Asignación de cupo de crédito rotativo aplicada a nuevos clientes de una fintech colombiana
Type
Trabajo de grado - Maestría
Document language
EspañolPublication Date
2023Metadata
Show full item recordSummary
La asignación de cupos de crédito es uno de los grandes problemas a los que se enfrenta la industria financiera en Colombia actualmente. Esta tesis propone un nuevo modelo de asignación de cupos de crédito mediante la extracción de información financiera relevante de los registros históricos de solicitudes de crédito y estrategias de aprendizaje de máquina. En particular, se propone estimar directamente el segmento de cupo de crédito a partir de información económica, sociodemográfica y de riesgo crediticio de los clientes, en contraste con modelos previos que abordan el problema en dos pasos: 1) estimando la probabilidad de incumplimiento, y seguidamente, 2) el cupo de crédito con optimización. La información para ajustar los modelos de aprendizaje es extraída de históricos de aprobaciones de créditos realizadas por expertos. Seguidamente, modelos de clasificación multiclase son entrenados y comparados para resolver la tarea de asignación directa de cupos de crédito en segmentos. El modelo fue evaluado en datos crediticios de una entidad financiera colombiana en la tarea de asignación de cupos en microcréditos. Los resultados sugieren que el modelo propuesto supera los desempeños en asignación respecto a modelos lineales del estado del arte y presenta bajos niveles de sesgo. Se espera que este modelo de asignación de cupo pueda ser utilizado para la automatización de los procesos de originación de microcréditos, generando un impacto positivo en el acceso a los servicios financieros. (Texto tomado de la fuente)Abstract
Currently, the allocation of credit quotas is one of the major problems facing the financial industry in Colombia. Therefore, this dissertation proposes a new credit quota allocation model by extracting relevant financial information from historical credit application records and machine learning strategies. Indeed, it is suggested to directly estimate the credit quota segment from customers' economic, sociodemographic, and credit risk information, in contrast to previous models that tackle the problem in two steps: firstly, 1) by estimating the probability of default, and secondly, 2) by optimizing the credit quota. Thus, the information to fit the learning models is extracted from historical credit approvals by experts. Subsequently, multi-class classification models are trained and compared to solve the task of direct assignment credit quotas in segments. Finally, the model was evaluated in credit data from a Colombian financial institution in assigning microcredit quotas. The results suggest that the proposed model outperforms state-of-the-art linear models and presents low bias levels. Eventually, it is expected that this quota allocation model can be used to automate the microcredit origination processes, generating a positive impact on access to financial services.Keywords
Physical description
ilustraciones, graficas
Collections
