Interpretación visual y digital de datos de sensores remotos para la identificación de deslizamientos rotacionales y traslacionales
Cargando...
Archivos
Autores
Pérez Moreno, Michael Alejandro
Tipo de contenido
Document language:
Español
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
Esta tesis presenta un método para la detección y ubicación de movimientos en masa al analizar su distribución, patrón y recurrencia. El método propuesto para la detección de movimientos en masa utiliza herramientas de la geomática buscando reducir tiempos y facilitar la creación de inventarios de movimientos en masa. En este estudio se realizó la identificación visual de rasgos pictórico - morfológicos en deslizamientos ya identificados, y su posterior uso para la definición de criterios de clasificación de deslizamientos en un método semiautomático de clasificación basado en objetos geográficos (GEOBIA). Se identificaron patrones cualitativos que identifican los rasgos pictórico – morfológicos de deslizamientos. Posteriormente se realizó la clasificación basada en objetos, generando la segmentación de la imagen seguido de la clasificación basada en objetos geográficos identificando las coberturas de la tierra y deslizamientos. A partir de los patrones cualitativos se refinaron los objetos clasificados como deslizamientos y se clasificaron mediante el uso de la curvatura del terreno en deslizamientos del subtipo traslacional o rotacional.
El resultado se validó en términos de área entre los polígonos clasificados como deslizamientos y de un inventario de movimientos en masa precedente. Se obtuvo que el área correctamente clasificada se situó entre un 60% a 50% y el área erróneamente clasificada fue entre el 25% a 15%. (Texto tomado de la fuente)
Abstract
The detection and location of mass movements allows to analyze their distribution, pattern
and recurrence. The creation of methods that use tools provided by Geomatics seeks to reduce times, facilitate the creation, production of inventories and mass movement maps; which
are the basic input for the generation of susceptibility maps. Computer advances allow the
use of tools for the semi-automatic location of objects in satellite images, although there
are several studies on the use of geographic information systems for the detection of these
natural events, in Colombia a methodology has not been implemented or studied efficient
and economical, which is an opportunity to further develop the implementation of geomatics
in the location of mass movements in large areas.
This project proposes the visual identification of pictorial-morphological features in already
identified landslides, and their subsequent use for the definition of landslide classification
criteria in a semi-automatic classification method based on geographic objects (GEOBIA).
This semi-automatic method identifies some types of landslides with the use of satellite imagery supported by an existing inventory of mass movements. The method was applied in (2)
two areas located in the rural part of the municipality of Villavicencio in the department of
Meta, using satellite multispectral images from the Sentinel 2 mission and a digital terrain
model (DTM) obtained from radar images of the Sentinel mission 1.
In a first step, qualitative patterns were identified that identify a pictorial-morphological
feature in landslides of an existing inventory of mass movements. For this, spectral criteria,
temporal criteria, spatial criteria and an area criterion were used. Subsequently, the classification based on objects was carried out, generating the segmentation of the image followed
by the classification based on geographical objects, identifying the land covers and landslides
located in the study area. Next, with the identified qualitative patterns, the use of parameters such as the normalized vegetation index (NDVI), the soil gloss index (S2 BI), contextual
data and the slope of the terrain was defined, which allowed to refine the objects. classified
as landslides obtained from GEOBIA. Once these polygons were refined with the curvature
of the terrain, they were classified into landslides of the translational and rotational subtype.
Finally, the result obtained was validated in terms of area (extension) between the polygons
classified as landslides and the pre-existing mass movement inventory data. It was obtained
that the correctly classified area was between 56.6 % and 51 % in the two study areas analyzed. Regarding the erroneously classified area, 17 % and 25 % were obtained. According to
the results obtained from this methodology, these allow an approximation of delimitation of
candidate areas for the presence of landslides in large areas.
Palabras clave propuestas
Descripción
ilustraciones, fotografías, gráficas, mapas, planos