Sobre la estabilidad de Lyapunov en conjuntos seccional-hiperbólicos

Cargando...
Miniatura

Document language:

Español

Fecha

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

Sean M una variedad diferenciable compacta y X : M → M un campo vectorial de clase C r, r ≥ 1, transversal hacia el borde M en caso de que ´este sea no vacío. Se denota por Xt el correspondiente flujo asociado a X. Un subconjunto no vacío Λ ⊆ M es invariante para el campo X si Xt(Λ) = Λ para todo t ≥ 0. Dado x ∈ M, el conjunto α(x) está conformado por los puntos de acumulación de la ´orbita negativa de x y se le llama alfa-límite de p, mientras que el omega-límite de x, ω(x), es el conjunto de puntos de acumulación de la órbita positiva de x. Una órbita cerrada del campo X es una singularidad ó una órbita periódica. Además, si Λ ⊆ M es un subconjunto no vacío, compacto e invariante; se dice que Λ es transitivo si Λ = ω(p) para algún p ∈ Λ, se dice que Λ es attracting si existe una vecindad U de Λ tal que Xt(U) ⊆ U para todo t ≥ 0 y Λ = T t≥0 Xt(U); por otra parte, se dice que Λ es Lyapunov estable si para cada vecindad U de Λ existe una vecindad W de Λ, de tal manera que la ´orbita positiva de cualquier punto en W queda contenida en U. Por lo tanto, todo conjunto attracting es Lyapunov estable. Un subconjunto compacto e invariante H de M se llama hiperbólico, si presenta una descomposición dominada, continua y DXt-invariante del fibrado tangente, en tres subfibrados uno de los cuales es contractor (subfibrado estable), otro expansor (subfibrado inestable) y el último es generado por la dirección del campo X. Existe una familia de subconjuntos compactos e invariantes, conocidos como seccional-hiperbólicos, que generalizan a los conjuntos hiperbólicos, en el sentido que contiene a estos últimos, junto con otros atractores extraños que aunque presentan propiedades similares no resultan hiperbólicos. Los conjuntos seccionales-hiperbólicos se definen por presentar una descomposición dominada, continua y DXt-invariante del fibrado tangente, en dos subfibrados uno de los cuales es contractor y en el otro subfibrado el área de los paralelogramos crece exponencialmente (subfibrado central). Cuando la dimensión del subfibrado central es igual a dos, se dice que el conjunto seccional-hiperbólico es de codimensión uno. Un conjunto seccional-hiperbólico Λ puede contener singularidades acumuladas por órbitas de puntos regulares en Λ, situación que no puede ocurrir en conjuntos hiperbólicos sin romper la continuidad en la descomposición del fibrado tangente, en estos casos la singularidad recibe el nombre de Lorenz-like. Un enfoque sobre el que se ha desarrollado la dinámica seccional-hiperbólica consiste en extrapolar propiedades conocidas para conjuntos hiperbólicos. Una de tales propiedades es que todo conjunto hiperbólico Lyapunov estable H es attracting y, en consecuencia, los dos conceptos coinciden en este caso [AP10]. En este orden de ideas, la pregunta ¿todo conjunto seccional-hiperbólico Lyapunov estable Λ necesariamente es attracting? aún no se ha resuelto completamente, sin embargo, Bautista y Sánchez [BS20] obtuvieron un avance parcial para el caso particular en que Λ es transitivo, de codimensión uno y contiene una única singularidad Lorenz-like, la cual es de tipo frontera. En este trabajo se presentan los fundamentos teóricos para conjuntos seccional-hiperbólicos, que son necesarios para demostrar el resultado de Bautista y Sánchez; entre los cuales se destacan los conceptos de sección transversal asociada a una singularidad Lorenz-like, sección transversal completa, la Propiedad PΣ [BM08], [San20] (que permite caracterizar conjuntos omega-límite que son órbitas cerradas) y finalmente, el Lema de Conexión Seccional-Hiperbólico [BM10], [BSS] que se establece para conjuntos de codimensión uno, que contengan al conjunto inestable de cada uno de sus puntos (Texto tomado de la fuente).

Abstract

Let M be a compact differentiable manifold and X : M → M a C r vector field, r ≥ 1, transversal to the boundary of M in case it is non-empty. The associated flow of X is denoted by Xt . A non-empty subset Λ ⊆ M is invariant for the vector field X if Xt(Λ) = Λ for all t ≥ 0. Given x ∈ M, the set α(x) consists of the accumulation points of the negative orbit of x and is called the alpha-limit of x, while the omega-limit of x, ω(x), is the set of accumulation points of the positive orbit of x. A closed orbit of the vector field X is either a singularity or a periodic orbit. Furthermore, if Λ ⊆ M is a non-empty, compact, and invariant subset, it is said that Λ is transitive if Λ = ω(p) for some p ∈ Λ; it is said that Λ is attracting if there exists a neighborhood U of Λ such that Xt(U) ⊆ U for all t ≥ 0 and Λ = T t≥0 Xt(U); on the other hand, it is said that Λ is Lyapunov stable if for every neighborhood U of Λ there exists a neighborhood W of Λ such that the positive orbit of any point in W remains contained in U. Therefore, every attracting set is Lyapunov stable. A compact and invariant subset H of M is called hyperbolic if it admits a dominated, continuous, and DXt-invariant splitting of the tangent bundle into three subbundles, one of which is contracting (stable subbundle), another expanding (unstable subbundle), and the last one is generated by the direction of the vector field X. There exists a family of compact and invariant subsets, known as sectional-hyperbolic, which generalize hyperbolic sets in the sense that they include the latter along with other strange attractors that, although exhibiting similar properties, are not hyperbolic. Sectional-hyperbolic sets are defined by admitting a dominated, continuous, and DXt-invariant splitting of the tangent bundle into two subbundles, one of which is contracting, and in the other the area of parallelograms grows exponentially (central subbundle). When the dimension of the central subbundle is equal to two, the sectional-hyperbolic set is said to be of codimension one. A sectional-hyperbolic set Λ may contain ingularities accumulated by the orbits of regular points in Λ, a situation that cannot occur in hyperbolic sets without breaking the continuity of the tangent bundle splitting; in such cases, the singularity is called Lorenz-like. An approach on which sectional-hyperbolic dynamics has been developed consists in extrapolating known properties for hyperbolic sets. One such property is that every Lyapunov stable hyperbolic set H is attracting and, consequently, both concepts coincide in this case [AP10]. In this order of ideas, the question: is every Lyapunov stable sectional-hyperbolic set Λ necessarily attracting? has not yet been completely resolved, however, Bautista and Sánchez [BS20] obtained a partial advance for the particular case in which Λ is transitive, of codimension one, and contains a unique Lorenz-like singularity, which is of boundary type. In this work, the theoretical foundations for sectional-hyperbolic sets are presented, which are necessary to prove the result of Bautista and Sánchez; among which the following concepts stand out: transversal section associated to a Lorenz-like singularity, complete transversal section, Property PΣ [BM08], [San20] (which allows to characterize omega-limit sets that are closed orbits), and finally, the Sectional-Hyperbolic Connecting Lemma [BM10], [BSS], which is established for codimension one sets that contain the unstable set of each of their points.

Descripción

Palabras clave

Citación