Show simple item record

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorVillamil, Mauricio Maldonado
dc.contributor.advisorGuevara Pulido, James Oswaldo
dc.contributor.authorDavid Rodriguez, Fredy Alexander
dc.date.accessioned2020-08-07T02:22:13Z
dc.date.available2020-08-07T02:22:13Z
dc.date.issued2020-05-18
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77976
dc.description.abstractThe organocatalytic version of Michael's addition continues to attract much interest, encompassing a wide range of synthetic applications from the formation of C-C and C-heteroatom bonds, in addition to its versatility in multicomponent reactions. Different activated methylenes have been used from the Michael additions for β functionalization of α, β unsaturated aldehydes, given the versatility offered by reaction products as precursors or "building blocks" in chemical synthesis for more complex structures. Activated methylenes require a pro-nucleophile that incorporates a fairly acidic C-H hydrogen, therefore, recent studies have indicated the existence of a pKa barrier for the activation of nucleophiles that proceed by iminium ion activation. The studies have allowed us to observe some characteristics in the process and the products obtained related to the type of nucleophile used and in particular with its pKa value in the α carbon hydrogens. Therefore, in this work we evaluated the reactivity of benzoylnitromethane against three alkyl enals that are crotonal, trans-2-pentenal and trans-2-hexenal, which allowed the characterization of compounds 3- (2-phenyl-) 1-nitro-2-oxoethyl) hexanal (1a), 2-ethoxy-6-phenyl-5-nitro-4-propyl-3,4-dihydro-2H-pyran (2a) and 5-benzoyl-4,6- dimethyl-5-nitrocyclohex-1-enecarbaldehyde (2b). In addition, it was possible to describe the different mechanisms by which the products were obtained, which involved domino reactions. Another important fact is the obtaining of good and excellent enantiomeric excesses for products 2a and 2b. It was observed that the reactivity depends on the substituent of the acceptor, and also the effectiveness in the use of ketone with pKa value outside the limits described is demonstrated.
dc.description.abstractLa versión organocatalítica de la adición de Michael sigue atrayendo mucho interés, abarcando una amplia gama de aplicaciones sintéticas desde la formación de enlaces C-C y C- heteroátomo, además por su versatilidad en reacciones multicomponentes. Se han empleado a partir de las adiciones de Michael diferentes metilenos activados para la funcionalización β de aldehídos α, β insaturados, dada la versatilidad que ofrecen los productos de reacción como precursores o “building block” en síntesis química para estructuras más complejas. Los metilenos activados requieren un pro-nucleófilo que incorpore un hidrógeno C-H bastante ácido, por lo tanto, estudios recientes han señalado la existencia de una barrera de pKa para la activación de los nucleófilos que proceden por activación ion iminio. Los estudios han permitido observar unas características en el proceso y los productos obtenidos relacionado con el tipo de nucleófilo empleado y en particular con su valor de pKa en los hidrógenos del carbono α. Por lo tanto, en el presente trabajo se evaluó la reactividad del benzoilnitrometano frente a tres enales alquílicos que son crotonal, trans-2-pentenal y trans-2-hexenal, lo que permitió la caracterización de los compuestos 3- (2-fenil-1-nitro-2-oxoetil) hexanal (1a), 2-etoxi-6-fenil-5-nitro-4-propil-3,4-dihidro-2H-pirano (2a) y 5-benzoil-4,6-dimetil-5-nitrociclohex-1-enecarbaldehído (2b). Además, se pudo describir los diferentes mecanismos por los cuales se obtuvieron los productos, que involucraron reacciones domino. Otro hecho importante es la obtención de bueno y excelente excesos enantioméricos para los productos 2a y 2b. Se observó que la reactividad depende del sustituyente del aceptor, y además se demuestra la efectividad en la utilización de cetona con valor de pKa fuera de los limites descritos.
