Deteccion de parvovirus porcinos en centros multiplicadores internos (CMIs) de granjas porcinas tecnificadas de Colombia

dc.contributor.advisorJaime Correa, Jairospa
dc.contributor.authorFranco Rodríguez, Julián Camilospa
dc.contributor.researchgroupCentro de Investigación en Infectología e Inmunología Veterinaria (Ci3V)spa
dc.coverage.countryColombiaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000050
dc.date.accessioned2025-08-20T23:43:57Z
dc.date.available2025-08-20T23:43:57Z
dc.date.issued2025
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLas enfermedades virales ocasionan pérdidas en la producción porcina. Los parvovirus porcinos (PPVs) incluyen al patogénico PPV1 y a siete nuevas especies (PPV2 al PPV8) consideradas como posibles etiologías de enfermedad. Por otra parte, en los centros multiplicadores internos (CMIs) se crían y desarrollan las cerdas de reemplazo en donde las infecciones repercuten en el rendimiento reproductivo. El presente estudio estableció la presencia de los PPVs (PPV1 al PPV8); coinfecciones entre estos con PRRSV y con circovirus porcinos; y anticuerpos (Acs) anti-PPV1 en tres CMIs de Colombia. Se colectaron sueros, fluidos orales y materia fecal de tres grupos etarios dentro de cada CMI. Los resultados establecieron que PPV1 fue el más prevalente en suero (29%), seguido de PPV5 (10%), PPV4 (8%), PPV3 (5%), y PPV2 y PPV7 (0.3% cada uno). En fluido oral, PPV1 se detectó en el 47%, mientras que las prevalencias de PPV3, PPV4, PPV5 y PPV7 oscilaron entre el 3% y el 8%. En materia fecal, PPV1 predominó (49.3%), y los demás estuvieron por debajo del 10%. La coinfección más frecuente fue PCV2/PPV1, representando el 26%. Los resultados entre los tres CMIs fueron disimiles tanto para las prevalencias de los PPVs como para las coinfecciones identificadas. Las secuencias de PPV5 y PPV4 obtenidas mostraron alta identidad (>99%) con otras secuencias colombianas y chinas. Los Acs anti-PPV1 fueron disimiles entre los CMIs aunque hubo PPV1-DNA que indicaría la circulación de variantes. En conclusión, los nuevos PPVs circulan en los CMIs, aunque en menor proporción que en otras fases de la producción. Se recomienda ejecutar más estudios estableciendo su efecto sobre el rendimiento reproductivo de las cerdas de reemplazo. (Texto tomado de la fuente).spa
dc.description.abstractViral diseases cause losses in pig production. Porcine parvoviruses (PPVs) include the pathogenic PPV1, and seven new species (PPV2 to PPV8) are considered possible disease etiologies. On the other hand, replacement sows are raised and developed in gilt developing units (GDU) where infections impact reproductive performance. The present study established the presence of PPVs (PPV1 to PPV8), coinfections between these with PRRSV and porcine circovirus, and anti-PPV1 antibodies (Abs) in three GDUs in Colombia. Serum, oral fluids, and stools were collected from three age groups within each GDU. The results established that PPV1 was the most prevalent in serum (29%), followed by PPV5 (10%), PPV4 (8%), PPV3 (5%), and PPV2 and PPV7 (0.3% each). In oral fluid, PPV1 was detected in 47%, while the prevalences of PPV3, PPV4, PPV5 and PPV7 ranged between 3% and 8%. In stools, PPV1 predominated (49.3%), and the others were below 10%. The most frequent coinfection was PCV2/PPV1, representing 26%. The results of the three GDUs were dissimilar in terms of both the prevalence of the PPVs and the identified coinfections. The sequences of PPV5 and PPV4 obtained showed a high identity (>99%) compared to other Colombian and Chinese sequences. The anti-PPV1 Abs were dissimilar between the GDUs, although there was PPV1-DNA that would indicate the circulation of variants. In conclusion, nPPVs circulate in the CMIs in a lower proportion than in other production phases. Further studies are recommended to establish its effect on the reproductive performance of replacement sows.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Salud Animal o Magíster en Producción Animalspa
dc.description.researchareaMicrobiología e inmunología veterinariaspa
dc.format.extentxviii, 187 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88421
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Salud Animalspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animalspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAdlhoch, C., Kaiser, M., Ellerbrok, H., & Pauli, G. (2010). High prevalence of porcine Hokovirus in German wild boar populations. Virology journal, 7, 1-4.spa
dc.relation.referencesAfolabi, K. O., Iweriebor, B. C., Obi, L. C., & Okoh, A. I. (2019). Prevalence of porcine parvoviruses in some South African swine herds with background of porcine circovirus type 2 infection. Acta Tropica, 190, 37-44.spa
dc.relation.referencesAllan, G. M., Mc Neilly, F., Meehan, B. M., Kennedy, S., Mackie, D. P., Ellis, J. A., ... & Charreyre, C. E. (1999). Isolation and characterisation of circoviruses from pigs with wasting syndromes in Spain, Denmark and Northern Ireland. Veterinary microbiology, 66(2), 115-123.spa
dc.relation.referencesAlmario-Leiva, G., Suarez-Mesa, R., Uribe-García, F., & Rondón-Barragán, I. (2020). Detection and characterization of porcine circovirus type 2 (PCV2) circulating in pigs of the departments of Tolima and Huila, Colombia).spa
dc.relation.referencesAmoroso, M. G., Cerutti, F., D’Alessio, N., Lucibelli, M. G., Cerrone, A., Acutis, P. L., ... & Peletto, S. (2019). First identification of porcine parvovirus 3 in a wild boar in Italy by viral metagenomics–Short communication. Acta Veterinaria Hungarica, 67(1), 135-139.spa
dc.relation.referencesArruda, A. G., Poljak, Z., Friendship, R., Carpenter, J., & Hand, K. (2015). Descriptive analysis and spatial epidemiology of porcine reproductive and respiratory syndrome (PRRS) for swine sites participating in area regional control and elimination programs from 3 regions of Ontario. Canadian Journal of Veterinary Research, 79(4), 268-278spa
dc.relation.referencesBalka, G., Podgórska, K., Brar, M. S., Bálint, Á., Cadar, D., Celer, V., ... & Stadejek, T. (2018). Genetic diversity of PRRSV 1 in Central Eastern Europe in 1994–2014: origin and evolution of the virus in the region. Scientific Reports, 8(1), 7811.spa
dc.relation.referencesBaron, T., Albina, E., Leforban, Y., Madec, F., Guilmoto, H., Duran, J. P., & Vannier, P. (1992). Report on the first outbreaks of the porcine reproductive and respiratory syndrome (PRRS) in France. Diagnosis and viral isolation. In Annales de recherches vétérinaires (Vol. 23, No. 2, pp. 161-166).spa
dc.relation.referencesBera, B. C., Choudhary, M., Anand, T., Virmani, N., Sundaram, K., Choudhary, B., & Tripathi, B. N. (2020). Detection and genetic characterization of porcine circovirus 3 (PCV3) in pigs in India. Transboundary and Emerging Diseases, 67(3), 1062-1067.spa
dc.relation.referencesBisimwa, P. N., Wasso, D. S., Bantuzeko, F., Aksanti, C. B., Tonui, R., Birindwa, A. B., & Bisimwa, E. B. (2021). First investigation on the presence of porcine parvovirus type 3 in domestic pig farms without reproductive failure in the Democratic Republic of Congo. Veterinary and Animal Science, 13, 100187spa
