Modelado de la vida útil de piña (Ananas comosus) mínimamente procesada empacada en atmósferas modificadas a partir de propiedades indicativas de calidad y condiciones de almacenamiento
Cargando...
Archivos
Autores
Gómez Moreno, José Miguel
Tipo de contenido
Document language:
Español
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
Esta tesis presenta un modelo para predecir la vida útil de piña mínimamente procesada a partir de las propiedades indicativas de calidad como función de la temperatura y la concentración de gases en un sistema de empaque con atmósferas modificadas (MAP). Para esto, primero se desarrolla un modelo matemático para describir las velocidades de respiración (consumo de O2 y producción de CO2) y de transpiración de la piña procesada mínimamente (cortada en rodajas) en función de la temperatura, la humedad relativa (HR) y la configuración geométrica. Para ajustar experimentalmente los modelos adecuados para la respiración y la transpiración, la piña (Ananas comosus) mínimamente procesada se almacenó en rebanadas de tres tipos de configuración (media rodaja con 1 cm de espesor, una rodaja completa con 1 cm de espesor y una rodaja completa con 2 cm de espesor) a diferentes temperaturas y HR. El consumo de O2 y la producción de CO2 se modelaron utilizando una cinética enzimática de Michaelis-Menten. A lo largo de los diferentes experimentos, las velocidades de respiración fueron mayores al aumentar la temperatura de almacenamiento. Los datos de transpiración muestran que la pérdida de peso es lineal para todas las muestras durante todo el tiempo de almacenamiento. Los resultados muestran una alta bondad de ajuste entre los datos experimentales y los valores estimados con los modelos de respiración-transpiración (R2 0,89). En segundo lugar, las rodajas completas de piña mínimamente procesada con 1 cm de espesor se almacenaron a diferentes temperaturas y concentraciones de gases para determinar los cambios de firmeza, color y otras propiedades fisico-químicas a través del tiempo de almacenamiento con el objetivo de representar la vida útil en función de la temperatura y concentraciones de gases a partir de estas propiedades de calidad. A partir de los datos experimentales, los modelos se ajustaron adecuadamente para representar el cambio de cada una de estas propiedades en función de la temperatura y las concentraciones de gases mediante el uso de un modelo de potencia para la firmeza y un modelo de primer orden para representar el color (coordenadas L*, a* y b*). Desde el modelo de firmeza fue posible obtener una ecuación adecuada para predecir la vida útil de la piña mínimamente procesada a partir del almacenamiento de temperatura y concentración de gases, obteniendo coeficientes de regresión superiores a 0.90. Con el modelo de vida útil desarrollado en este estudio es posible configurar condiciones de empaque adecuadas dependiendo de las necesidades específicas del mercado a lo largo de la cadena logística y de distribución.
Abstract: This thesis presents a model to describe the shelf life of minimally processed pineapple depending on quality-indicative properties and as a function of the temperature and gas concentration in an equilibrium modified atmosphere packaging (EMAP) system. For that, a mathematical model was first adjusted to describe respiration (O2 consumption and CO2 production) and transpiration rates of minimally processed pineapple (cut into slices) as a function of temperature, relative humidity (RH) and geometric configuration. To experimentally adjust suitable models for respiration and transpiration, minimally processed pineapple (Ananas comosus) was stored in slices of three types of configuration (a half slice with 1 cm of thickness, a complete slice with 1 cm of thickness and a complete slice with 2 cm of thickness) at different temperature and RH. The O2 consumption and CO2 production were modeled by using a Michaelis-Menten enzyme kinetics. Throughout the different experiments, the respiration rates were higher by increasing the storage temperature. The transpiration data showed the weight loss is linear for all the samples during the entire storage time. Results shows a high goodness of fit between experimental data and estimated values with the respiration-transpiration models (R2 0.89). Secondly, minimally processed pineapple (Ananas comosus) slices with 1 cm of thickness were stored at different temperatures and gas concentrations to determine the changes of firmness, color and other physicochemical properties through the storage time with the aim to represent the shelf life depending on temperature and gas concentrations from these quality properties. From the experimental data, models were adequately adjusted to represent the change of each one of these properties as a function of the temperature and gas concentrations by using a power model for the firmness and a first-order model to represent the color (L*, a* and b* coordinates). From the model of firmness was possible to obtain a suitable equation to predict the shelf life of the minimally processed pineapple from the temperature and gas concentration storage, obtaining regression coefficients higher than 0.90. With the shelf life model developed in this study can be possible to configure suitable packaging conditions depending on a specific market necessity along the logistic and retail chain.
Abstract: This thesis presents a model to describe the shelf life of minimally processed pineapple depending on quality-indicative properties and as a function of the temperature and gas concentration in an equilibrium modified atmosphere packaging (EMAP) system. For that, a mathematical model was first adjusted to describe respiration (O2 consumption and CO2 production) and transpiration rates of minimally processed pineapple (cut into slices) as a function of temperature, relative humidity (RH) and geometric configuration. To experimentally adjust suitable models for respiration and transpiration, minimally processed pineapple (Ananas comosus) was stored in slices of three types of configuration (a half slice with 1 cm of thickness, a complete slice with 1 cm of thickness and a complete slice with 2 cm of thickness) at different temperature and RH. The O2 consumption and CO2 production were modeled by using a Michaelis-Menten enzyme kinetics. Throughout the different experiments, the respiration rates were higher by increasing the storage temperature. The transpiration data showed the weight loss is linear for all the samples during the entire storage time. Results shows a high goodness of fit between experimental data and estimated values with the respiration-transpiration models (R2 0.89). Secondly, minimally processed pineapple (Ananas comosus) slices with 1 cm of thickness were stored at different temperatures and gas concentrations to determine the changes of firmness, color and other physicochemical properties through the storage time with the aim to represent the shelf life depending on temperature and gas concentrations from these quality properties. From the experimental data, models were adequately adjusted to represent the change of each one of these properties as a function of the temperature and gas concentrations by using a power model for the firmness and a first-order model to represent the color (L*, a* and b* coordinates). From the model of firmness was possible to obtain a suitable equation to predict the shelf life of the minimally processed pineapple from the temperature and gas concentration storage, obtaining regression coefficients higher than 0.90. With the shelf life model developed in this study can be possible to configure suitable packaging conditions depending on a specific market necessity along the logistic and retail chain.