dc.format.extent109
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc547 - Química orgánica
dc.titleEstudio de la Reactividad del Benzoilnitrometano frente Aldehídos α,β Insaturados Alquílicos por Adición de Michael
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Síntesis Orgánica
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupAplicaciones Analíticas de Compuestos Orgánicos (AACO)
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesM. Avalos, R. Babiano, P. Cintas, J. L. Jiménez and J. C. Palacios, Tetrahedron Asymmetry, 2000, 11, 2845–2874
dc.relation.referencesJ. Gal, in Differenation of Enantiomers I. Topics in Current Chemistry 340, ed. S. Volker, Springer, Cham, 2013, pp. 1–20
dc.relation.referencesE. Papaseit, O. García-Algar and M. Farré, An. Pediatría, 2013, 78, 283–287
dc.relation.referencesM. L. Martínez-Frías, Med. Clin. (Barc)., 2012, 139, 25–32
dc.relation.referencesT. Eriksson, S. Bjöurkman, B. Roth, Å. Fyge and P. Höuglund, Chirality, 1995, 7, 44–52
dc.relation.referencesH.-U. Blaser, Rend. Lincei, 2013, 24, 213–216
dc.relation.referencesL. A. Nguyen, H. He and C. Pham-Huy, Int. J. Biomed. Sci., 2006, 2, 85–100
dc.relation.referencesP. Jeschke, Pest Manag. Sci., 2018, 74, 2389–2404
dc.relation.referencesS. C. Pan and B. List, in Organocatalysis, eds. M. Reetz, B. List, S. Jaroch and H. Weinmann, Springer, Berlin, Heidelberg, Berlin, Heidelberg, 2008, pp. 259–300
dc.relation.referencesD. W. C. MacMillan, Nature, 2008, 455, 304–308
dc.relation.referencesM. J. Gaunt, C. C. C. Johansson, A. McNally and N. T. Vo, Drug Discov. Today, 2007, 12, 8–27
dc.relation.referencesY. R. Chi, Angew. Chemie Int. Ed., 2014, 53, 6858
dc.relation.referencesL. Dalko, P I; Moisan, Angew. Chem. Int., 2001, 40, 3726–3748
dc.relation.referencesP. I. Dalko and L. Moisan, Angew. Chemie Int. Ed., 2004, 43, 5138–5175
dc.relation.referencesJ. Seayad and B. List, Org. Biomol. Chem., 2005, 3, 719
dc.relation.referencesP. Melchiorre, M. Marigo, A. Carlone and G. Bartoli, Angew. Chemie - Int. Ed., 2008, 47, 6138–6171
dc.relation.referencesC. M. R. Volla, I. Atodiresei and M. Rueping, Chem. Rev., 2014, 114, 2390–2431
dc.relation.referencesC. S. Evans and L. O. Davis, Molecules, 2017, 23, 33
dc.relation.referencesG. J. Reyes-Rodríguez, N. M. Rezayee, A. Vidal-Albalat and K. A. Jørgensen, Chem. Rev., 2019, 119, 4221–4260
dc.relation.referencesB. List, Tetrahedron, 2002, 58, 5573–5590
dc.relation.referencesD. Almaşi, D. A. Alonso and C. Nájera, Tetrahedron: Asymmetry, 2007, 18, 299–365
dc.relation.referencesJ. L. Vicario, D. Badia, L. Carrillo and E. Reyes, Organocatalytic Enantioselective Conjugate Addition Reactions, Royal Society of Chemistry, Cambridge, 2010
dc.relation.referencesN. R. Bio, Synform, 2017, 142–144
dc.relation.referencesT. Poon, B. P. Mundy and T. W. Shattuck, J. Chem. Educ., 2002, 79, 264
dc.relation.referencesA. Michael, J. für Prakt. Chemie, 1887, 35, 349–356
dc.relation.referencesR. Rios and X. Companyó, in Comprehensive Enantioselective Organocatalysis, ed. P. I. Dalko, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013, pp. 975–1012
dc.relation.referencesS. Duce, I. Alonso, A. M. Lamsabhi, E. Rodrigo, S. Morales, J. L. García Ruano, A. Poveda, P. Mauleón and M. B. Cid, ACS Catal., 2018, 8, 22–34