dc.relation.referencesBlomström, A. L., Ståhl, K., Masembe, C., Okoth, E., Okurut, A. R., Atmnedi, P., ... & Berg, M. (2012). Viral metagenomic analysis of bushpigs (Potamochoerus larvatus) in Uganda identifies novel variants of Porcine parvovirus 4 and Torque teno sus virus 1 and 2. Virology journal, 9, 1-7spa
dc.relation.referencesBlomström, A. L., Ye, X., Fossum, C., Wallgren, P., & Berg, M. (2018). Characterisation of the virome of tonsils from conventional pigs and from specific pathogen-free pigs. Viruses, 10(7), 382.spa
dc.relation.referencesBoisvert, M., Fernandes, S., & Tijssen, P. (2010). Multiple pathways involved in porcine parvovirus cellular entry and trafficking toward the nucleus. Journal of virology, 84(15), 7782-7792.spa
dc.relation.referencesBorah, D., Hazarika, R., Hazarika, G., Saikia, D. P., Mili, P., Bappu, H. P., ... & George, S. Porcine Circovirus Diseases: Current Insights and Future Strategies for Effective Control, with a Focus on Porcine Circovirus 2 (PCV2).spa
dc.relation.referencesBuddaert, W., Van Reeth, K., & Pensaert, M. (1998). In vivo and in vitro interferon (IFN) studies with the porcine reproductive and respiratory syndrome virus (PRRSV). Coronaviruses and Arteriviruses, 461-467.spa
dc.relation.referencesBurrell, C. J., Howard, C. R., & Murphy, F. A. (2016). Fenner and White's medical virology. Academic Press.spa
dc.relation.referencesCalzada-Nova, G., Schnitzlein, W. M., Husmann, R. J., & Zuckermann, F. A. (2011). North American porcine reproductive and respiratory syndrome viruses inhibit type I interferon production by plasmacytoid dendritic cells. Journal of virology, 85(6), 2703-2713.spa
dc.relation.referencesCampos, F. S., Kluge, M., Franco, A. C., Giongo, A., Valdez, F. P., Saddi, T. M., ... & Roehe, P. M. (2016). Complete genome sequence of porcine parvovirus 2 recovered from swine sera. Genome announcements, 4(1), 10-1128.spa
dc.relation.referencesCao, S., Liu, J., Ding, G., Shao, Q., Wang, B., Li, Y., ... & Xiao, Y. (2020). The tail domain of PRRSV NSP2 plays a key role in aggrephagy by interacting with 14-3-3ε. Veterinary research, 51, 1-11.spa
dc.relation.referencesCharerntantanakul, W. (2012). Porcine reproductive and respiratory syndrome virus vaccines: Immunogenicity, efficacy and safety aspects. World journal of virology, 1(1), 23.spa
dc.relation.referencesChen, D., Huang, Y., Guo, Y., Wang, L., Zhang, Y., Zhou, L., ... & Yang, H. (2022). Prevalence and evolution analysis of porcine circovirus 3 in China from 2018 to 2022. Animals, 12(12), 1588.spa
dc.relation.referencesChen, D., Zhang, L., & Xu, S. (2023). Pathogenicity and immune modulation of porcine circovirus 3. Frontiers in Veterinary Science, 10, 1280177.spa
dc.relation.referencesChen, N., Huang, Y., Ye, M., Li, S., Xiao, Y., Cui, B., & Zhu, J. (2019). Co-infection status of classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circoviruses (PCV2 and PCV3) in eight regions of China from 2016 to 2018. Infection, genetics and evolution, 68, 127-135.spa
dc.relation.referencesCheung, A. K. (2012). Porcine circovirus: transcription and DNA replication. Virus research, 164(1-2), 46-53spa
dc.relation.referencesCheung, A. K., Lager, K. M., Kohutyuk, O. I., Vincent, A. L., Henry, S. C., Baker, R. B., ... & Dunham, A. G. (2007). Detection of two porcine circovirus type 2 genotypic groups in United States swine herds. Archives of virology, 152, 1035-1044.spa
dc.relation.referencesCheung, A. K., Wu, G., Wang, D., Bayles, D. O., Lager, K. M., & Vincent, A. L. (2010). Identification and molecular cloning of a novel porcine parvovirus. Archives of virology, 155(5), 801-806.spa
dc.relation.referencesChoi, C., & Chae, C. (2000). Distribution of porcine parvovirus in porcine circovirus 2-infected pigs with postweaning multisystemic wasting syndrome as shown by in-situ hybridization. Journal of Comparative Pathology, 123(4), 302-305.spa
dc.relation.referencesChoi, Y. K., Goyal, S. M., & Joo, H. S. (2003). Retrospective analysis of etiologic agents associated with respiratory diseases in pigs. The Canadian veterinary journal, 44(9), 735.spa
dc.relation.referencesChung, H. C., Nguyen, V. G., Park, Y. H., & Park, B. K. (2021). Genotyping of PCV3 based on reassembled viral gene sequences. Veterinary Medicine and Science, 7(2), 474-482.spa
dc.relation.referencesCorrea-Fiz, F., Franzo, G., Llorens, A., Huerta, E., Sibila, M., Kekarainen, T., & Segalés, J. (2020). Porcine circovirus 2 (PCV2) population study in experimentally infected pigs developing PCV2-systemic disease or a subclinical infection. Scientific reports, 10(1), 17747.spa
dc.relation.referencesCotmore, S. F., & Tattersall, P. (2014). Parvoviruses: small does not mean simple. Annu Rev Virol, 1(1), 517-37.spa
dc.relation.referencesCságola, A., Lőrincz, M., Cadar, D., Tombácz, K., Biksi, I., & Tuboly, T. (2012). Detection, prevalence and analysis of emerging porcine parvovirus infections. Archives of virology, 157, 1003-1010.spa
dc.relation.referencesCui, J., Fan, J., Gerber, P. F., Biernacka, K., Stadejek, T., Xiao, C. T., & Opriessnig, T. (2017). First identification of porcine parvovirus 6 in Poland. Virus Genes, 53(1), 100-104.spa
dc.relation.referencesDa Silva, M. S., Budaszewski, R. F., Weber, M. N., Cibulski, S. P., Paim, W. P., Mósena, A. C. S., ... & Canal, C. W. (2020). Liver virome of healthy pigs reveals diverse small ssDNA viral genomes. Infection, Genetics and Evolution, 81, 104203.spa
dc.relation.referencesDa Silva, M. S., Budaszewski, R. F., Weber, M. N., Cibulski, S. P., Paim, W. P., Mósena, A. C. S., ... & Canal, C. W. (2020). Liver virome of healthy pigs reveals diverse small ssDNA viral genomes. Infection, Genetics and Evolution, 81, 104203.spa
dc.relation.referencesDal Santo, A. C., Cezario, K. C., Bennemann, P. E., Machado, S. A., & Martins, M. (2020). Full-genome sequences of porcine circovirus 3 (PCV3) and high prevalence in mummified fetuses from commercial farms in Brazil. Microbial Pathogenesis, 141, 104027.spa
dc.relation.referencesDarwich, L., Díaz, I., & Mateu, E. (2010). Certainties, doubts and hypotheses in porcine reproductive and respiratory syndrome virus immunobiology. Virus research, 154(1-2), 123-132.spa
dc.relation.referencesde Castro, A. M. M. G., Bersano, J. G., Feijó, V. A., Ogata, R. A., Nara, J. M., de Oliveira, J. E. F., ... & Baldisseri, F. A. (2018). Intermittent elimination of Porcine Parvovirus 4 (PPV4) in naturally infected swine semen: first report. Semina: Ciências Agrárias, 39(5), 2281-2285.spa
dc.relation.referencesDei Giudici, S., Mura, L., Bonelli, P., Ferretti, L., Hawko, S., Franzoni, G., ... & Oggiano, A. (2024). First Molecular Characterisation of Porcine Parvovirus 7 (PPV7) in Italy. Viruses, 16(6), 932.spa
dc.relation.referencesDrolet, R., Larochelle, R., Morin, M., Delisle, B., & Magar, R. (2003). Detection rates of porcine reproductive and respiratory syndrome virus, porcine circovirus type 2, and swine influenza virus in porcine proliferative and necrotizing pneumonia. Veterinary pathology, 40(2), 143-148.spa
