Finding out tumor microenvironment characteristics associated with the progression of ovarian cancer
Advisor
Type
Trabajo de grado - Maestría
Document language
InglésPublication Date
2024Metadata
Show full item recordAbstract
The tumor microenvironment (TME) encompasses the dynamic interactions between a tumor and surrounding tissues, playing a crucial role in cancer progression. Histological images provide valuable information about the characteristics of the TME. Computational pathology techniques have made significant advances in automating the identification and classification of these interactions; however, certain limitations still persist. The complexity and heterogeneity of the microenvironment make it difficult to identify and classify cellular interactions accurately. Additionally, large volumes of manually annotated data are required to train robust algorithms, and variability in sample staining can affect the consistency of results. Finally, the integration of histological data with other types of data remains a considerable technical and analytical challenge. In this study, we propose a novel approach to define the TME as the interaction zones between tumor, necrotic, and stroma tissues. These zones were classified using a Support Vector Machine (SVM) with an average classification accuracy of 80 %. To establish the relevance of the TME in ovarian cancer, we used its association with survival outcomes using Cox regression modeling. The cases were categorized into high and low-risk groups based on survival time. The results demonstrated a significant correlation using hand-crafted features extracted from the TME, the Cox regression exhibited a notable hazard ratio of 2, 59 (95 % CI: 1, 06 − 6, 3, p = 0,03), indicating a statistically significant impact between TME and survival rate. This methodology suggests that TME organization could serve as a predictive marker in serous carcinoma of the ovary, providing valuable insights into the role of the tumor microenvironment in disease development.Summary
El microambiente tumoral (TME) abarca las interacciones din´amicas entre un tumor y los tejidos circundantes, desempe˜nando un papel crucial en la progresi´on del c´ancer. Las im´agenes histol´ogicas proporcionan informaci´on valiosa sobre las caracter´ısticas del TME. Las t´ecnicas de patolog´ıa computacional han logrado avances significativos en la automatizaci´on de la identificaci´on y clasificaci´on de estas interacciones; sin embargo, a´un persisten ciertas limitaciones, como la complejidad y heterogeneidad del microambiente, lo que dificulta la identificaci´on y clasificaci´on de las interacciones celulares. Adem´as, se requiere de grandes vol´umenes de datos anotados manualmente para entrenar algoritmos robustos, y la variabilidad en la tinci´on de muestras puede afectar la consistencia de los resultados. Por ´ultimo, la integraci´on de datos histol´ogicos con otros tipos de datos sigue siendo un desaf´ıo t´ecnico y anal´ıtico considerable. En este estudio, proponemos un enfoque novedoso para definir el TME como las zonas de interacci´on entre los tejidos tumorales, necr´oticos y del estroma. Estas zonas se clasificaron utilizando una m´aquina de vectores de soporte (SVM) con una precisi´on de clasificaci´on promedio de 80 %. Para establecer la relevancia del TME en el c´ancer de ovario, utilizamos su asociaci´on con los resultados de supervivencia mediante la regresi´on de Cox. Los casos se clasificaron en grupos de alto y bajo riesgo seg´un el tiempo de supervivencia. Los resultados demostraron una correlaci´on significativa utilizando caracter´ısticas hechas a mano extra´ıdas del TME, la regresi´on de Cox mostr´o un ´ındice de riesgo notable de 2, 59 (95 % CI: 1, 06−6, 3, p = 0,03), lo que indica un impacto estad´ısticamente significativo entre el TME y la tasa de supervivencia. Esta metodolog´ıa sugiere que la organizaci´on TME podr´ıa servir como marcador predictivo en el carcinoma seroso de ovario, proporcionando informaci´on valiosa sobre el papel del microambiente tumoral en el desarrollo de la enfermedad (Texto tomado de la fuente).Keywords
Physical description
ilustraciones, diagramas
Collections