dc.relation.referencesA. Erkkilä, I. Majander and P. M. Pihko, Chem. Rev., 2007, 107, 5416–5470
dc.relation.referencesY. Hayashi and N. Umekubo, Angew. Chemie Int. Ed., 2018, 57, 1958–1962
dc.relation.referencesIn Organocatalytic Enantioselective Conjugate Addition Reactions, Royal Society of Chemistry, Cambridge, 2010, pp. 62–111
dc.relation.referencesD. A. Alonso, S. Kitagaki, N. Utsumi and C. F. Barbas, Angew. Chemie Int. Ed., 2008, 47, 4588–4591
dc.relation.referencesJ. O. Guevara-Pulido, J. M. Andrés and R. Pedrosa, European J. Org. Chem., 2014, 2014, 8072–8076
dc.relation.referencesJ. O. Guevara-Pulido, J. M. Andrés and R. Pedrosa, RSC Adv., 2015, 5, 65975–65981
dc.relation.referencesH. J. Reich, Bordwell pKa Table (Acidity in DMSO), https://www.chem.wisc.edu/areas/reich/pkatable/index.htm
dc.relation.referencesE. D. Bergmann, D. Ginsburg and R. Pappo, in Organic Reactions, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011, pp. 179–556
dc.relation.referencesM. Shibasaki, H. Sasai and T. Arai, Angew. Chemie Int. Ed. English, 1997, 36, 1236–1256
dc.relation.referencesH. Brunner and B. Hammer, Angew. Chemie Int. Ed. English, 1984, 23, 312–313
dc.relation.referencesM. Watanabe, A. Ikagawa, H. Wang, K. Murata and T. Ikariya, J. Am. Chem. Soc., 2004, 126, 11148–11149
dc.relation.referencesM. Yamaguchi, T. Shiraishi and M. Hirama, Angew. Chemie Int. Ed. English, 1993, 32, 1176–1178
dc.relation.referencesK. Sakthivel, W. Notz, T. Bui and C. F. Barbas, J. Am. Chem. Soc., 2001, 123, 5260–5267
dc.relation.referencesB. List, Synlett, 2001, 2001, 1675–1686.
dc.relation.referencesB. List, P. Pojarliev and H. J. Martin, Org. Lett., 2001, 3, 2423–2425
dc.relation.referencesD. Enders and A. Seki, Synlett, 2002, 2002, 0026–0028
dc.relation.referencesS. Brandau, A. Landa, J. Franzén, M. Marigo and K. A. Jørgensen, Angew. Chemie Int. Ed., 2006, 45, 4305–4309
dc.relation.referencesM. Nielsen, D. Worgull, T. Zweifel, B. Gschwend, S. Bertelsen and K. A. Jørgensen, Chem. Commun., 2011, 47, 632–649
dc.relation.referencesB. Schoenenberger, A. Wszolek, R. Meier, H. Brundiek, M. Obkircher and R. Wohlgemuth, RSC Adv., 2017, 7, 48952–48957
dc.relation.referencesC. Guo, M. Saifuddin, T. Saravanan, M. Sharifi and G. J. Poelarends, ACS Catal., 2019, 9, 4369–4373
dc.relation.referencesD. Enders, M. R. M. Hüttl, C. Grondal and G. Raabe, Nature, 2006, 441, 861–863
dc.relation.referencesA. Carlone, M. Marigo, C. North, A. Landa and K. A. Jørgensen, Chem. Commun., 2006, 4928–4930
dc.relation.referencesS. Duce, M. Jorge, I. Alonso, J. L. G. Ruano and M. B. Cid, Org. Biomol. Chem., 2011, 9, 8253
dc.relation.referencesM. B. Cid, S. Duce, S. Morales, E. Rodrigo and J. L. G. Ruano, Org. Lett., 2010, 12, 3586–3589
dc.relation.referencesJ. Alemán, V. Marcos, L. Marzo and J. L. García Ruano, European J. Org. Chem., 2010, 2010, 4482–4491
dc.relation.referencesY. Hayashi, M. Toyoshima, H. Gotoh and H. Ishikawa, Org. Lett., 2009, 11, 45–48
dc.relation.referencesE. Alza, S. Sayalero, X. Cambeiro, R. Martín-Rapún, P. Miranda and M. Pericàs, Synlett, 2011, 2011, 464–468
dc.relation.referencesM. Rueping, E. Sugiono and E. Merino, Chem. - A Eur. J., 2008, 14, 6329–6332
dc.relation.referencesP. T. Franke, B. Richter and K. A. Jørgensen, Chem. - A Eur. J., 2008, 14, 6317–6321.
dc.relation.referencesJ. O. Guevara-Pulido, J. M. Andrés and R. Pedrosa, J. Org. Chem., 2014, 79, 8638–8644
dc.relation.referencesJ. O. Guevara-Pulido, J. M. Andrés, D. P. Ávila and R. Pedrosa, RSC Adv., 2016, 6, 30166–30169
dc.relation.referencesJ. G. Hernández and E. Juaristi, Chem. Commun., 2012, 48, 5396
dc.relation.referencesY. Hayashi, T. Yamada, M. Sato, S. Watanabe, E. Kwon, K. Iwasaki and S. Umemiya, Org. Lett., 2019, 21, 5183–5186
dc.relation.referencesC. Gharui and S. chandra Pan, Org. Biomol. Chem., 2019, 17, 5190–5211
dc.relation.referencesY. Gao, Q. Ren, W.-Y. Siau and J. Wang, Chem. Commun., 2011, 47, 5819
dc.relation.referencesR. Maity, C. Gharui, A. K. Sil and S. C. Pan, Org. Lett., 2017, 19, 662–665
dc.relation.referencesR. Maity and S. C. Pan, Org. Biomol. Chem., 2018, 16, 1598–1608
dc.relation.referencesK. Mondal and S. C. Pan, J. Org. Chem., 2018, 83, 5301–5312
dc.relation.referencesC. Gharui, D. Behera and S. C. Pan, Adv. Synth. Catal., 2018, 360, 4502–4508
dc.relation.referencesR. Lu, Y. Yan, J. Wang, Q. Du, S. Nie and M. Yan, J. Org. Chem., 2011, 76, 6230–6239
dc.relation.referencesS. Mauskopf, in Chiral Analysis, eds. K. W. Busch and M. A. Busch, Elsevier, Amsterdam, 2006, pp. 3–24
dc.relation.referencesP. Cintas, Angew. Chemie Int. Ed., 2007, 46, 4016–4024
dc.relation.referencesW. Thomson and B. Kelvin, in Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, Cambridge University Press, Cambridge, 2010, pp. 602–642
dc.relation.referencesP. Le Guennec, J. Math. Chem., 1998, 23, 429–439
dc.relation.referencesK. C. Nicolaou and S. A. Snyder, Classics in Total Synthesis II: More Targets, Strat-egies, Methods, Wiley-VCH ; Wiley] [distributor], Weinheim; Chichester, 2003
dc.relation.referencesK. C. Nicolaou and E. J. Sorensen, Classics in Total Synthesis: Targets, Strategies, Methods, Wiley-VCH ; Wiley] [distributor], 1996
dc.relation.referencesS. Hanessian, Total Synthesis of Natural Products: ‘Chiron’ Approach, Pergamon Press, 1983
dc.relation.referencesS. Hanessian, J. Franco and B. Larouche, Pure Appl. Chem., 1990, 62, 1887–1910
dc.relation.referencesS. Hanessian, Pure Appl. Chem., 1993, 65, 1189–1204
dc.relation.referencesK. Faber, Chem. - A Eur. J., 2001, 7, 5004–5010
dc.relation.referencesN. G. Anderson, Org. Process Res. Dev., 2005, 9, 800–813
dc.relation.referencesW. Marckwald, Berichte der Dtsch. Chem. Gesellschaft, 1904, 37, 349–354
dc.relation.referencesE. G. H. and M. R. David A, Asymmetric Synth. Essentials, 2007, 3–9
dc.relation.referencesJ. O. Guevara-Pulido, J. Caicedo, F. David, M. Vela and J. González, Rev. Fac. Ciencias Básicas, 2017, 13, 105–116
dc.relation.referencesB. M. Trost, Proc. Natl. Acad. Sci., 2004, 101, 5348–5355
dc.relation.referencesJ. P. Perotti, Universidad Nacional de Litoral, 2012
dc.relation.referencesM. T. Reetz, J. Am. Chem. Soc., 2013, 135, 12480–12496
dc.relation.referencesR. N. Patel, Coord. Chem. Rev., 2008, 252, 659–701
dc.relation.referencesM. T. Reetz, J. Org. Chem., 2009, 74, 5767–5778