dc.relation.referencesEddicks, M., Gründl, J., Seifert, A., Eddicks, L., Reese, S., Tabeling, R., ... & Fux, R. (2023). Examination on the Occurrence of Coinfections in Diagnostic Transmittals in Cases of Stillbirth, Mummification, Embryonic Death, and Infertility (SMEDI) Syndrome in Germany. Microorganisms, 11(7), 1675.spa
dc.relation.referencesEllis, J., Hassard, L., Clark, E., Harding, J., Allan, G., Willson, P., ... & Haines, D. (1998). Isolation of circovirus from lesions of pigs with postweaning multisystemic wasting syndrome. The Canadian veterinary journal, 39(1), 44.spa
dc.relation.referencesFaccini, S., Barbieri, I., Gilioli, A., Sala, G., Gibelli, L. R., Moreno, A., ... & Nigrelli, A. (2017). Detection and genetic characterization of Porcine circovirus type 3 in Italy. Transboundary and Emerging Diseases, 64(6), 1661-1664.spa
dc.relation.referencesFan, J., Cui, J., Gerber, P. F., Biernacka, K., Stadejek, T., & Opriessnig, T. (2016). First genome sequences of porcine parvovirus 5 strains identified in polish pigs. Genome announcements, 4(5), 10-1128.spa
dc.relation.referencesFaustini, G., Tucciarone, C. M., Franzo, G., Donneschi, A., Boniotti, M. B., Alborali, G. L., & Drigo, M. (2024). Molecular Survey on Porcine Parvoviruses (PPV1-7) and Their Association with Major Pathogens in Reproductive Failure Outbreaks in Northern Italy. Viruses, 16(1), 157.spa
dc.relation.referencesFehér, E., Jakab, F., & Bányai, K. (2023). Mechanisms of circovirus immunosuppression and pathogenesis with a focus on porcine circovirus 2: a review. Veterinary Quarterly, 43(1), 1-18.spa
dc.relation.referencesFeng, H., Blanco, G., Segalés, J., & Sibila, M. (2014). Can Porcine circovirus type 2 (PCV2) infection be eradicated by mass vaccination?. Veterinary microbiology, 172(1-2), 92-99.spa
dc.relation.referencesFranzo, G., Cortey, M., Segalés, J., Hughes, J., & Drigo, M. (2016). Phylodynamic analysis of porcine circovirus type 2 reveals global waves of emerging genotypes and the circulation of recombinant forms. Molecular phylogenetics and evolution, 100, 269-280.spa
dc.relation.referencesFranzo, G., Zerbo, H. L., Ouoba, B. L., Dji-Tombo, A. D., Kindo, M. G., Sawadogo, R., ... & Dundon, W. G. (2023). A phylogeographic analysis of porcine parvovirus 1 in Africa. Viruses, 15(1), 207.spa
dc.relation.referencesGalindo-Barboza, A. J., Rivera-Benítez, J. F., De la Luz-Armendáriz, J., Sánchez-Betancourt, J. I., Hernández, J., Sauceda-Cerecer, S. G., & De Alba-Campos, J. E. (2024). Molecular Positivity of Porcine Circovirus Type 2 Associated with Production Practices on Farms in Jalisco, Mexico. Viruses, 16(10), 1633.spa
dc.relation.referencesGao, Y. Y., Wang, Q., Li, H. W., Zhang, S., Zhao, J., Bao, D., ... & Gao, F. S. (2024). Genomic composition and pathomechanisms of porcine circoviruses: A review. Virulence, 15(1), 2439524.spa
dc.relation.referencesGarcia‐Camacho, L. A., Vargas‐Ruiz, A., Marin‐Flamand, E., Ramírez‐Álvarez, H., & Brown, C. (2020). A retrospective study of DNA prevalence of porcine parvoviruses in Mexico and its relationship with porcine circovirus associated disease. Microbiology and Immunology, 64(5), 366-376.spa
dc.relation.referencesGava, D., Souza, C. K., Schaefer, R., Vincent, A. L., Cantão, M. E., Coldebella, A., & Ciacci-Zanella, J. R. (2015). A TaqMan-based real-time PCR for detection and quantification of porcine parvovirus 4. Journal of virological methods, 219, 14-17.spa
dc.relation.referencesGimeno, M., Darwich, L., Diaz, I., De La Torre, E., Pujols, J., Martín, M., ... & Mateu, E. (2011). Cytokine profiles and phenotype regulation of antigen presenting cells by genotype-I porcine reproductive and respiratory syndrome virus isolates. Veterinary research, 42, 1-10.spa
dc.relation.referencesGreiser-Wilke, I., Fiebig, K., Drexler, C., & grosse Beilage, E. (2010). Genetic diversity of Porcine reproductive and respiratory syndrome virus (PRRSV) in selected herds in a pig-dense region of North-Western Germany. Veterinary Microbiology, 143(2-4), 213-223.spa
dc.relation.referencesGuo, J., Hou, L., Zhou, J., Wang, D., Cui, Y., Feng, X., & Liu, J. (2022). Porcine circovirus type 2 vaccines: commercial application and research advances. Viruses, 14(9), 2005spa
dc.relation.referencesGuo, Y., Yan, G., Chen, S., Han, H., Li, J., Zhang, H., ... & Gong, W. (2022). Identification and genomic characterization of a novel porcine parvovirus in China. Frontiers in Veterinary Science, 9.spa
dc.relation.referencesGuo, Z., Ruan, H., Qiao, S., Deng, R., & Zhang, G. (2020). Co-infection status of porcine circoviruses (PCV2 and PCV3) and porcine epidemic diarrhea virus (PEDV) in pigs with watery diarrhea in Henan province, central China. Microbial pathogenesis, 142, 104047.spa
dc.relation.referencesGuzmán, M., Meléndez, R., Jiménez, C., Piche, M., Jiménez, E., León, B., ... & Romero, J. J. (2021). Analysis of ORF5 sequences of Porcine Reproductive and Respiratory Syndrome virus (PRRSV) circulating within swine farms in Costa Rica. BMC Veterinary Research, 17(1), 217.spa
dc.relation.referencesHan, M., & Yoo, D. (2014). Modulation of innate immune signaling by nonstructural protein 1 (nsp1) in the family Arteriviridae. Virus research, 194, 100-109.spa
dc.relation.referencesHanada, K., Suzuki, Y., Nakane, T., Hirose, O., & Gojobori, T. (2005). The origin and evolution of porcine reproductive and respiratory syndrome viruses. Molecular biology and evolution, 22(4), 1024-1031.spa
dc.relation.referencesHijikata, M., Abe, K., Win, K. M., Shimizu, Y. K., Keicho, N., & Yoshikura, H. (2001). Identification of new parvovirus DNA sequence in swine sera from Myanmar. Japanese journal of infectious diseases, 54(6), 244-245.spa
dc.relation.referencesHolgado-Martín, R., Arnal, J. L., Sibila, M., Franzo, G., Martín-Jurado, D., Risco, D., ... & Gómez, L. (2023). First detection of porcine circovirus 4 (PCV-4) in Europe. Virology journal, 20(1), 230.spa
dc.relation.referencesHuang, L., Zhai, S. L., Cheung, A. K., Zhang, H. B., Long, J. X., & Yuan, S. S. (2010). Detection of a novel porcine parvovirus, PPV4, in chinese swine herds. Virology journal, 7(1), 1-4.spa
dc.relation.referencesIgriczi, B., Dénes, L., Schönhardt, K., & Balka, G. (2024). First Report of Porcine Parvovirus 8 in Europe: Widespread Detection and Genetic Characterization on Commercial Pig Farms in Hungary and Slovakia.spa
dc.relation.referencesIn-Ohk Ouh, Seo Young Moon, Ju-Yeon Lee, Seong-In Lim, Yeun-Kyung Shin, Dongmi Kwak, Yoon-Hee Lee, Choi-Kyu Park. (2024). Prevalence of Porcine Parvovirus 1–6 Detected in South Korean Domestic Pigs. Archives of Microbiology and Immunology. 8 (2024): 397-409spa
dc.relation.referencesJager, M. C., Tomlinson, J. E., Lopez-Astacio, R. A., Parrish, C. R., & Van de Walle, G. R. (2021). Small but mighty: old and new parvoviruses of veterinary significance. Virology Journal, 18(1), 1-29.spa
dc.relation.referencesJinghui, F., Cui, J., Gerber, P. F., Kinga, B., Tomasz, S., & Tanja, O. (2016). First Genome Sequences of Porcine Parvovirus 5 Strains Identified in Polish Pigs. Microbiology Resource Announcements, 4(5).spa
dc.relation.referencesJóźwik, A., Manteufel, J., Selbitz, H. J., & Truyen, U. (2009). Vaccination against porcine parvovirus protects against disease, but does not prevent infection and virus shedding after challenge infection with a heterologous virus strain. Journal of general virology, 90(10), 2437-2441.spa
dc.relation.referencesKappes, M. A., & Faaberg, K. S. (2015). PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology, 479, 475-486.spa
dc.relation.referencesKaruppannan, A. K., & Opriessnig, T. (2017). Porcine circovirus type 2 (PCV2) vaccines in the context of current molecular epidemiology. Viruses, 9(5), 99.spa
dc.relation.referencesKeffaber, K. K. (1989). Reproductive failure of unknown etiology. Am. Assoc. Swine Pract. Newsl, 1, 1-9.spa
dc.relation.referencesKikuti M, Paploski IAD, Pamornchainavakul N, Picasso-Risso C, Schwartz M, Yeske P, et al. Emergence of a new lineage 1C variant of porcine reproductive and respiratory syndrome virus 2 in the United States. Front Vet Sci. 2021 Oct 18; 8:752938spa
dc.relation.referencesKikuti, M., Sanhueza, J., Vilalta, C., Paploski, I. A. D., VanderWaal, K., & Corzo, C. A. (2021). Porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) genetic diversity and occurrence of wild type and vaccine-like strains in the United States swine industry. PLoS One, 16(11), e0259531.spa
dc.relation.referencesKim, J., & Chae, C. (2002). Simultaneous detection of porcine circovirus 2 and porcine parvovirus in naturally and experimentally coinfected pigs by double in situ hybridization. Journal of veterinary diagnostic investigation, 14(3), 236-240.spa
dc.relation.referencesKim, S. C., Kim, J. H., Kim, J. Y., Park, G. S., Jeong, C. G., & Kim, W. I. (2022). Prevalence of porcine parvovirus 1 through 7 (PPV1-PPV7) and co-factor association with PCV2 and PRRSV in Korea. BMC veterinary research, 18(1), 133. Cerdos de engordespa
dc.relation.referencesKlaumann, F., Correa-Fiz, F., Franzo, G., Sibila, M., Núñez, J. I., & Segalés, J. (2018). Current knowledge on porcine circovirus 3 (PCV-3): a novel virus with a yet unknown impact on the swine industry. Frontiers in veterinary science, 5, 315.spa
dc.relation.referencesKo, J. H., Nguyen, P. L., Ahn, J. Y., Yoon, H., Min, J., Lee, L., ... & Kim, Y. H. (2015). The global research trend of porcine reproductive and respiratory syndrome virus (PRRSV): A mini review. Toxicology and Environmental Health Sciences, 7, 241-250.spa
dc.relation.referencesKomina, A., Anoyatbekova, A., Krasnikov, N., & Yuzhakov, A. (2024). Identification and in vitro characterization of a novel porcine parvovirus 6 in Russia. Veterinary Research Communications, 48(1), 417-425.spa
dc.relation.referencesKyutoku, F., Yokoyama, T., & Sugiura, K. (2022). Genetic diversity and epidemic types of Porcine Reproductive and Respiratory Syndrome (PRRS) Virus in Japan from 2018 to 2020. Epidemiologia, 3(2), 285-296.spa
dc.relation.referencesLaber, K. E., Whary, M. T., Bingel, S. A., Goodrich, J. A., Smith, A. C., & Swindle, M. M. (2002). Biology and diseases of swine. Laboratory Animal Medicine, 615.spa
dc.relation.referencesLadekjær-Mikkelsen, A. S., & Nielsen, J. (2002). A longitudinal study of cell-mediated immunity in pigs infected with porcine parvovirus. Viral Immunology, 15(2), 373-384.spa
dc.relation.referencesLagan Tregaskis, P., Staines, A., Gordon, A., Sheridan, P., McMenamy, M., Duffy, C., ... & Lemon, K. (2021). Co‐infection status of novel parvovirus’s (PPV2 to 4) with porcine circovirus 2 in porcine respiratory disease complex and porcine circovirus‐associated disease from 1997 to 2012. Transboundary and emerging diseases, 68(4), 1979-1994spa
dc.relation.referencesLee, J. Y., Kim, E. J., Cho, I. S., Lee, K. K., & Shin, Y. K. (2017). Complete genome sequences of porcine parvovirus 2 isolated from swine in the Republic of Korea. Genome announcements, 5(15), e01738-16.spa
dc.relation.referencesLee, M. A., Jayaramaiah, U., You, S. H., Shin, E. G., Song, S. M., Ju, L., ... & Lee, H. S. (2023). Molecular characterization of porcine reproductive and respiratory syndrome virus in Korea from 2018 to 2022. Pathogens, 12(6), 757spa
dc.relation.referencesLi, C., Fan, A., Liu, Z., Wang, G., Zhou, L., Zhang, H., ... & Zhang, Y. (2024). Prevalence, Time of Infection, and Diversity of Porcine Reproductive and Respiratory Syndrome Virus in China. Viruses, 16(5), 774.spa
dc.relation.referencesLi, C., Zhao, J., Li, W., Xu, H., Gong, B., Sun, Q., ... & Zhang, H. (2024). Prevalence and genetic evolution of porcine reproductive and respiratory syndrome virus in commercial fattening pig farms in China. Porcine Health Management, 10(1), 5.spa
dc.relation.referencesLi, J., Xiao, Y., Qiu, M., Li, X., Li, S., Lin, H., ... & Chen, N. (2021). A systematic investigation unveils high coinfection status of porcine parvovirus types 1 through 7 in China from 2016 to 2020. Microbiology spectrum, 9(3), e01294-21.spa
dc.relation.referencesLiu, S., Zhao, Y., Hu, Q., Lv, C., Zhang, C., Zhao, R., ... & Cui, S. (2011). A multiplex RT-PCR for rapid and simultaneous detection of porcine teschovirus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus in clinical specimens. Journal of virological methods, 172(1-2), 88-92.spa
dc.relation.referencesLópez-Lorenzo, G., Díaz-Cao, J. M., Prieto, A., López-Novo, C., López, C. M., Díaz, P., ... & Fernández, G. (2019). Environmental distribution of Porcine Circovirus Type 2 (PCV2) in swine herds with natural infection. Scientific Reports, 9(1), 14816.spa
dc.relation.referencesLópez-Lorenzo, G., Prieto, A., López-Novo, C., Díaz, P., Remesar, S., Morrondo, P., ... & Díaz-Cao, J. M. (2022). Presence of Porcine Circovirus Type 2 in the Environment of Farm Facilities without Pigs in Long Term-Vaccinated Farrow-to-Wean Farms. Animals, 12(24), 3515.spa
dc.relation.referencesLoving, C. L., Osorio, F. A., Murtaugh, M. P., & Zuckermann, F. A. (2015). Innate and adaptive immunity against porcine reproductive and respiratory syndrome virus. Veterinary immunology and immunopathology, 167(1-2), 1-14spa
dc.relation.referencesLunney, J. K., Fang, Y., Ladinig, A., Chen, N., Li, Y., Rowland, B., & Renukaradhya, G. J. (2016). Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune system. Annual review of animal biosciences, 4(1), 129-154.spa
dc.relation.referencesMai, J., Wang, D., Zou, Y., Zhang, S., Meng, C., Wang, A., & Wang, N. (2021). High Co-infection Status of Novel Porcine Parvovirus 7 with Porcine Circovirus 3 in Sows That Experienced Reproductive Failure. Frontiers in veterinary science, 8, 695553.spa
dc.relation.referencesMaity, H. K., Samanta, K., Deb, R., & Gupta, V. K. (2023). Revisiting porcine circovirus infection: recent insights and its significance in the piggery sector. Vaccines, 11(8), 1308.spa
