Aplicación del método de elementos finitos en un problema de aeroelasticidad
dc.rights.license | Reconocimiento 4.0 Internacional |
dc.contributor.advisor | Galvis, Juan |
dc.contributor.author | Cubillos Ramirez, Rafael Ricardo |
dc.date.accessioned | 2022-11-09T20:10:20Z |
dc.date.available | 2022-11-09T20:10:20Z |
dc.date.issued | 2022-11-09 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/82675 |
dc.description | ilustraciones, gráficas |
dc.description.abstract | Este documento presenta la solución numérica que se obtiene de aplicar el método de elementos finitos al problema de aeroelasticidad, así como una descripción de los mismos y una breve explicación de la importancia de este tipo de análisis en la industria aeronáutica. El problema que se plantea consiste en el acople de un modelo de flujo que se describe a través de las ecuaciones de Navier Stokes, acoplado a un modelo estructural que simula el comportamiento de un perfil alar que puede rotar sobre su eje elástico y desplazarse en la dirección vertical. El código que se utilizó para resolver el problema de interacción de flujo y estructura se escribió en un software que se utiliza para resolver ecuaciones diferenciales parciales llamado FREEFEM ++. A través del software se pretende realizar una discretización de los dos modelos de manera simultanea, en tiempo y espacio, logrando obtener soluciones aproximadas. En el capítulo 4 se presentaran los resultados y el análisis de los mismos, los cuales son comparables con los obtenidos en el documento escrito por Svacek, Petr (Aplication of the finite element method in aeroelasticity). (Texto tomado de la fuente) |
dc.description.abstract | This document presents the numerical solution obtained by applying the finite element method to the aeroelasticity problem, as well as a description of them and a brief explanation of the importance of this type of analysis in the aeronautical industry. The problem that arises consists of the coupling of a flow model that is described through the Navier Stokes equations, coupled to a structural model that simulates the behavior of an airfoil that can rotate on its elastic axis and it move in the vertical direction. The code that was obtained to solve the flow and structure interaction problem was written in a software used to solve partial differential differences called FREEFEM ++. Through the software, it is intended to perform a discretization of the two models simultaneously, in time and space, obtaining approximate solutions. In Chapter 4 the results and their analysis will be presented, which are comparable with those obtained in the document written by Svacek, Petr (Aplication of the finite element method in aeroelasticity); see [17]. |
dc.format.extent | 86 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
dc.subject.ddc | 510 - Matemáticas |
dc.title | Aplicación del método de elementos finitos en un problema de aeroelasticidad |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemática Aplicada |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ciencias - Matemática Aplicada |
dc.description.researcharea | AEROELASTICIDAD |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Development of Advanced Computational Aeroelasticity Tools at Nasa Langley Reserch Center. Nasa Langley Research Center. |
dc.relation.references | Jhon D Anderson. Computational Fluid Dynamics. McGraw-Hill Education, 1995. |
dc.relation.references | Dietrich Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, 2007. |
dc.relation.references | PG Ciarlet and JL Lions. Numerical Methods for Fluids, Part 3, volume 9. Elsevier, 2003. |
dc.relation.references | Michel V Cook. Flight Dynamics Principles. Elseiver Aerospace Engineering Series, 2007. |
dc.relation.references | David Cox H.C Curtiss JR John W Edwards Kenneth C Hall David A Peters Robert Scanlan Emil Simiu Fernando Sisto y Tomas W Strganac Earl H. Dowell, Roert Clark. A Modern Course in Aeroelasticity,. Springer Science, Estados Unidos, 2005. |
dc.relation.references | Y.C. Fung. An introduction to the Theory of Aeroelasticity. Dover Publications, Estados Unidos, 1993. |
dc.relation.references | Juan Galvis. Introducao a aproximacao Numerica de Equacoes Diferenciais Parciais Via o M´etodo de Elementos Finitos. Impa, Col´oquio Brasileiro de Matemática, 2011. |
dc.relation.references | Juan Galvis and HENRIQUE M Versieux. An iterative domain decomposition method for free boundary problems with nonlinear flux jump constraint. Computational and Applied Mathematics, 34(3):1199–1217, 2015. |
dc.relation.references | Frederic Hecht. FreeFem Documentation. 2019. |
dc.relation.references | Andrew J. Wathen Howard C. Elman, David J. Silvester. Finite Elements and Fast Iterative Solvers : with Applications in Incompressible Fluid Dynamics. OUP Oxford, 2005, 2005. |
dc.relation.references | Wright y Jonathan E. Cooper Jan R. Introduction to Aeroelasticity and Loads. John Wiley and Sons, 2007. |
dc.relation.references | Claes Johnson. Numerical Solution of Partial Differetial Equations by the Finite Element Method. Cambridge University Press, 1987. |
dc.relation.references | David Stewart Kendall Atkinson, Weimin Han. Numerical solution of ordinary differential equations. A John Wiley Son, INC., Publication, 2005, 2009. |
dc.relation.references | Mark S. Understanding and Implementing the Finite Element Method. Society for industrial and applied Mathematics, Estados Unidos, 2006. |
dc.relation.references | Pavel Solín. Partial differential equations and the finite element method. John Wiley & Sons, 2005. |
dc.relation.references | Petr Svácek. Application of finite element method in aeroelasticity. Journal of computational and applied mathematics, 215(2):586–594, 2008. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.armarc | Finite Element Method - Data Processing |
dc.subject.lemb | Método de elementos finitos |
dc.subject.lemb | Finite element method |
dc.subject.lemb | Método de elementos finitos - procesamiento de datos |
dc.subject.proposal | Aeroelasticidad |
dc.subject.proposal | Elementos finitos |
dc.title.translated | Application of finite element method in an aeroelastic problem |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
oaire.awardtitle | APLICACIÓN DEL MÉTODO DE ELEMENTOS FINITOS EN UN PROBLEMA DE AEROELASTICIDAD |
dcterms.audience.professionaldevelopment | Estudiantes |
Files in this item
This item appears in the following Collection(s)
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit