from linear behavior up to a super critical zone.Summary
Resumen: a caracterización de propiedades ´ópticas no lineales, como lo son el ´índice de refracción y el coeficiente de absorción no lineal, es uno de los temas más importantes en ´óptica no lineal debido a su aplicación en muchos campos como la espectroscopia, procesamiento de materiales, biofísica, sensado atmosférico, metrología, entre otros. Además de la posibilidad de creación de nueva tecnología. En esta tesis se implemento y calibro la técnica Z-Scan, una de las técnicas más utilizadas para obtener tanto el ´índice de refracción no lineal como el coeficiente de absorción de un material. Asimismo, los fenómenos no lineales dentro de la fibra ´óptica son bien conocidos debido a sus aplicaciones y ventajas tales como la baja energía de entrada requerida para generar fenómenos de supercontinuo, mezclado de cuatro ondas y ondas dispersivas. En este trabajo se realizaron varias simulaciones con nuevas geometrías de fibras, respuestas de material y gases nobles dentro de la fibra. Se consideraron diferentes regímenes de potencia de entrada, ancho de pulso y presión. Se reportaron los parámetros no lineales para las sustancias orgánicas usadas, nanotubos de carbono de paredes múltiples y CS2, indicando la razón principal detrás de cada resultado y abordando los posibles nuevos fenómenos involucrados. La respuesta de salida no lineal tanto en el dominio del tiempo como en el de frecuencia se reportó en varias simulaciones, obteniendo el pulso no lineal de salida para la nueva función de respuesta del CS2, se propuso una nueva consideración donde el pulso final depende de la distancia de propagación para materiales no instantáneos y la constante no lineal (γ) se deben recalcular en cada paso. Se demostró como se puede controlar el pulso de salida cambiando la longitud de la fibra; entre los resultados más importantes se encontró la posibilidad de cambiar entre la inestabilidad de la modulación y el mezclado de cuatro ondas solo variando la distancia de propagación. Finalmente, se encontró que un tipo especial de fibra, a saber, la fibra de núcleo hueco de curvatura negativa, se puede usar para obtener un amplio espectro de banda cuando se llena con gases nobles y se sintoniza con la presión, desde el comportamiento lineal hasta la zona supercríticaKeywords
Collections