dc.relation.referencesMak, C. K., Yang, C., Jeng, C. R., Pang, V. F., & Yeh, K. S. (2018). Reproductive failure associated with coinfection of porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus. The Canadian Veterinary Journal, 59(5), 525.spa
dc.relation.referencesMeléndez, R., Guzmán, M., Jiménez, C., Piche, M., Jiménez, E., León, B., ... & Romero-Zúñiga, J. J. (2021). Seroprevalence of porcine reproductive and respiratory syndrome virus on swine farms in a tropical country of the Middle Americas: the case of Costa Rica. Tropical animal health and production, 53(4), 441.spa
dc.relation.referencesMészáros, I., Olasz, F., Cságola, A., Tijssen, P., & Zádori, Z. (2017). Biology of porcine parvovirus (Ungulate parvovirus 1). Viruses, 9(12), 393.spa
dc.relation.referencesMietzsch, M., Pénzes, J. J., & Agbandje-McKenna, M. (2019). Twenty-five years of structural parvovirology. Viruses, 11(4), 362.spa
dc.relation.referencesMiłek, D., Woźniak, A., & Stadejek, T. (2018). The detection and genetic diversity of novel porcine parvovirus 7 (PPV7) on Polish pig farms. Research in veterinary science, 120, 28-32.spa
dc.relation.referencesMiłek, D., Woźniak, A., Guzowska, M., & Stadejek, T. (2019). Detection patterns of porcine parvovirus (PPV) and novel porcine parvoviruses 2 through 6 (PPV2–PPV6) in polish swine farms. Viruses, 11(5), 474.spa
dc.relation.referencesMiłek, D., Woźniak, A., Podgórska, K., & Stadejek, T. (2020). Do porcine parvoviruses 1 through 7 (PPV1-PPV7) have an impact on porcine circovirus type 2 (PCV2) viremia in pigs. Veterinary microbiology, 242, 108613.spa
dc.relation.referencesMolini, U., Coetzee, L. M., Hemberger, M. Y., Chiwome, B., Khaiseb, S., Dundon, W. G., & Franzo, G. (2024). First detection and molecular characterization of porcine reproductive and respiratory syndrome virus in Namibia, Africa. Frontiers in Veterinary Science, 10, 1323974.spa
dc.relation.referencesMolossi, F. A., de Cecco, B. S., de Almeida, B. A., Henker, L. C., da Silva, M. S., Mósena, A. C. S., ... & Driemeier, D. (2022). PCV3-associated reproductive failure in pig herds in Brazil. Tropical Animal Health and Production, 54(5), 293spa
dc.relation.referencesMontaner-Tarbes, S., Del Portillo, H. A., Montoya, M., & Fraile, L. (2019). Key gaps in the knowledge of the porcine respiratory reproductive syndrome virus (PRRSV). Frontiers in veterinary science, 6, 38.spa
dc.relation.referencesNeira, V., Brito, B., Mena, J., Culhane, M., Apel, M. I., Max, V., ... & Ortega, R. (2017). Epidemiological investigations of the introduction of porcine reproductive and respiratory syndrome virus in Chile, 2013-2015. PLoS One, 12(7), e0181569.spa
dc.relation.referencesNguyen, V. G., Do, H. Q., Huynh, T. M. L., Park, Y. H., Park, B. K., & Chung, H. C. (2022). Molecular‐based detection, genetic characterization and phylogenetic analysis of porcine circovirus 4 from Korean domestic swine farms. Transboundary and Emerging Diseases, 69(2), 538-548.spa
dc.relation.referencesNi, J., Qiao, C., Han, X., Han, T., Kang, W., Zi, Z., ... & Cai, X. (2014). Identification and genomic characterization of a novel porcine parvovirus (PPV6) in China. Virology journal, 11(1), 1-8.spa
dc.relation.referencesNovosel, D., Cadar, D., Tuboly, T., Jungic, A., Stadejek, T., Ait-Ali, T., & Cságola, A. (2018). Investigating porcine parvoviruses genogroup 2 infection using in situ polymerase chain reaction. BMC veterinary research, 14, 1-8.spa
dc.relation.referencesOba, P., Dione, M. M., Erume, J., Wieland, B., Mutisya, C., Ochieng, L., ... & Mwiine, F. N. (2022). Molecular characterization of porcine reproductive and respiratory syndrome virus (PRRSv) identified from slaughtered pigs in northern Uganda. BMC veterinary research, 18(1), 176.spa
dc.relation.referencesOpriessnig, T., Xiao, C. T., Gerber, P. F., & Halbur, P. G. (2014). Identification of recently described porcine parvoviruses in archived North American samples from 1996 and association with porcine circovirus associated disease. Veterinary microbiology, 173(1-2), 9-16.spa
dc.relation.referencesOpriessnig, T., Xiao, C. T., Halbur, P. G., Gerber, P. F., Matzinger, S. R., & Meng, X. J. (2017). A commercial porcine circovirus (PCV) type 2a-based vaccine reduces PCV2d viremia and shedding and prevents PCV2d transmission to naive pigs under experimental conditions. Vaccine, 35(2), 248-254.spa
dc.relation.referencesOravainen, J., Heinonen, M., Tast, A., Virolainen, J. V., & Peltoniemi, O. A. T. (2005). High porcine parvovirus antibodies in sow herds: prevalence and associated factors. Reproduction in domestic animals, 40(1), 57-61.spa
dc.relation.referencesOsemeke, O. H., Cezar, G. A., Paiva, R. C., Moraes, D. C., Machado, I. F., Magalhaes, E. S., ... & Linhares, D. C. (2023). A cross-sectional assessment of PRRSV nucleic acid detection by RT-qPCR in serum, ear-vein blood swabs, nasal swabs, and oral swabs from weaning-age pigs under field conditions. Frontiers in Veterinary Science, 10, 1200376spa
dc.relation.referencesOuh, I. O., Park, S., Lee, J. Y., Song, J. Y., Cho, I. S., Kim, H. R., & Park, C. K. (2018). First detection and genetic characterization of porcine parvovirus 7 from Korean domestic pig farms. Journal of Veterinary Science, 19(6), 855-857.spa
dc.relation.referencesPalinski, R. M., Mitra, N., & Hause, B. M. (2016). Discovery of a novel Parvovirinae virus, porcine parvovirus 7, by metagenomic sequencing of porcine rectal swabs. Virus genes, 52(4), 564-567spa
dc.relation.referencesPalinski, R., Piñeyro, P., Shang, P., Yuan, F., Guo, R., Fang, Y., ... & Hause, B. M. (2017). A novel porcine circovirus distantly related to known circoviruses is associated with porcine dermatitis and nephropathy syndrome and reproductive failure. Journal of virology, 91(1), 10-1128.spa
dc.relation.referencesPamornchainavakul, N., Kikuti, M., Paploski, I. A., Makau, D. N., Rovira, A., Corzo, C. A., & VanderWaal, K. (2022). Measuring how recombination re-shapes the evolutionary history of PRRSV-2: a genome-based phylodynamic analysis of the emergence of a novel PRRSV-2 variant. Frontiers in Veterinary Science, 9, 846904spa
dc.relation.referencesPaploski IAD, Corzo C, Rovira A, Murtaugh MP, Sanhueza JM, Vilalta C, et al. Temporal Dynamics of Co-circulating Lineages of Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol. 2019 Nov 1; 10:2486spa
dc.relation.referencesPark, G. N., Song, S., Cha, R. M., Choe, S., Shin, J., Kim, S. Y., ... & An, D. J. (2021). Genetic analysis of porcine parvoviruses detected in South Korean wild boars. Archives of Virology, 166(8), 2249-2254.spa
dc.relation.referencesPark, S. C., Kim, S., Jeong, T. W., Oh, B., Lim, C. W., & Kim, B. (2024). Prevalence of porcine circovirus type 2 and type 3 in slaughtered pigs and wild boars in Korea. Veterinary Medicine and Science, 10(1), e1329.spa
dc.relation.referencesParthiban, S., Sowndhraya, R. K. V., Raja, P., Parthiban, M., Ramesh, A., Raj, G. D., ... & Parveen, S. T. (2022). Molecular detection of porcine parvovirus 1–associated reproductive failure in southern India. Tropical Animal Health and Production, 54(3), 195.spa
dc.relation.referencesPaul, P. S., Mengeling, W. L., & Brown Jr, T. T. (1980). Effect of vaccinal and passive immunity on experimental infection of pigs with porcine parvovirus. American journal of veterinary research, 41(9), 1368-1371.spa
dc.relation.referencesPawar, S. S., Meshram, C. D., Singh, N. K., Saini, M., Mishra, B. P., & Gupta, P. K. (2014). Development of a SYBR Green I based duplex real-time PCR for detection of bovine herpesvirus-1 in semen. Journal of virological methods, 208, 6-10.spa
dc.relation.referencesPhan, T. G., Giannitti, F., Rossow, S., Marthaler, D., Knutson, T. P., Li, L., ... & Delwart, E. (2016). Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation. Virology journal, 13, 1-8.spa
dc.relation.referencesPitkin, A., Otake, S., & Dee, S. (2009). Biosecurity protocols for the prevention of spread of porcine reproductive and respiratory syndrome virus. Swine Disease Eradication Center, University of Minnesota College of Veterinary Medicine.spa
dc.relation.referencesQin, S., Ruan, W., Yue, H., Tang, C., Zhou, K., & Zhang, B. (2018). Viral communities associated with porcine respiratory disease complex in intensive commercial farms in Sichuan province, China. Scientific reports, 8(1), 13341.spa
dc.relation.referencesRajkhowa, T. K. (2020). Porcine Reproductive and Respiratory Syndrome Virus. Emerging and Transboundary Animal Viruses, 285-313.spa
dc.relation.referencesRajkhowa, T. K., Jagan Mohanarao, G., Gogoi, A., & Hauhnar, L. (2016). Indian porcine reproductive and respiratory syndrome virus bears discontinuous deletion of 30 amino acids in nonstructural protein 2. Virusdisease, 27(3), 287-293.spa
dc.relation.referencesRamírez, M., Bauermann, F. V., Navarro, D., Rojas, M., Manchego, A., Nelson, E. A., ... & Rivera, H. (2019). Detection of porcine reproductive and respiratory syndrome virus (PRRSV) 1‐7‐4‐type strains in Peru. Transboundary and Emerging Diseases, 66(3), 1107-1113.spa
dc.relation.referencesRenukaradhya, G. J., Alekseev, K., Jung, K., Fang, Y., & Saif, L. J. (2010). Porcine reproductive and respiratory syndrome virus–induced immunosuppression exacerbates the inflammatory response to porcine respiratory coronavirus in pigs. Viral immunology, 23(5), 457-466.spa
dc.relation.referencesRico, S., Molina, S., & Pabón, F. (2003). Detección y aislamiento del Parvovirus porcino en Medellín, Colombia. Revista Colombiana de Ciencias Pecuarias, 16(1), 40-45.spa
dc.relation.referencesRincón Monroy, M. A., Mogollón Galvis, J. D., & Ramírez-Nieto, G. C. (2015). Dynamics of porcine circovirus type 2 infection and neutralizing antibodies in subclinically infected gilts, and the effect on their litters. Revista Colombiana de Ciencias Pecuarias, 28(3), 218-228.spa
dc.relation.referencesRisser, J., Ackerman, M., Evelsizer, R., Wu, S., Kwon, B., & Hammer, J. M. (2021). Porcine reproductive and respiratory syndrome virus genetic variability a management and diagnostic dilemma. Virology Journal, 18, 1-12.spa
dc.relation.referencesRu-Jing, C. H. E. N., Ting-Ting, L. A. I., Qiu-Yong, C. H. E. N., Xue-Min, W. U., Yong-Liang, C. H. E., Shan, Y. A. N., ... & Lun-Jiang, Z. H. O. U. (2018). Genetic Characterization of Porcine Parvovirus 7 (PPV7) Isolates in Fujian, China. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 24(3).spa
dc.relation.referencesSaekhow, P., & Ikeda, H. (2015). Prevalence and genomic characterization of porcine parvoviruses detected in Chiangmai area of Thailand in 2011. Microbiology and immunology, 59(2), 82-88.spa
dc.relation.referencesSaekhow, P., Kishizuka, S., Sano, N., Mitsui, H., Akasaki, H., Mawatari, T., & Ikeda, H. (2015). Coincidental detection of genomes of porcine parvoviruses and porcine circovirus type 2 infecting pigs in Japan. Journal of Veterinary Medical Science, 77(12), 1581-1586.spa
dc.relation.referencesSaekhow, P., Mawatari, T., & Ikeda, H. (2014). Coexistence of multiple strains of porcine parvovirus 2 in pig farms. Microbiology and immunology, 58(7), 382-387.spa
dc.relation.referencesSaraiva, G. L., Vidigal, P. M. P., Assao, V. S., Fajardo, M. L. M., Loreto, A. N. S., Fietto, J. L. R., ... & Silva-Júnior, A. (2019). Retrospective detection and genetic characterization of porcine circovirus 3 (PCV3) strains identified between 2006 and 2007 in Brazil. Viruses, 11(3), 201.spa
dc.relation.referencesSchirtzinger, E. E., Suddith, A. W., Hause, B. M., & Hesse, R. A. (2015). First identification of porcine parvovirus 6 in North America by viral metagenomic sequencing of serum from pigs infected with porcine reproductive and respiratory syndrome virus. Virology journal, 12(1), 1-10.spa
dc.relation.referencesSerena, M. S., Cappuccio, J. A., Metz, G. E., Aspitia, C. G., Dibárbora, M., Calderón, M. G., & Echeverria, M. G. (2019). Detection and molecular characterization of porcine parvovirus in fetal tissues from sows without reproductive failure in Argentina. Heliyon, 5(11).spa
dc.relation.referencesShi, C., Liu, Y., Ding, Y., Zhang, Y., & Zhang, J. (2015). PRRSV receptors and their roles in virus infection. Archives of microbiology, 197, 503-512.spa
dc.relation.referencesShi, M., Lam, T. T. Y., Hon, C. C., Murtaugh, M. P., Davies, P. R., Hui, R. K. H., ... & Leung, F. C. C. (2010). Phylogeny-based evolutionary, demographical, and geographical dissection of North American type 2 porcine reproductive and respiratory syndrome viruses. Journal of virology, 84(17), 8700-8711.spa
dc.relation.referencesSilva, R. R. D., Silva, D. F. D., Silva, V. H. D., & Castro, A. M. D. (2024). Porcine circovirus 3: a new challenge to explore. Frontiers in Veterinary Science, 10, 1266499.spa
dc.relation.referencesSirisereewan, C., Nguyen, T. C., Piewbang, C., Jittimanee, S., Kedkovid, R., & Thanawongnuwech, R. (2023). Molecular detection and genetic characterization of porcine circovirus 4 (PCV4) in Thailand during 2019–2020. Scientific Reports, 13(1), 5168spa
dc.relation.referencesSliz, I., Vlasakova, M., Jackova, A., & Vilcek, S. (2015). Characterization of porcine parvovirus type 3 and porcine circovirus type 2 in wild boars (Sus scrofa) in Slovakia. Journal of wildlife diseases, 51(3), 703-711.spa
dc.relation.referencesSnijder, E. J., & Meulenberg, J. J. (1998). The molecular biology of arteriviruses. Journal of general virology, 79(5), 961-980.spa
dc.relation.referencesSoares, R. M., Cortez, A., Heinemann, M. B., Sakamoto, S. M., Martins, V. G., Bacci Jr, M., ... & Richtzenhain, L. J. (2003). Genetic variability of porcine parvovirus isolates revealed by analysis of partial sequences of the structural coding gene VP2. Journal of General Virology, 84(6), 1505-1515.spa
dc.relation.referencesStadejek, T., Stankevicius, A., Murtaugh, M. P., & Oleksiewicz, M. B. (2013). Molecular evolution of PRRSV in Europe: current state of play. Veterinary microbiology, 165(1-2), 21-28.spa
dc.relation.referencesStadejek, T., Woźniak, A., Miłek, D., & Biernacka, K. (2017). First detection of porcine circovirus type 3 on commercial pig farms in Poland. Transboundary and emerging diseases, 64(5), 1350-1353.spa