dc.relation.referencesM. T. Reetz, S. Wu, H. Zheng and S. Prasad, Pure Appl. Chem., 2010, 82, 1575–1584
dc.relation.referencesW. S. Knowles and M. J. Sabacky, Chem. Commun., 1968, 0, 1445
dc.relation.referencesW. S. Knowles, M. J. Sabacky and B. D. Vineyard, J. Chem. Soc. Chem. Commun., 1972, 10
dc.relation.referencesB. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman and D. J. Weinkauff, J. Am. Chem. Soc., 1977, 99, 5946–5952
dc.relation.referencesA. Pizzano and E. Carmona, An. la Real Soc. Española Química, 2001, 50–55
dc.relation.referencesA. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi and R. Noyori, J. Am. Chem. Soc., 1980, 102, 7932–7934
dc.relation.referencesS. Akutagawa, Appl. Catal. A Gen., 1995, 128, 171–207
dc.relation.referencesT. Ohta, H. Takaya, M. Kitamura, K. Nagai and R. Noyori, J. Org. Chem., 1987, 52, 3174–3176
dc.relation.referencesH. Takaya, T. Ohta, N. Sayo, H. Kumobayashi, S. Akutagawa, S. Inoue, I. Kasahara and R. Noyori, J. Am. Chem. Soc., 1987, 109, 1596–1597
dc.relation.referencesM. Kitamura, T. Ohkuma, S. Inoue, N. Sayo, H. Kumobayashi, S. Akutagawa, T. Ohta, H. Takaya and R. Noyori, J. Am. Chem. Soc., 1988, 110, 629–631
dc.relation.referencesT. Ohkuma, H. Ooka, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1995, 117, 10417–10418
dc.relation.referencesR. Noyori and S. Hashiguchi, Acc. Chem. Res., 1997, 30, 97–102
dc.relation.referencesR. Noyori and M. Kitamura, Angew. Chemie Int. Ed. English, 1991, 30, 49–69
dc.relation.referencesT. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974–5976
dc.relation.referencesY. Gao, J. M. Klunder, R. M. Hanson, H. Masamune, S. Y. Ko and K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765–5780
dc.relation.referencesH. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Chem. Rev., 1994, 94, 2483–2547
dc.relation.referencesY. M. A. Yamada, N. Yoshikawa, H. Sasai and M. Shibasaki, Angew. Chemie Int. Ed. English, 1997, 36, 1871–1873
dc.relation.referencesS. Matsunaga and M. Shibasaki, Bull. Chem. Soc. Jpn., 2008, 81, 60–75
dc.relation.referencesM. Shibasaki, M. Kanai, S. Matsunaga and N. Kumagai, Acc. Chem. Res., 2009, 42, 1117–27
dc.relation.referencesG. Bredig and P. S. Fiske, Biochem Zeits, 1912, 7–23
dc.relation.referencesÁ. R. Puente García, Universidad del País Vasco, 2011
dc.relation.referencesH. Pracejus, Justus Liebigs Ann. Chem., 1960, 634, 9–22
dc.relation.referencesZ. G. Hajos and D. R. Parrish, J. Org. Chem., 1974, 39, 1615–1621
dc.relation.referencesU. Eder, G. Sauer and R. Wiechert, Angew. Chemie Int. Ed. English, 1971, 10, 496–497
dc.relation.referencesZ. Wang, in Comprehensive Organic Name Reactions and Reagents, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010, pp. 1305–1309
dc.relation.referencesD. Yang, Y.-C. Yip, M.-W. Tang, M.-K. Wong, J.-H. Zheng and K.-K. Cheung, J. Am. Chem. Soc., 1996, 118, 491–492
dc.relation.referencesS. E. Denmark, Z. Wu, C. M. Crudden and H. Matsuhashi, J. Org. Chem., 1997, 62, 8288–8289.
