Computational anatomy strategies for characterization of brain patterns associated with Alzheimer's disease
Archivos
Autores
Giraldo Franco, Diana Lorena
Director
Romero Castro, Eduardo
Sijbers, Jan
Jeurissen, Ben
Tipo de contenido
Trabajo de grado - Doctorado
Idioma del documento
InglésFecha de publicación
2022
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
La enfermedad de Alzheimer (EA) es una de las fallas sistemáticas del sistema nervioso más complejas que se conocen. Los síntomas clínicos de esta enfermedad neurodegenerativa son alteraciones de la cognición y el comportamiento que pueden conducir a la aparición de un síndrome de demencia. Los mecanismos de la enfermedad que conducen a la neurodegeneración y al deterioro cognitivo en la EA aún no se conocen bien, lo que dificulta la predicción de la evolución clínica de los pacientes en las primeras fases de la EA. Actualmente, ningún biomarcador o examen es suficiente para diagnosticar la EA y los instrumentos estándar existentes no son lo suficientemente sensibles para detectar cambios sutiles, predecir el curso clínico o reconocer presentaciones atípicas de EA. Esta tesis presenta dos estrategias de anatomía computacional destinadas a identificar y cuantificar los patrones de neurodegeneración asociados a diferentes etapas clínicas a lo largo del continuo de la EA utilizando dos modalidades diferentes de imágenes de resonancia magnética. Una tercera contribución consiste en una estrategia guiada por datos para desarrollar un conjunto de puntajes específicas por dominio que resultan útiles para estimar el riesgo y predecir la progresión del deterioro cognitivo leve a la demencia. La evaluación de estas estrategias con métodos de aprendizaje automático y de inferencia estadística demuestra el potencial de las herramientas cuantitativas propuestas para ayudar al manejo y el seguimiento clínico de los pacientes y podría utilizarse para mejorar la evaluación de posibles intervenciones que puedan modificar el curso de la enfermedad. (Texto tomado de la fuente)
Abstract
Alzheimer's disease (AD) is one of the most complex systematic malfunctions of the nervous system that are known. The clinical symptoms of this neurodegenerative disease are alterations in cognition and behaviour that can lead to the onset of a dementia syndrome. Disease mechanisms that lead to neurodegeneration and cognitive impairment in sporadic AD are not well understood yet, making it difficult to predict the clinical progression of patients at the early stages of the AD continuum. Currently, no single biomarker or exam is sufficient to diagnose AD and existing standard instruments are not sensitive enough to detect subtle changes, predict the clinical course, and recognize heterogeneous forms of AD. This thesis presents two computational anatomy strategies aiming to identify and quantify neurodegeneration patterns associated with different clinical stages along the AD continuum using two different modalities of magnetic resonance imaging. A third contribution consists of a data-driven strategy to develop a set of domain-specific scores that result useful to estimate the risk of and predict the progression from mild cognitive impairment to dementia. Evaluation of these strategies with machine-learning and statistical inference methods demonstrate the potential of the proposed quantitative tools to help patients' clinical management and monitoring and could be used to improve the evaluation of potential disease-modifying interventions.
Palabras clave
Neuroimaging ; Medical image processing ; Magnetic resonance imaging ; Cognitive impairment ; Neuroimágenes ; Procesamiento de imágenes médicas ; Imágenes de resonancia magnética ; Deterioro cognitivo ; Ziekte van Alzheimer ; Neurobeeldvorming ; Medische Beeldverwerking ; Magnetische Resonantie Beeldvorming ; Cognitieve Stoornis
Descripción Física/Lógica/Digital
ilustraciones, fotografías, graficas