dc.relation.referencesStreck, A. F., & Truyen, U. (2020). Porcine parvovirus. Current Issues in Molecular Biology, 37(1), 33-46.spa
dc.relation.referencesStreck, A. F., Homeier, T., Foerster, T., Fischer, S., & Truyen, U. (2013). Analysis of porcine parvoviruses in tonsils and hearts from healthy pigs reveals high prevalence and genetic diversity in Germany. Archives of virology, 158, 1173-1180.spa
dc.relation.referencesSun, J., Huang, L., Wei, Y., Wang, Y., Chen, D., Du, W., ... & Liu, C. (2015). Prevalence of emerging porcine parvoviruses and their co-infections with porcine circovirus type 2 in China. Archives of virology, 160, 1339-1344.spa
dc.relation.referencesSun, Q., Xu, H., An, T., Cai, X., Tian, Z., & Zhang, H. (2023). Recent progress in studies of porcine reproductive and respiratory syndrome virus 1 in China. Viruses, 15(7), 1528. Sun, W., Du, Q., Han, Z., Bi, J., Lan, T., Wang, W., & Zheng, M. (2021). Detection and genetic characterization of porcine circovirus 4 (PCV4) in Guangxi, China. Gene, 773, 145384.spa
dc.relation.referencesTan, C. Y., Thanawongnuwech, R., Arshad, S. S., Hassan, L., Lee, C. Y., Low, S. E., ... & Ooi, P. T. (2023). First molecular detection of Porcine circovirus type 4 (PCV4) in Malaysia.spa
dc.relation.referencesTischer, I., Mields, W., Wolff, D., Vagt, M., & Griem, W. (1986). Studies on epidemiology and pathogenicity of porcine circovirus. Archives of virology, 91, 271-276.spa
dc.relation.referencesTizard, I. R. (2021). Porcine vaccines. Vaccines for veterinarians, 225.spa
dc.relation.referencesTonni, M., Romeo, C., Formenti, N., Boniotti, M. B., Guarneri, F., Colosio, L., ... & Alborali, G. L. (2023). PRRS Monitoring by Processing Fluids on Italian Swine Breeding Farms. Animals, 13(12), 1946.spa
dc.relation.referencesVan Reeth, K., Labarque, G., Nauwynck, H., & Pensaert, M. (1999). Differential production of proinflammatory cytokines in the pig lung during different respiratory virus infections: correlations with pathogenicity. Research in veterinary science, 67(1), 47-52.spa
dc.relation.referencesVanderWaal, K., & Deen, J. (2018). Global trends in infectious diseases of swine. Proceedings of the National Academy of Sciences, 115(45), 11495-11500.spa
dc.relation.referencesVargas-Bermudez, D. S., & Jaime, J. (2024). The first report of porcine parvovirus 8 (PPV8) on the American continent is associated with pigs in Colombia with porcine respiratory disease. Archives of Virology, 169(9), 179.spa
dc.relation.referencesVargas-Bermúdez, D. S., Diaz, A., Polo, G., Mogollon, J. D., & Jaime, J. (2024a). Infection and Coinfection of Porcine-Selected Viruses (PPV1 to PPV8, PCV2 to PCV4, and PRRSV) in Gilts and Their Associations with Reproductive Performance. Veterinary Sciences, 11(5), 185.spa
dc.relation.referencesVargas-Bermudez, D. S., Gil-Silva, A. C., Naranjo-Ortíz, M. F., Mogollón, J. D., Gómez-Betancur, J. F., Estrada, J. F., ... & Jaime, J. (2024). Detection of PCV2d in Vaccinated Pigs in Colombia and Prediction of Vaccine T Cell Epitope Coverage against Circulating Strains Using EpiCC Analysis. Vaccines, 12(10), 1119spa
dc.relation.referencesVargas-Bermúdez, D. S., Mainenti, M., Naranjo-Ortiz, M. F., Mogollon, J. D., Piñeyro, P., & Jaime, J. (2024). First Report of Porcine Parvovirus 2 (PPV2) in Pigs from Colombia Associated with Porcine Reproductive Failure (PRF) and Porcine Respiratory Disease Complex (PRDC). Transboundary and Emerging Diseases, 2024(1), 1471536.spa
dc.relation.referencesVargas-Bermudez, D. S., Mogollón, J. D., & Jaime, J. (2022). The Prevalence and Genetic Diversity of PCV3 and PCV2 in Colombia and PCV4 Survey during 2015–2016 and 2018–2019. Pathogens, 11(6), 633.).spa
dc.relation.referencesVargas-Bermúdez, D. S., Mogollón, J. D., Franco-Rodríguez, C., & Jaime, J. (2023). The novel porcine parvoviruses: Current state of knowledge and their possible implications in clinical syndromes in pigs. Viruses, 15(12), 2398.spa
dc.relation.referencesVargas-Bermudez, D. S., Prandi, B. A., Souza, U. J. B. D., Durães-Carvalho, R., Mogollón, J. D., Campos, F. S., ... & Jaime, J. (2024). Molecular Epidemiology and Phyloevolutionary Analysis of Porcine Parvoviruses (PPV1 through PPV7) Detected in Replacement Gilts from Colombia. International Journal of Molecular Sciences, 25(19), 10354.spa
dc.relation.referencesVargas-Bermúdez, D. S., Rendon-Marin, S., Ruiz-Saenz, J., Mogollón, D., & Jaime, J. (2021). The first report of porcine parvovirus 7 (PPV7) in Colombia demonstrates the presence of variants associated with modifications at the level of the VP2-capsid protein. PloS one, 16(12), e0258311.spa
dc.relation.referencesVargas-Bermúdez, D. S., Vargas-Pinto, M. A., Mogollón, J. D., & Jaime, J. (2021). Field infection of a gilt and its litter demonstrates vertical transmission and effect on reproductive failure caused by porcine circovirus type 3 (PCV3). BMC Veterinary Research, 17, 1-10).spa
dc.relation.referencesVargas‐Bermudez, D. S., Campos, F. S., Bonil, L., Mogollon, D., & Jaime, J. (2019). First detection of porcine circovirus type 3 in Colombia and the complete genome sequence demonstrates the circulation of PCV 3a1 and PCV 3a2. Veterinary Medicine and Science, 5(2), 182-188.).spa
dc.relation.referencesVereecke, N., Kvisgaard, L. K., Baele, G., Boone, C., Kunze, M., Larsen, L. E., ... & Nauwynck, H. (2022). Molecular epidemiology of Porcine Parvovirus Type 1 (PPV1) and the reactivity of vaccine-induced antisera against historical and current PPV1 strains. Virus Evolution, 8(1), veac053.spa
dc.relation.referencesVihinen-Ranta, M., Suikkanen, S., & Parrish, C. R. (2004). Pathways of cell infection by parvoviruses and adeno-associated viruses. Journal of virology, 78(13), 6709-6714.spa
dc.relation.referencesWang, C., Lee, F., Huang, T. S., Pan, C. H., Jong, M. H., & Chao, P. H. (2008). Genetic variation in open reading frame 5 gene of porcine reproductive and respiratory syndrome virus in Taiwan. Veterinary microbiology, 131(3-4), 339-347.spa
dc.relation.referencesWang, D., Mai, J., Yang, Y., & Wang, N. (2020). Porcine parvovirus 7: evolutionary dynamics and identification of epitopes toward vaccine design. Vaccines, 8(3), 359.spa
dc.relation.referencesWang, D., Mai, J., Yang, Y., Xiao, C. T., & Wang, N. (2022). Current knowledge on epidemiology and evolution of novel porcine circovirus 4. Veterinary Research, 53(1), 38.spa
dc.relation.referencesWang, F., Wei, Y., Zhu, C., Huang, X., Xu, Y., Yu, L., & Yu, X. (2010). Novel parvovirus sublineage in the family of Parvoviridae. Virus genes, 41, 305-308.spa
dc.relation.referencesWei, J., Li, Y., Cao, Y., Liu, Q., Yang, K., Song, X., ... & Tu, J. (2022). Rapid and visual detection of porcine parvovirus using an ERA-CRISPR/Cas12a system combined with lateral flow dipstick assay. Frontiers in Cellular and Infection Microbiology, 12, 879887.spa
dc.relation.referencesWen, S., Song, Y., Lv, X., Meng, X., Liu, K., Yang, J., ... & Zhai, J. (2022). Detection and Molecular Characterization of Porcine Parvovirus 7 in Eastern Inner Mongolia Autonomous Region, China. Frontiers in Veterinary Science, 9, 930123.spa