dc.relation.referencesY. Tu, Z.-X. Wang and Y. Shi, J. Am. Chem. Soc., 1996, 118, 9806–9807
dc.relation.referencesM. S. Sigman and E. N. Jacobsen, J. Am. Chem. Soc., 1998, 120, 4901–4902
dc.relation.referencesE. J. Corey and M. J. Grogan, Org. Lett., 1999, 1, 157–160
dc.relation.referencesS. J. Miller, G. T. Copeland, N. Papaioannou, T. E. Horstmann and E. M. Ruel, J. Am. Chem. Soc., 1998, 120, 1629–1630
dc.relation.referencesB. List, R. A. Lerner and C. F. Barbas, J. Am. Chem. Soc., 2000, 122, 2395–2396
dc.relation.referencesK. A. Ahrendt, C. J. Borths and D. W. C. MacMillan, J. Am. Chem. Soc., 2000, 122, 4243–4244
dc.relation.referencesD. Seebach, A. K. Beck, D. M. Badine, M. Limbach, A. Eschenmoser, A. M. Treasurywala, R. Hobi, W. Prikoszovich and B. Linder, Helv. Chim. Acta, 2007, 90, 425–471
dc.relation.referencesK. S. Halskov, B. S. Donslund, B. M. Paz and K. A. Jørgensen, Acc. Chem. Res., 2016, 49, 974–986
dc.relation.referencesS. Mukherjee, J. W. Yang, S. Hoffmann and B. List, Chem. Rev., 2007, 107, 5471–5569
dc.relation.referencesK. L. Jensen, G. Dickmeiss, H. Jiang, Ł. Albrecht and K. A. Jørgensen, Acc. Chem. Res., 2012, 45, 248–264
dc.relation.referencesB. S. Donslund, T. K. Johansen, P. H. Poulsen, K. S. Halskov and K. A. Jørgensen, Angew. Chemie Int. Ed., 2015, 54, 13860–13874
dc.relation.referencesA. Vega-Peñaloza, S. Paria, M. Bonchio, L. Dell’Amico and X. Companyó, ACS Catal., 2019, 9, 6058–6072
dc.relation.referencesT. Chanda and J. C.-G. Zhao, Adv. Synth. Catal., 2018, 360, 2–79
dc.relation.referencesF. A. David Rodriguez, Universidad Distrital Francisco Jose de Caldas, 2017
dc.relation.referencesM. H. Haindl, M. B. Schmid, K. Zeitler and R. M. Gschwind, RSC Adv., 2012, 2, 5941
dc.relation.referencesM. P. Patil and R. B. Sunoj, Chem. - An Asian J., 2009, 4, 714–724
dc.relation.referencesA. Quintard and A. Alexakis, Chem. Commun., 2011, 47, 7212
dc.relation.referencesP. Chauhan, S. Mahajan and D. Enders, Acc. Chem. Res., 2017, 50, 2809–2821
dc.relation.referencesM. Cheng, University of Saskatchewan, 2013
dc.relation.referencesG. Rulli, K. Fredriksen, N. Duangdee, T. Bonge-Hansen, A. Berkessel and H. Gröger, Synthesis (Stuttg)., 2013, 45, 2512–2519
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalacidez
dc.subject.proposalacidity
dc.subject.proposalasymmetric organocatalysis
dc.subject.proposalorganocatálisis asimétrica
dc.subject.proposalreacciones domino
dc.subject.proposaldomino reactions
dc.subject.proposaladición de michael
dc.subject.proposaladdition michael
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit