Desarrollo de modelo para determinar el stock de carbono orgánico del suelo con base en reflectancia difusa. Caso: Carimagua – Meta
Author
Type
Trabajo de grado - Maestría
Document language
EspañolPublication Date
2020-11-11Metadata
Show full item recordSummary
El Stock de Carbono Orgánico del Suelo (SCOS) es un aspecto determinante para evaluar la calidad en los agroecosistemas, y a su vez cumple una función fundamental en la mitigación del cambio climático. Debido a esto, es ideal monitorear el SCOS a diferentes escalas espaciales y temporales, lo cual representa una inversión de recursos difícil de satisfacer. El objetivo de esta investigación fue desarrollar un modelo con base en espectroscopía de reflectancia difusa en Infrarrojo Cercano (NIR, por sus siglas en inglés) para estimar el SCOS en un Oxisol de Colombia. Mediante una red rígida de 70 puntos en 248 ha, fueron recolectadas 313 muestras de suelo en cinco profundidades definidas de 0-10, 10-20, 20-30, 30-40 y 40-50 cm. A cada muestra se le determinó el contenido de Carbono Orgánico del Suelo (COS), Densidad Aparente (DA), fracciones texturales y porosidades por medio de metodologías convencionales de laboratorio, así como también el cálculo del SCOS. Así mismo, fueron adquiridas firmas espectrales en el rango NIR de cada muestra de suelo que, junto con los datos medidos en laboratorio, se usaron para alimentar los modelos de estimación aplicando regresión de mínimos cuadrados parciales (PLSR). Se alcanzó un modelo de alta representatividad para la estimación de SCOS (R2 = 0,93, RMSE = 2,12 tC/ha, RPD = 3,69), lo cual se corroboró con la variabilidad espacial evaluada con splines de profundidad y superficies de interpolación geoestadística. La espectroscopía de reflectancia difusa en NIR mostró ser una alternativa viable para la estimación del SCOS. (Texto tomado de la fuente).Abstract
Soil Organic Carbon Stock (SOCS) is a determining factor to evaluate the quality of agroecosystems and at the same time, plays a fundamental role in mitigating climate change. This highlights the importance of monitoring SOCS at different spatial and temporal scales, which represents a high demand of resources. The aim of this research was to develop a model based on Near Infrared (NIR) diffuse reflectance spectroscopy to estimate the SOCS of a Colombian Oxisol. Using a rigid grid system of 70 points in 248 ha, 313 soil samples were collected at five defined depths of 0-10, 10-20, 20-30, 30-40 and 40-50 cm. Soil Organic Carbon (SOC), Bulk Density (BD), textural fractions and porosities were determined for each sample using conventional laboratory methodologies, as well as the SOCS calculation. Likewise, spectral signatures were acquired in the NIR range of each soil sample, and together with laboratory data, were used to build the estimation models applying Partial Least Squares Regression (PLSR). A highly representative model was obtained for the estimation of SOCS (R2 = 0.93, RMSE = 2.12 tC/ha, RPD = 3.69), which was corroborated with the spatial variability evaluated with depth splines and geostatistical interpolation surfaces. NIR diffuse reflectance spectroscopy proved to be a viable alternative for estimating SOCS.Keywords
Physical description
ilustraciones, gráficas, tablas
Collections