dc.relation.referencesWensvoort, G., Terpstra, C., Pol, J. M. A., Ter Laak, E. A., Bloemraad, M., De Kluyver, E. P., ... & Braamskamp, J. (1991). Mystery swine disease in The Netherlands: the isolation of Lelystad virus. Veterinary Quarterly, 13(3), 121-130.spa
dc.relation.referencesWongyanin, P., Buranapraditkun, S., Chokeshai-Usaha, K., Thanawonguwech, R., & Suradhat, S. (2010). Induction of inducible CD4+ CD25+ Foxp3+ regulatory T lymphocytes by porcine reproductive and respiratory syndrome virus (PRRSV). Veterinary immunology and immunopathology, 133(2-4), 170-182.spa
dc.relation.referencesWu, R., Wen, Y., Huang, X., Wen, X., Yan, Q., Huang, Y., ... & Cao, S. (2014). First complete genomic characterization of a porcine parvovirus 5 isolate from China. Archives of virology, 159(6), 1533-1536.spa
dc.relation.referencesXiao, C. T., Gerber, P. F., Giménez-Lirola, L. G., Halbur, P. G., & Opriessnig, T. (2013). Characterization of porcine parvovirus type 2 (PPV2) which is highly prevalent in the USA. Veterinary microbiology, 161(3-4), 325-330.spa
dc.relation.referencesXiao, C. T., Halbur, P. G., & Opriessnig, T. (2013). Complete genome sequence of a novel porcine parvovirus (PPV) provisionally designated PPV5. Genome announcements, 1(1), e00021-12.spa
dc.relation.referencesXing, X., Zhou, H., Tong, L., Chen, Y., Sun, Y., Wang, H., & Zhang, G. (2018). First identification of porcine parvovirus 7 in China. Archives of virology, 163(1), 209-213.spa
dc.relation.referencesXu, T., Chen, L., Huang, B. Z., Zhu, L., Sun, X. G., Lai, S. Y., ... & Xu, Z. W. (2023). The first dog-origin porcine circovirus type 4 complete genomic sequence have high homology with that of pig-derived strains. Frontiers in Microbiology, 14, 1121177.spa
dc.relation.referencesXu, T., Chen, X. M., Fu, Y., Ai, Y., Wang, D. M., Wei, Z. Y., ... & Chen, H. Y. (2022). Cross-species transmission of an emerging porcine circovirus (PCV4): First molecular detection and retrospective investigation in dairy cows. Veterinary Microbiology, 273, 109528.spa
dc.relation.referencesXu, T., Hou, C. Y., Zhang, Y. H., Li, H. X., Chen, X. M., Pan, J. J., & Chen, H. Y. (2022). Simultaneous detection and genetic characterization of porcine circovirus 2 and 4 in Henan province of China. Gene, 808, 145991.spa
dc.relation.referencesYang, Y., Xu, T., Wen, J., Yang, L., Lai, S., Sun, X., ... & Zhu, L. (2022). Prevalence and phylogenetic analysis of porcine circovirus type 2 (PCV2) and type 3 (PCV3) in the Southwest of China during 2020–2022. Frontiers in Veterinary Science, 9, 1042792.spa
dc.relation.referencesYe, X., Berg, M., Fossum, C., Wallgren, P., & Blomström, A. L. (2018). Detection and genetic characterisation of porcine circovirus 3 from pigs in Sweden. Virus genes, 54, 466-469.spa
dc.relation.referencesZeeuw, E. J. L., Leinecker, N., Herwig, V., Selbitz, H. J., & Truyen, U. (2007). Study of the virulence and cross-neutralization capability of recent porcine parvovirus field isolates and vaccine viruses in experimentally infected pregnant gilts. Journal of general virology, 88(2), 420-427.spa
dc.relation.referencesZhang, H. H., Hu, W. Q., Li, J. Y., Liu, T. N., Zhou, J. Y., Opriessnig, T., & Xiao, C. T. (2020). Novel circovirus species identified in farmed pigs designated as Porcine circovirus 4, Hunan province, China. Transboundary and emerging diseases, 67(3), 1057-1061.spa
dc.relation.referencesZhang, H., Luo, Q., He, Y., Zheng, Y., Sha, H., Li, G., ... & Zhao, M. (2023). Research Progress on the Development of Porcine Reproductive and Respiratory Syndrome Vaccines. Veterinary Sciences, 10(8), 491.spa
dc.relation.referencesZhao, D., Lin, H., Huang, Z., Zhou, Y., Qi, W., Cui, M., ... & Chen, N. (2024). Positivity Status and Molecular Characterization of Porcine Parvoviruses 1 Through 8 (PPV1-PPV8) from Slaughtered Pigs in China. Animals, 14(22), 3238.spa
dc.relation.referencesZhao, D., Yan, M. J., & Yu, X. L. (2020). Identification and characterization of porcine parvovirus in Hunan province, China.spa
dc.relation.referencesZhao, D., Yang, B., Yuan, X., Shen, C., Zhang, D., Shi, X., ... & Liu, X. (2021). Advanced research in porcine reproductive and respiratory syndrome virus co-infection with other pathogens in swine. Frontiers in Veterinary Science, 8, 699561.spa
dc.relation.referencesZhao, G., Zhang, L., Li, C., Zhao, J., Liu, N., Li, Y., ... & Liu, L. (2020). Identification of enterobacteria in viscera of pigs afflicted with porcine reproductive and respiratory syndrome and other viral co-infections. Microbial pathogenesis, 147, 104385.spa
dc.relation.referencesZhong, H., Li, X., Zhao, Z., An, C., Wan, P., Wu, M., ... & Qian, P. (2016). Genome sequences of the novel porcine parvovirus 3, identified in Guangxi province, China. Genome announcements, 4(2), e00036-16.spa
dc.relation.referencesZhou, H., Pan, Y., Liu, M., & Han, Z. (2020). Prevalence of porcine pseudorabies virus and its coinfection rate in Heilongjiang Province in China from 2013 to 2018. Viral Immunology, 33(8), 550-554.spa
dc.relation.referencesZimmermann, P., Ritzmann, M., Selbitz, H. J., Heinritzi, K., & Truyen, U. (2006). VP1 sequences of German porcine parvovirus isolates define two genetic lineages. Journal of general virology, 87(2), 295-301spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.agrovocParvovirus porcinospa
dc.subject.agrovocporcine parvoviruseng
dc.subject.agrovocZona de reproducciónspa
dc.subject.agrovocbreeding siteseng
dc.subject.agrovocEpidemiologíaspa
dc.subject.agrovocepidemiologyeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.ddc590 - Animales::599 - Mamíferosspa
dc.subject.proposalParvovirus porcionos (PPVs)spa
dc.subject.proposalNuevos parvovirus porcinos (nPPVs)spa
dc.subject.proposalPCV2spa
dc.subject.proposalPCV3spa
dc.subject.proposalPCV4spa
dc.subject.proposalPRRSVspa
dc.subject.proposalCMIspa
dc.subject.proposalCoinfeccionesspa
dc.subject.proposalPorcine parvoviruses (PPVs)eng
dc.subject.proposalNovel porcine parvoviruses (nPPVS)eng
dc.subject.proposalPorcine circoviruses (PCVs)eng
dc.subject.proposalPRRSVeng
dc.subject.proposalGilt development units (GDU)eng
dc.subject.proposalCo-infectionseng
dc.titleDeteccion de parvovirus porcinos en centros multiplicadores internos (CMIs) de granjas porcinas tecnificadas de Colombiaspa
dc.title.translatedDetection of novel porcine parvoviruses in gilt development units of technified pig farms in Colombiaeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameFacultad de Medicina Veterinaria y de Zootecnia de la Universidad Nacional de Colombia, Sede Bogotá (número de financiación Hermes 60845–2023), y mediante recursos del director de tesis

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
DETECCION DE PARVOVIRUS PORCINOS EN CENTROS MULTIPLICADORES INTERNOS (CMIs) DE GRANJAS PORCINAS TECNIFICADAS DE COLOMBIA
Tamaño:
5.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Salud y Producción Animal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: