Precipitación de carbonatos inducida microbiológicamente como alternativa para remediar entornos naturales contaminados con metales y metaloides tóxicos

dc.contributor.advisorDe Brito Brandão, Pedro Filipespa
dc.contributor.authorRuíz Oviedo, Cory Valeriaspa
dc.contributor.researchgroupGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente - GERMINAspa
dc.date.accessioned2020-08-27T15:13:11Zspa
dc.date.available2020-08-27T15:13:11Zspa
dc.date.issued2020-06-30spa
dc.description.abstractThis document shows in depth the scope and limitations of microbiologically induced calcium carbonate precipitation (MICP) in the remediation of environments contaminated with toxic metals (e.g.: Cd, Cr and Pb) and metalloids (As). MICP is based on the formation of calcium carbonate from microbial cells and biochemical activities. This process can be both biologically induced and biologically controlled, and depends on specific factors such as nucleation sites, the concentration of calcium, the concentration of dissolved inorganic carbon and pH. The most recent studies using MICP to immobilize toxic metals and metalloids in soils, have focused on isolating and evaluating both the ureolytic capacity of bacteria, as well as their resistance against toxic metals. Thus, the results obtained after applying MICP in the study matrixes reveal a significant decrease of bioavailable metals and metalloids. This indicates a good perspective for the MICP to be considered as a viable technology for field-scale applications.spa
dc.description.abstractEste documento, muestra de manera detallada, los alcances y limitaciones que tiene el método de precipitación de carbonato de calcio inducida microbiológicamente (MICP) en la remediación de ambientes contaminados con metales (ej.: Cd, Cr, y Pb) y metaloides (As) tóxicos. La MICP se fundamenta en la formación de carbonato de calcio, a partir de células microbianas y actividades bioquímicas. Este proceso puede ser tanto inducido biológicamente como controlado biológicamente, y depende de factores específicos como los sitios de nucleación, la concentración de calcio, la concentración de carbono inorgánico disuelto y el pH. Los estudios más recientes de inmovilización de metales y metaloides tóxicos por MICP en suelos, se han enfocado en aislar y evaluar tanto la capacidad ureolítica de las bacterias, como su resistencia frente a un metal tóxico. En ese sentido, los resultados obtenidos después de aplicar la MICP en la matriz de estudio revelan disminuciones significativas de metales y metaloides biodisponibles. Esto indica una buena perspectiva para que la MICP pueda considerarse como una tecnología viable para aplicaciones a escala de campospa
dc.description.additionalLínea de investigación: Microbiología Ambiental y Aplicadaspa
dc.description.degreelevelMaestríaspa
dc.format.extent122spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationRuíz,C.(2020) Precipitación de carbonatos inducida microbiológicamente como alternativa para remediar entornos naturales contaminados con metales y metaloides tóxicos (Tesis de maestría).Universidad Nacional de Colombia , Bogotá.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78261
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesAntonowicz, J., Andrzejak, R., Kochel, B., Lucinska, A., & Galary, D. (1996). PRA, ACE, MAO, FEP levels and interactions in humans exposed chronically to heavy metals. IN METAL IONS IN BIOLOGY AND MEDICINE INTERNATIONAL SYMPONSIUM 4, pp. 648-650).spa
dc.relation.referencesAlonso, D. L., Latorre, S., Castillo, E., & Brandão, P. F. (2014). Environmental occurrence of arsenic in Colombia: A review. Environmental Pollution, 186, 272-281.spa
dc.relation.referencesAchal, V., Mukherjee, A., Basu, P. C., & Reddy, M. S. (2009). Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. Journal of Industrial Microbiology & Biotechnology, 36(7), 981-988.spa
dc.relation.referencesAchal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37(10), 1601-1605.spa
dc.relation.referencesAchal, V., Pan, X., Fu, Q., & Zhang, D. (2012). Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201, 178-184.spa
dc.relation.referencesAchal, V., Pan, X., Zhang, D., & Fu, Q. L. (2012). Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. J Microbiol Biotechnol, 22(2), 244-247.spa
dc.relation.referencesAchal, V., Pan, X., Lee, D. J., Kumari, D., & Zhang, D. (2013). Remediation of Cr (VI) from chromium slag by biocementation. Chemosphere, 93(7), 1352-1358.spa
dc.relation.referencesAchal, V., & Pan, X. (2014). Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Applied Biochemistry and Biotechnology, 173(1), 307-317.spa
dc.relation.referencesAnbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus, 5(1), 1-26.spa
dc.relation.referencesArias, D., Cisternas, L. A., & Rivas, M. (2017). Biomineralization mediated by ureolytic bacteria applied to water treatment: A review. Crystals, 7(11), 345.spa
dc.relation.referencesAl Omari, M. M. H., Rashid, I. S., Qinna, N. A., Jaber, A. M., & Badwan, A. A. (2016). Calcium carbonate. In Profiles of drug substances, excipients and related methodology (Vol. 41, pp. 31-132). Academic Press.spa
dc.relation.referencesAksornchu, P., Prasertsan, P., & Sobhon, V. (2008). Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil. Songklanakarin Journal of Science & Technology, 30.spa
dc.relation.referencesAkocak, S., & Supuran, C. T. (2019). Activation of α-, β-, γ-δ-, ζ-and η-class of carbonic anhydrases with amines and amino acids: a review. Journal of enzyme inhibition and medicinal chemistry, 34(1), 1652-1659.spa
dc.relation.referencesAgency for Toxic Substance and Disease Registry. Toxicological Profile for Arsenic U.S. Department of Health and Humans Services, Public Health Service, Centers for Diseases Control, Atlanta, GA, 2003.spa
dc.relation.referencesBajraktari, D., Bauer, B., Kavrakovski, Z., & Zeneli, L. (2019). Environmental pollution and heavy metals accumulation in Salix alba L.(Fam. Salicaceae), along the river stream of Sitnica. Agriculturae Conspectus Scientificus, 84(1), 95-101.spa
dc.relation.referencesBayarjargal, L., Fruhner, C. J., Schrodt, N., & Winkler, B. (2018). CaCO3 phase diagram studied with Raman spectroscopy at pressures up to 50 GPa and high temperatures and DFT modeling. Physics of the Earth and Planetary Interiors, 281, 31-45.spa
dc.relation.referencesBazylinski, D. A., & Frankel, R. B. (2000a). Magnetic iron oxide and iron sulfide minerals within organisms. Biomineralization: From Biology to Biotechnology and Medical Application. Bäuerlein E (ed) Wiley-VCH, Weinheim, Germany, 25-46.spa
dc.relation.referencesBazylinski, D. A., & Frankel, R. B. (2000). Biologically-controlled mineralization of magnetic iron minerals by magnetotactic bacteria. In: Environmental Microbe-Metal Interactions Editor: Derek R. Lovley. ASM Press, Washington D.C.spa
dc.relation.referencesBaumgartner, L. K., Reid, R. P., Dupraz, C., Decho, A. W., Buckley, D. H., Spear, J. R., ... & Visscher, P. T. (2006). Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sedimentary Geology, 185(3-4), 131-145.spa
dc.relation.referencesBaskar, S., Baskar, R., Mauclaire, L., & McKenzie, J. A. (2006). Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India. Current Science, 58-64.spa
dc.relation.referencesBenzerara, K., Miot, J., Morin, G., Ona-Nguema, G., Skouri-Panet, F., & Ferard, C. (2011). Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geoscience, 343(2-3), 160-167.spa
dc.relation.referencesBetancourth, D., Gómez, J. F., Mosquera, J. C., & Mejía, L. T. (2010). Análisis por difracción de rayos x de rocas provenientes de región esmeraldífera. Scientia et Technica, 1(44), 409-413.spa
dc.relation.referencesBhuiyan, M. A. H., Suruvi, N. I., Dampare, S. B., Islam, M. A., Quraishi, S. B., Ganyaglo, S., & Suzuki, S. (2011). Investigation of the possible sources of heavy metal contamination in lagoon and canal water in the tannery industrial area in Dhaka, Bangladesh. Environmental Monitoring and Assessment, 175(1-4), 633-649.spa
dc.relation.referencesBoyd, R. S. (2010). Heavy metal pollutants and chemical ecology: exploring new frontiers. Journal of Chemical Ecology, 36(1), 46-58.spa
dc.relation.referencesBundschuh, J., Litter, M. I., Parvez, F., Román-Ross, G., Nicolli, H. B., Jean, J. S., & Cuevas, A. G. (2012). One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2-35.spa
dc.relation.referencesCappuyns, V., Van Herreweghe, S., Swennen, R., Ottenburgs, R., & Deckers, J. (2002). Arsenic pollution at the industrial site of Reppel-Bocholt (north Belgium). Science of the Total Environment, 295(1-3), 217-240.spa
dc.relation.referencesCastanier, S., Le Metayer-Levrel, G., & Perthuisot, J. P. (2000). Bacterial roles in the precipitation of carbonate minerals. In Microbial sediments (pp. 32-39). Springer, Berlin, Heidelberg.spa
dc.relation.referencesCapasso, C., & Supuran, C. T. (2013). Anti-infective carbonic anhydrase inhibitors: a patent and literature review. Expert Opinion on Therapeutic Patents, 23(6), 693-704.spa
dc.relation.referencesCapasso, C., & Supuran, C. T. (2015). An overview of the alpha-, beta-and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria?. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(2), 325-332.spa
dc.relation.referencesCastro-Alonso, M. J., Montañez-Hernández, L. E., Sanchez-Muñoz, M. A., Franco, M., Rubi, M., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially Induced Calcium carbonate Precipitation (MICP) and its potential in Bioconcrete: Microbiological and molecular concepts. Frontiers in Materials, 6, 126.spa
dc.relation.referencesChakhmouradian, A. R., Reguir, E. P., Zaitsev, A. N., Couëslan, C., Xu, C., Kynický, J., ... & Yang, P. (2017). Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos, 274, 188-213.spa
dc.relation.referencesChan, C. M., Wu, J., Li, J. X., & Cheung, Y. K. (2002). Polypropylene/calcium carbonate nanocomposites. Polymer, 43(10), 2981-2992.spa
dc.relation.referencesChander, K. P. C. B., Brookes, P. C., & Harding, S. A. (1995). Microbial biomass dynamics following addition of metal-enriched sewage sludges to a sandy loam. Soil Biology and Biochemistry, 27(11), 1409-1421.spa
dc.relation.referencesChen, A., Luo, Z., & Akbulut, M. (2011). Ionic liquid mediated auto-templating assembly of CaCO3–chitosan hybrid nanoboxes and nanoframes. Chemical Communications, 47(8), 2312-2314.spa
dc.relation.referencesChen, X., & Achal, V. (2019). Biostimulation of carbonate precipitation process in soil for copper immobilization. Journal of Hazardous Materials, 368, 705-713.spa
dc.relation.referencesCullity, B. D. (1978). Answers to problems: elements of X-ray diffraction. Addison-Wesley Publishing Company.spa
dc.relation.referencesDas, N., Vimala, R., & Karthika, P. (2008). Biosorption of heavy metals–an overview. Indian Journal of Biotechnology, 7, 159-169.spa
dc.relation.referencesDhami, N. K., Quirin, M. E. C., & Mukherjee, A. (2017). Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves. Ecological Engineering, 103, 106-117.spa
dc.relation.referencesDhami, N. K., Reddy, M. S., & Mukherjee, A. (2014). Application of calcifying bacteria for remediation of stones and cultural heritages. Frontiers in Microbiology, 5, 304.spa
dc.relation.referencesDel Prete, S., Vullo, D., De Luca, V., Supuran, C. T., & Capasso, C. (2014). Biochemical characterization of the δ-carbonic anhydrase from the marine diatom Thalassiosira weissflogii, TweCA. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(6), 906-911.spa
dc.relation.referencesDi Fiore, A., Alterio, V., Monti, S. M., De Simone, G., & D'Ambrosio, K. (2015). Thermostable carbonic anhydrases in biotechnological applications. International Journal of Molecular Sciences, 16(7), 15456-15480.spa
dc.relation.referencesDizaj, S. M., Barzegar-Jalali, M., Zarrintan, M. H., Adibkia, K., & Lotfipour, F. (2015). Calcium carbonate nanoparticles; potential in bone and tooth disorders. Pharm. Sci, 20, 175-182.spa
dc.relation.referencesDrasch, G., Wanghofer, E., & Roider, G. (1997). Are blood, urine, hair, and muscle valid biomonitors for the internal burden of men with the heavy metals mercury, lead and cadmium: an investigation on 150 deceased. Trace Elements and Electrolytes, 14(3), 116-123.spa
dc.relation.referencesDomenech, X. & Peral, J. (2008). Química Ambiental de Sistemas Terrestres. Editorial Reverté. Barcelona. P. 239.spa
dc.relation.referencesDickens, B., & Brown, W. E. (1970). Crystal structure of calcium carbonate hexahydrate at about-120. deg. Inorganic Chemistry, 9(3), 480-486.spa
dc.relation.referencesDuffus, J. H. (2002). " Heavy metals" a meaningless term?(IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793-807.spa
dc.relation.referencesEdling, C., Kling, H., Flodin, U., & Axelson, O. (1986). Cancer mortality among leather tanners. Occupational and Environmental Medicine, 43(7), 494-496.spa
dc.relation.referencesElzinga, E. J., & Reeder, R. J. (2002). X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: Implications for site-specific metal incorporation preferences during calcite crystal growth. Geochimica et Cosmochimica Acta, 66(22), 3943-3954.spa
dc.relation.referencesErşan, Y. Ç., Verbruggen, H., De Graeve, I., Verstraete, W., De Belie, N., & Boon, N. (2016). Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion. Cement and Concrete Research, 83, 19-30.spa
dc.relation.referencesEhrlich,HL, Newman,DK (2009) Geomicrobiology Fifth CRC Press, Taylor & Francis Groupspa
dc.relation.referencesFerrer, A. (2003). Intoxicación por metales. In Anales del sistema sanitario de Navarra (Vol. 26, pp. 141-153). Gobierno de Navarra. Departamento de Salud.spa
dc.relation.referencesFerris, F. G., Stehmeier, L. G., Kantzas, A., & Mourits, F. M. (1997). Bacteriogenic mineral plugging. Journal of Canadian Petroleum Technology, 36(09).spa
dc.relation.referencesFrankel, R. B., & Bazylinski, D. A. (2003). Biologically induced mineralization by bacteria. Reviews in Mineralogy and Geochemistry, 54(1), 95-114.spa
dc.relation.referencesFortin, D. (1997). Surface-mediated mineral development. Rev Mineral, 35, 162-180.spa
dc.relation.referencesFortin, D., & Beveridge, T. J. (2000). Mechanistic routes towards biomineral surface development. Biomineralisation: From Biology to Biotechnology and medical Application (E. Baeuerlein Ed.), Wiley-VCH, Verlag, Germany.spa
dc.relation.referencesFowler, S., Roush, R., Wise, J., & Stronck, D. (2013). Concepts of Biology. OpenStax College, Rice University.spa
dc.relation.referencesFu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), 407-418.spa
dc.relation.referencesGalindo, A. L., & Arias, J. (1996). Struvite and calcite crystallization induced by cellular membranes of Myxococcus xanthus. Journal of Crystal Growth, 163(4), 434-439.spa
dc.relation.referencesGonzález-Muñoz, M. T., Omar, N. B., Martínez-Cañamero, M., Rodríguez-Gallego, M., Galindo, A. L., & Arias, J. (1996). Struvite and calcite crystallization induced by cellular membranes of Myxococcus xanthus. Journal of Crystal Growth, 163(4), 434-439.spa
dc.relation.referencesGong, X. B. (2013). Kinetic and equilibrium studies on the adsorption of Pb (II), Cd (II) and Cu (II) by rape straw. Adsorption Science & Technology, 31(6), 559-571.spa
dc.relation.referencesGottlieb, S. (1998). Sustained fall in UK blood lead levels reported. BMJ: British Medical Journal, 317(7151), 99.spa
dc.relation.referencesGhosh, P., Mandal, S., Chattopadhyay, B. D., & Pal, S. (2005). Use of microorganism to improve the strength of cement mortar. Cement and Concrete Research, 35(10), 1980-1983.spa
dc.relation.referencesGoldfrank, L. R., Flomenbaum, N. E., HOFFMAN, R. S., Howland, M. A., Lewin, N. A., & WEISMAN, R. S. (1998). Goldfrank's Toxicologic Emergencies. Appleton & Lange.spa
dc.relation.referencesGuo, W., Liu, X., Liu, Z., & Li, G. (2010). Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Procedia environmental sciences, 2, 729-736.spa
dc.relation.referencesHa, N. C., Oh, S. T., Sung, J. Y., Cha, K. A., Lee, M. H., & Oh, B. H. (2001). Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nature Structural & Molecular Biology, 8(6), 505.spa
dc.relation.referencesHammes, F., & Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1(1), 3-7.spa
dc.relation.referencesHanke, L. D. (2001). Handbook of analytical methods for materials. Materials Evaluation and Engineering, Inc, 15-16.spa
dc.relation.referencesHarris, D. C., & Bertolucci, M. D. (1989). Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy. Courier Corporation.spa
dc.relation.referencesHead, I. M., Gray, N. D., Babenzien, H. D., and Oliver-Glöckner, F. (2000). Uncultured giant sulfur bacteria of the genus Achromatium. FEMS Microbiol. Ecol. 33, 171–180. doi: 10.1111/j.1574-6941.2000.tb00739.xspa
dc.relation.referencesHernández Ávila, J., Salinas Rodríguez, E., Blanco Piñón, A., Cerecedo Sáenz, E., & Rodríguez Lugo, V. (2015). Carbonato de Calcio en México. Características geológicas, mineralógicas y aplicaciones. OmniaScience Monographs.spa
dc.relation.referencesHouston, M. C. (2007). The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern Ther Health Med, 13(2), S128-S133.spa
dc.relation.referencesHuang, D. L., Zeng, G. M., Jiang, X. Y., Feng, C. L., Yu, H. Y., Huang, G. H., & Liu, H. L. (2006). Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw. Journal of Hazardous Materials, 134(1-3), 268-276.spa
dc.relation.referencesHursh, J. B., Clarkson, T. W., Cherian, M. G., Vostal, J. J., & Mallie, R. V. (1976). Clearance of mercury (Hg-197, Hg-203) vapor inhaled by human subjects. Archives of Environmental Health: An International Journal, 31(6), 302-309.spa
dc.relation.referencesIbrahim, A. R., Vuningoma, J. B., Huang, Y., Wang, H., & Li, J. (2014). Rapid carbonation for calcite from a solid-liquid-gas system with an imidazolium-based ionic liquid. International journal of molecular sciences, 15(7), 11350-11363.spa
dc.relation.referencesIDEAM, Estudio Nacional del Agua 2014. Bogotá, D. C., 2015. 496 páginas.spa
dc.relation.referencesJabri, E., Carr, M. B., Hausinger, R. P., & Karplus, P. A. (1995). The crystal structure of urease from Klebsiella aerogenes. Science, 268(5213), 998-1004.spa
dc.relation.referencesJärup, L., & Åkesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238(3), 201-208spa
dc.relation.referencesJimoh, O. A., Ariffin, K. S., Hussin, H. B., & Temitope, A. E. (2018). Synthesis of precipitated calcium carbonate: a review. Carbonates and Evaporites, 33(2), 331-346.spa
dc.relation.referencesJoshi, S., Goyal, S., Mukherjee, A., & Reddy, M. S. (2017). Microbial healing of cracks in concrete: a review. Journal of Industrial Microbiology & Biotechnology, 44(11), 1511-1525.spa
dc.relation.referencesJonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36(2), 230-235.spa
dc.relation.referencesKanakis, J., & Dalas, E. (2000). The crystallization of vaterite on fibrin. Journal of Crystal Growth, 219(3), 277-282.spa
dc.relation.referencesKappaun, K., Piovesan, A. R., Carlini, C. R., & Ligabue-Braun, R. (2018). Ureases: Historical aspects, catalytic, and non-catalytic properties–A review. Journal of Advanced Research, 13, 3-17.spa
dc.relation.referencesKaratas, I. (2008). Microbiological improvement of the physical properties of soils. Arizona State University.spa
dc.relation.referencesKarplus, P. A.; Pearson, M. A.; Hausinger, R. P. Acc. Chem. Res. 1997, 30, 330. (b) Ciurli, S.; Benini, S.; Rypniewski, W. R.; Wilson, K. S.spa
dc.relation.referencesKrajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59-67.spa
dc.relation.referencesKnittel, K., & Boetius, A. (2009). Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 63, 311-334.spa
dc.relation.referencesKonhauser, K. (2007). Introduction to geomicrobiology, microbial weathering (pp. 192–235). UK: Blackwell Publishing.spa
dc.relation.referencesKumar, P. S., Ramalingam, S., Sathyaselvabala, V., Kirupha, S. D., Murugesan, A., & Sivanesan, S. (2012). Removal of cadmium (II) from aqueous solution by agricultural waste cashew nut shell. Korean Journal of Chemical Engineering, 29(6), 756-768.spa
dc.relation.referencesKumari, D., Li, M., Pan, X., & Xin-Yi, Q. (2014). Effect of bacterial treatment on Cr (VI) remediation from soil and subsequent plantation of Pisum sativum. Ecological Engineering, 73, 404-408.spa
dc.relation.referencesKumari, D., Qian, X. Y., Pan, X., Achal, V., Li, Q., & Gadd, G. M. (2016). Microbially-induced carbonate precipitation for immobilization of toxic metals. In Advances in Applied Microbiology (Vol. 94, pp. 79-108). Academic Press.spa
dc.relation.referencesLi, L., Qian, C., Cheng, L., & Wang, R. (2010). A laboratory investigation of microbe-inducing CdCO 3 precipitate treatment in Cd 2+ contaminated soil. Journal of soils and sediments, 10(2), 248-254.spa
dc.relation.referencesLi, M., Cheng, X., & Guo, H. (2013). Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. International Biodeterioration & Biodegradation, 76, 81-85.spa
dc.relation.referencesLi, M., Fu, Q. L., Zhang, Q., Achal, V., & Kawasaki, S. (2015). Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Scientific reports, 5, 16128.spa
dc.relation.referencesLicona, S. P. V., & Negrete, J. L. M. (2019). Mercurio, metilmercurio y otros metales pesados en peces de Colombia: riesgo por ingesta. Acta Biológica Colombiana, 24(2), 232-242.spa
dc.relation.referencesLiu, Z., Carbrey, J. M., Agre, P., & Rosen, B. P. (2004). Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochemical and biophysical research communications, 316(4), 1178-1185.spa
dc.relation.referencesLi, Z. H., Li, P., & Randak, T. (2011). Evaluating the toxicity of environmental concentrations of waterborne chromium (VI) to a model teleost, Oncorhynchus mykiss: a comparative study of in vivo and in vitro. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 153(4), 402-407spa
dc.relation.referencesLópez, E., Figueroa, S., Oset‐Gasque, M. J., & Gonzalez, M. P. (2003). Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. British journal of pharmacology, 138(5), 901-911.spa
dc.relation.referencesLoewenthal RE, van Rooyen Marais G (1976) Carbonate chemistry of aquatic systems: theory and application. Ann Arbor Science, Michigan.spa
dc.relation.referencesLowenstam, H. A. (1981). Minerals formed by organisms. Science, 211(4487), 1126-1131.spa
dc.relation.referencesLowenstam, H. A., & Weiner, S. (1989). On biomineralization. Oxford University Press on Demand.spa
dc.relation.referencesManca, D., Ricard, A. C., Trottier, B., & Chevalier, G. (1991). Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride. Toxicology, 67(3), 303-323.spa
dc.relation.referencesMann, S. (2001). Biomineralization: principles and concepts in bioinorganic materials chemistry (Vol. 5). Oxford University Press on Demand.spa
dc.relation.referencesMaroney, M. J., & Ciurli, S. (2013). Nonredox nickel enzymes. Chemical reviews, 114(8), 4206-4228.spa
dc.relation.referencesMartorell, J. J. V. (2010). Biodisponibilidad de metales pesados en dos ecosistemas acuáticos de la costa Suratlántica andaluza afectados por Contaminación difusa (Doctoral dissertation, Universidad de Cádiz).spa
dc.relation.referencesMarchat, D., Bernache-Assollant, D., & Champion, E. (2007). Cadmium fixation by synthetic hydroxyapatite in aqueous solution—thermal behaviour. Journal of hazardous materials, 139(3), 453-460.spa
dc.relation.referencesMarchegiani, F., Cibej, E., Vergni, P., Tosi, G., Fermani, S., & Falini, G. (2009). Hydroxyapatite synthesis from biogenic calcite single crystals into phosphate solutions at ambient conditions. Journal of Crystal Growth, 311(17), 4219-4225.spa
dc.relation.referencesMarrett, L. D., Hartge, P., & Meigs, J. W. (1986). Bladder cancer and occupational exposure to leather. Occupational and Environmental Medicine, 43(2), 96-100.spa
dc.relation.referencesMartin, D., Dodds, K., Butler, I. B., & Ngwenya, B. T. (2013). Carbonate precipitation under pressure for bioengineering in the anaerobic subsurface via denitrification. Environmental science & technology, 47(15), 8692-8699.spa
dc.relation.referencesMattia, G. D., Bravi, M. C., Laurenti, O., Luca, O. D., Palmeri, A., Sabatucci, A. . & Ghiselli, A. (2004). Impairment of cell and plasma redox state in subjects professionally exposed to chromium. American journal of industrial medicine, 46(2), 120-125.spa
dc.relation.referencesMazzei, L., Broll, V., & Ciurli, S. (2018). An evaluation of maleic-itaconic copolymers as urease inhibitors. Soil Science Society of America Journal, 82(4), 994-1003.spa
dc.relation.referencesMwandira, W., Nakashima, K., Kawasaki, S. et al. Efficacy of biocementation of lead mine waste from the Kabwe Mine site evaluated using Pararhodobacter sp.. Environ Sci Pollut Res 26, 15653–15664 (2019) doi:10.1007/s11356-019-04984-8spa
dc.relation.referencesMcConnaughey, T. (1989). 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta, 53(1), 151-162.spa
dc.relation.referencesMeldrum, F. C. (2003). Calcium carbonate in biomineralisation and biomimetic chemistry. International Materials Reviews, 48(3), 187-224.spa
dc.relation.referencesMogren, C. L., & Trumble, J. T. (2010). The impacts of metals and metalloids on insect behavior. Entomologia Experimentalis et Applicata, 135(1), 1-17.spa
dc.relation.referencesMondal, S., & Ghosh, A. D. (2019). Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete. Construction and Building Materials, 225, 67-75.spa
dc.relation.referencesMontes-Hernandez, G., Daval, D., Chiriac, R., & Renard, F. (2010). Growth of nanosized calcite through gas− solid carbonation of nanosized portlandite under anisobaric conditions. Crystal Growth & Design, 10(11), 4823-4830.spa
dc.relation.referencesMohseni, K. (2007). Characterization of precipitated calcium carbonate (PCC) compounds on the basis of powder X-ray diffraction data (Doctoral dissertation, Ph. D., Universität Karlsruhe (TH), Iran-Tehran).spa
dc.relation.referencesMorse, J. W. (1983). The kinetics of calcium carbonate dissolution and precipitation. Reviews in Mineralogy and Geochemistry, 11(1), 227-264.spa
dc.relation.referencesMulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering geology, 60(1-4), 193-207.spa
dc.relation.referencesMujah, D., Shahin, M. A., & Cheng, L. (2017). State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiology Journal, 34(6), 524-537.spa
dc.relation.referencesMüller, W. E. (Ed.). (2011). Molecular biomineralization: aquatic organisms forming extraordinary materials. Springer Science & Business Media.spa
dc.relation.referencesMulrooney, S. B.; Zakharian, T.; Schaller, R. A.; Hausinger, R. P. Arch. Biochem. Biophys. 2001, 394, 280.spa
dc.relation.referencesMwandira, W., Nakashima, K., & Kawasaki, S. (2017). Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecological engineering, 109, 57-64.spa
dc.relation.referencesNava-Ruiz, C., & Méndez-Armenta, M. (2011). Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio). Archivos de Neurociencias, 16(3), 140-147.spa
dc.relation.referencesNational Research Council. (2000). Toxicological effects of methylmercury. National Academies Press.spa
dc.relation.referencesNeumann, M., & Epple, M. (2007). Monohydrocalcite and its relationship to hydrated amorphous calcium carbonate in biominerals. European Journal of Inorganic Chemistry, 2007(14), 1953-1957.spa
dc.relation.referencesNelson, D. L., & Cox, M. M. (2009). Lehninger. Principios de Bioquímica. 5ª edición. Ed. Omega.spa
dc.relation.referencesNg, W. S., Lee, M. L., & Hii, S. L. (2012). An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Academy of Science, Engineering and Technology, 62(2), 723-729.spa
dc.relation.referencesNi, M., & Ratner, B. D. (2008). Differentiating calcium carbonate polymorphs by surface analysis techniques—an XPS and TOF‐SIMS study. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 40(10), 1356-1361.spa
dc.relation.referencesNriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. nature, 333(6169), 134-139.spa
dc.relation.referencesObst, M., Dynes, J. J., Lawrence, J. R., Swerhone, G. D. W., Benzerara, K., Karunakaran, C., ... & Hitchcock, A. P. (2009). Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: a STXM study of the influence of EPS on the nucleation process. Geochimica et Cosmochimica Acta, 73(14), 4180-4198.spa
dc.relation.referencesO’Connell, D. W., Birkinshaw, C., & O’Dwyer, T. F. (2008). Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource technology, 99(15), 6709-6724.spa
dc.relation.referencesO'Connor, T. R., Graves, R. J., De Murcia, G., Castaing, B., & Laval, J. (1993). Fpg protein of Escherichia coli is a zinc finger protein whose cysteine residues have a structural and/or functional role. Journal of Biological Chemistry, 268(12), 9063-9070.spa
dc.relation.referencesOnder, S., Dursun, S., Gezgin, S., & Demirbas, A. (2007). Determination of Heavy Metal Pollution in Grass and Soil of City Centre Green Areas (Konya, Turkey). Polish Journal of Environmental Studies, 16(1).spa
dc.relation.referencesPaquette, J., & Reeder, R. J. (1995). Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochimica et Cosmochimica Acta, 59(4), 735-749.spa
dc.relation.referencesPatrick, L. (2002). Mercury toxicity and antioxidants: part I: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity.(Mercury Toxicity). Alternative Medicine Review, 7(6), 456-472.spa
dc.relation.referencesPenkowa, M. (2006). Metallothionein I+ II expression and roles during neuropathology in the CNS. Dan. Med. Bull, 53(2), 105-121.spa
dc.relation.referencesPeretó J. (2011) Anoxygenic Photosynthesis. In: Gargaud M. et al. (eds) Encyclopedia of Astrobiology. Springer, Berlin, Heidelbergspa
dc.relation.referencesPérez-González, T., Valverde-Tercedor, C., & Jiménez-López, C. (2010). Biomineralización bacteriana de magnetita y aplicaciones. Seminarios de la Sociedad Española de Mineralogía, 7, 58-74.spa
dc.relation.referencesPerry, R. S., Mcloughlin, N., Lynne, B. Y., Sephton, M. A., Oliver, J. D., Perry, C. C., ... & Staley, J. T. (2007). Defining biominerals and organominerals: direct and indirect indicators of life. Sedimentary Geology, 201(1-2), 157-179.spa
dc.relation.referencesPhillips, D.J., Rainbow, P.S. 2013. Biomonitoring of Trace Aquatic Contaminants, Vol. 37. Springer Science and Business Media New York, USA.spa
dc.relation.referencesPhillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B., & Spangler, L. (2013). Engineered applications of ureolytic biomineralization: a review. Biofouling, 29(6), 715-733.spa
dc.relation.referencesPrinsloo, L. C. (2007). Rock hyraces: a cause of San rock art deterioration?. Journal of Raman Spectroscopy: an International Journal for Original Work in All Aspects of Raman Spectroscopy, Including Higher Order Processes, and Also Brillouin and Rayleigh Scattering, 38(5), 496-503.spa
dc.relation.referencesPlummer, L. N., & Busenberg, E. (1982). The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochimica et cosmochimica acta, 46(6), 1011-1040.spa
dc.relation.referencesPokrovsky, O. S., & Schott, J. (2002). Surface chemistry and dissolution kinetics of divalent metal carbonates. Environmental science & technology, 36(3), 426-432.spa
dc.relation.referencesRamachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of concrete using micro-organisms. ACI Materials Journal-American Concrete Institute, 98(1), 3-9.spa
dc.relation.referencesRaraz Palpán, E. A. (2015). Determinación químico toxicológica de plomo y cadmio en agua para consumo humano proveniente de los reservorios de la zona de San Juan Pampa–distrito de Yanacancha–Pasco.spa
dc.relation.referencesRamírez, A. V. (2008). Intoxicación ocupacional por mercurio. In Anales de la Facultad de Medicina (Vol. 69, No. 1, pp. 46-51). UNMSM. Facultad de Medicina.spa
dc.relation.referencesRakovan, J. (2002). Growth and surface properties of apatite. Reviews in Mineralogy and Geochemistry, 48(1), 51-86.spa
dc.relation.referencesReddy, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: a review. Frontiers in microbiology, 4, 314.spa
dc.relation.referencesReeder, R. J. (1990). Carbonates: Mineralogy and Chemistry. Reviews in Mineralogy. Mineral. Soc. Amer., 11, 77-96.spa
dc.relation.referencesReeder, R. J. (1996). Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochimica et Cosmochimica Acta, 60(9), 1543-1552.spa
dc.relation.referencesRivadeneyra, M. A., Delgado, R., del Moral, A., Ferrer, M. R., & Ramos-Cormenzana, A. (1994). Precipatation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiology Ecology, 13(3), 197-204.spa
dc.relation.referencesRivadeneyra, M. A., Párraga, J., Delgado, R., Ramos-Cormenzana, A., & Delgado, G. (2004). Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS microbiology ecology, 48(1), 39-46.spa
dc.relation.referencesRice, K. M., Walker Jr, E. M., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental mercury and its toxic effects. Journal of preventive medicine and public health, 47(2), 74.spa
dc.relation.referencesRodríguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, K. B., & Gonzalez-Munoz, M. T. (2003). Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl. Environ. Microbiol., 69(4), 2182-2193.spa
dc.relation.referencesRojas Cáceres, J. P. (2008). Estudio Mineralización de Carbonato de Calcio Usando como Matriz Quitosano y Mezclas de Quitosano con Polímeros Sintéticos Hidrosolubles.spa
dc.relation.referencesRong, H., Qian, C., & Li, L. (2013). Loose Particles Cemented by Microbially Induced Magnesium Carbonate. Keji Daobao/ Science & Technology Review, 31(2), 18-21.spa
dc.relation.referencesRowshanbakht, K., Khamehchiyan, M., Sajedi, R. H., & Nikudel, M. R. (2016). Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecological engineering, 89, 49-55.spa
dc.relation.referencesRubio, C., Gutiérrez, A. J., Izquierdo, R. M., Revert, C., Lozano, G., & Hardisson, A. (2004). El plomo como contaminante alimentario. Revista de toxicología, 21(2-3), 72-80.spa
dc.relation.referencesSarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials—a review. Applied biochemistry and biotechnology, 172(5), 2308-2323spa
dc.relation.referencesSalnikow, K., & Zhitkovich, A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chemical research in toxicology, 21(1), 28-44.spa
dc.relation.referencesSherwani, S. I., Pabon, S., Patel, R. B., Sayyid, M. M., Hagele, T., Kotha, S. R., .. & Parinandi, N. L. (2013). Eicosanoid signaling and vascular dysfunction: methylmercury-induced phospholipase D activation in vascular endothelial cells. Cell biochemistry and biophysics, 67(2), 317-329.spa
dc.relation.referencesScott, J. R., & Barnett, T. C. (2006). Surface proteins of gram-positive bacteria and how they get there. Annu. Rev. Microbiol., 60, 397-423.spa
dc.relation.referencesSeifan, M., Samani, A. K., & Berenjian, A. (2016). Bioconcrete: next generation of self-healing concrete. Applied microbiology and biotechnology, 100(6), 2591-2602.spa
dc.relation.referencesSeifan, M., & Berenjian, A. (2018). Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete. World Journal of Microbiology and Biotechnology, 34(11), 168spa
dc.relation.referencesSeifan, M., Ebrahiminezhad, A., Ghasemi, Y., Samani, A. K., & Berenjian, A. (2018). The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation. Applied microbiology and biotechnology, 102(8), 3595-3606spa
dc.relation.referencesSeifan, M., & Berenjian, A. (2019). Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Applied microbiology and biotechnology, 103(12), 4693-4708.spa
dc.relation.referencesSher, S., & Rehman, A. (2019). Use of heavy metals resistant bacteria—a strategy for arsenic bioremediation. Applied microbiology and biotechnology, 103(15), 6007-6021.spa
dc.relation.referencesSimkiss, K. (1986) The processes of biomineralization in lower plants and animals- an overview. in: “Biomineralization in lower plants and animals” B. S. C. Leadbeater and R. Riding (eds.). Oliver and Boyd Ltd., Edinburgh. 3-25spa
dc.relation.referencesSocial, M. (2007). vydt Ministerio de Ambiente. RESOLUCIÓN 2115 DE 2007.Proceedings of the National Academy of Sciences, 99(19), 12043-12048.spa
dc.relation.referencesSoskine, M., Steiner-Mordoch, S., & Schuldiner, S. (2002). Crosslinking of membrane-embedded cysteines reveals contact points in the EmrE oligomer. Proceedings of the National Academy of Sciences, 99(19), 12043-12048.spa
dc.relation.referencesSoutham, G. (2000). Bacterial surface-mediated mineral formation. In Environmental microbe-metal interactions (pp. 257-276). American Society of Microbiologyspa
dc.relation.referencesSchuurs, A. H. B. (1999). Reproductive toxicity of occupational mercury. A review of the literature. Journal of Dentistry, 27(4), 249-256.spa
dc.relation.referencesSkoog DA, West DM, Holler FJ, Crouch SR (2014) Fundamentals of analytical chemistry, 9th edn. Brooks/Cole, Belmontspa
dc.relation.referencesStumm W., Morgan JJ (1981). Química acuática, 2ª ed. Nueva York, Nueva York: John Wileyspa
dc.relation.referencesStrock, J. S. (2008). Ammonification. In Encyclopedia of Ecology, Five-Volume Set (pp. 162-165). Elsevier Inc.spa
dc.relation.referencesSu, C. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics, 3(2), 24.spa
dc.relation.referencesTamayo-Figueroa, D. P., Castillo, E., & Brandão, P. F. (2019). Metal and metalloid immobilization by microbiologically induced carbonates precipitation. World Journal of Microbiology and Biotechnology, 35(4), 58.spa
dc.relation.referencesTang, Y., Elzinga, E. J., Lee, Y. J., & Reeder, R. J. (2007). Coprecipitation of chromate with calcite: batch experiments and X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 71(6), 1480-1493.spa
dc.relation.referencesTapia, J., Freer, J., Mansilla, H., Villaseñor, J., Bruhn, C., & Basualto, S. (2002). Estudio de reducción fotocatalizada de cromo hexavalente. Boletín de la Sociedad Chilena de Química, 47(4), 469-476.spa
dc.relation.referencesTebo, B. M. (1997). Bacterially mediated mineral formation: insights into manganese (II) oxidation from molecular genetic and biochemical studies. Geomicrobiology: interactions between microbes and minerals, 225-266.spa
dc.relation.referencesTessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry, 51(7), 844-851.spa
dc.relation.referencesTlili, M. M., Amor, M. B., Gabrielli, C., Joiret, S., Maurin, G., & Rousseau, P. (2002). Characterization of CaCO3 hydrates by micro‐Raman spectroscopy. Journal of Raman spectroscopy, 33(1), 10-16.spa
dc.relation.referencesTorres-Aravena, Á. E., Duarte-Nass, C., Azócar, L., Mella-Herrera, R., Rivas, M., & Jeison, D. (2018). Can microbially induced calcite precipitation (MICP) through a ureolytic pathway be successfully applied for removing heavy metals from wastewaters?. Crystals, 8(11), 438.spa
dc.relation.referencesTourney, J., & Ngwenya, B. T. (2009). Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chemical Geology, 262(3-4), 138-146.spa
dc.relation.referencesUSEPA (2017) Leaching Environmental Assessment Framework (LEAF) how-to guide understanding the LEAF approach and how and when to use itspa
dc.relation.referencesVan Paassen, L. A., Ghose, R., van der Linden, T. J., van der Star, W. R., & van Loosdrecht, M. C. (2010). Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of geotechnical and geoenvironmental engineering, 136(12), 1721-1728.spa
dc.relation.referencesVan Lith, Y., Warthmann, R., Vasconcelos, C., & Mckenzie, J. A. (2003). Sulphate‐reducing bacteria induce low‐temperature Ca‐dolomite and high Mg‐calcite formation. Geobiology, 1(1), 71-79.spa
dc.relation.referencesVecht, A., & Ireland, T. G. (2000). The role of vaterite and aragonite in the formation of pseudo-biogenic carbonate structures: implications for Martian exobiology. Geochimica et Cosmochimica Acta, 64(15), 2719-2725.spa
dc.relation.referencesVon Burg, R., & Liu, D. (1993). Chromium and hexavalent chromium. Journal of applied toxicology, 13(3), 225-230.spa
dc.relation.referencesVullo D, Del Prete S, Osman SM, et al. Sulfonamide inhibition studies of the delta-carbonic anhydrase from the diatom Thalassiosira weissflogii. Bioorg Med Chem Lett 2014;24:275–9spa
dc.relation.referencesWaalkes, M. P., Wahba, Z. Z., & Rodriguez, R. E. (2010). Clinical Environmental Health and Toxic Exposures.spa
dc.relation.referencesWang, S., & Mulligan, C. N. (2006). Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. Journal of Hazardous Materials, 138(3), 459-470.spa
dc.relation.referencesWang, X. S. (2013). Cd (II) removal by marine Arthrobacter protophormiae biomass: mechanism characterization and adsorption performance. Desalination and Water Treatment, 51(40-42), 7710-7720.spa
dc.relation.referencesWang, Y., Moo, Y. X., Chen, C., Gunawan, P., & Xu, R. (2010). Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres. Journal of colloid and interface science, 352(2), 393-400.spa
dc.relation.referencesWang, M., Wu, S., Guo, J., Zhang, X., Yang, Y., Chen, F., & Zhu, R. (2019). Immobilization of cadmium by hydroxyapatite converted from microbial precipitated calcite. Journal of hazardous materials, 366, 684-693.spa
dc.relation.referencesWarren, L. A., & Haack, E. A. (2001). Biogeochemical controls on metal behaviour in freshwater environments. Earth-Science Reviews, 54(4), 261-320.spa
dc.relation.referencesWilbur, K. M., & Bernhardt, A. M. (1984). Effects of amino acids, magnesium, and molluscan extrapallial fluid on crystallization of calcium carbonate: in vitro experiments. The Biological Bulletin, 166(1), 251-259.spa
dc.relation.referencesW. H. O. (2007). Health risks of heavy metals from long-range transboundary air pollution. World Health Organization Regional Office Europe. Available: http://www. euro. who. Int/__data/assets/pdf_ file/0007/78649 E, 91044.spa
dc.relation.referencesWHO (World Health Organization). 2008. Cd. In Guidelines for Drinking-Water Quality, 3rd edn. Incorporating 1st and 2nd addenda. Vol. 1. Recommendations. World Health Organization, Geneva, Switzerland, pp. 317–319. ISBN:978 92 4 154761 1. http://www.who.int/water_sanitation_health/dwq/fulltext.pdfspa
dc.relation.referencesWeiner, S., & Dove, P. M. (2003). An overview of biomineralization processes and the problem of the vital effect. Reviews in mineralogy and geochemistry, 54(1), 1-29.spa
dc.relation.referencesWeiner, S., Levi-Kalisman, Y., Raz, S., & Addadi, L. (2003). Biologically formed amorphous calcium carbonate. Connective Tissue Research, 44(1), 214-218.spa
dc.relation.referencesWright, L. P., Zhang, L., Cheng, I., Aherne, J., & Wentworth, G. R. (2018). Impacts and effects indicators of atmospheric deposition of major pollutants to various ecosystems-a review. Aerosol Air Qual. Res, 18(8), 1953-1992.spa
dc.relation.referencesWright, D. T. (1999). The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sedimentary Geology, 126(1-4), 147-157.spa
dc.relation.referencesWoodward, V. P., Williams, R. C., & Amjad, Z. (2010). 21 Analytical Techniques for Identifying Mineral Scales and Deposits.spa
dc.relation.referencesXiangliang, P., & Pan, X. L. (2009). Micrologically induced carbonate precipitation as a promising way to in situ immobilize heavy metals in groundwater and sediment.spa
dc.relation.referencesXiao, J., Wang, Z., Tang, Y., & Yang, S. (2010). Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite. Langmuir, 26(7), 4977-4983.spa
dc.relation.referencesXu, A. W., Antonietti, M., Cölfen, H., & Fang, Y. P. (2006). Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Advanced Functional Materials, 16(7), 903-908.spa
dc.relation.referencesXu, H., Peng, X., Bai, S., Ta, K., Yang, S., Liu, S., ... & Guo, Z. (2019). Precipitation of calcium carbonate mineral induced by viral lysis of cyanobacteria: evidence from laboratory experiments. Biogeosciences, 16(4), 949-960.spa
dc.relation.referencesYang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the total environment, 642, 690-700spa
dc.relation.referencesYoshida, N., Higashimura, E., & Saeki, Y. (2010). Catalytic biomineralization of fluorescent calcite by the thermophilic bacterium Geobacillus thermoglucosidasius. Appl. Environ. Microbiol., 76(21), 7322-7327.spa
dc.relation.referencesYongsheng, Q. (2008). Study on the influences of combined pollution of heavy metals Cu and Pb on soil respiration. Journal of Anhui Agricultural Sciences, 36(3), 1117.spa
dc.relation.referencesYoshimura, M., Sujaridworakun, P., Koh, F., Fujiwara, T., Pongkao, D., & Ahniyaz, A. (2004). Hydrothermal conversion of calcite crystals to hydroxyapatite. Materials Science and Engineering: C, 24(4), 521-525.spa
dc.relation.referencesZerner, B. (1991). Recent advances in the chemistry of an old enzyme, urease. Bioorganic chemistry, 19(1), 116-131.spa
dc.relation.referencesZhang, W., Jiang, F., & Ou, J. (2011). Global pesticide consumption and pollution: with China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences, 1(2), 125.spa
dc.relation.referencesZhang, Z., Xie, Y., Xu, X., Pan, H., & Tang, R. (2012). Transformation of amorphous calcium carbonate into aragonite. Journal of Crystal Growth, 343(1), 62-67.spa
dc.relation.referencesZhang, Y., Zhang, S., Wang, R., Cai, J., Zhang, Y., Li, H., ... & Jiang, Y. (2016). Impacts of fertilization practices on pH and the pH buffering capacity of calcareous soil. Soil Science and Plant Nutrition, 62(5-6), 432-439.spa
dc.relation.referencesZhao, Y., Yao, J., Yuan, Z., Wang, T., Zhang, Y., & Wang, F. (2017). Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environmental Science and Pollution Research, 24(1), 372-380.spa
dc.relation.referencesZhou, W., Apkarian, R., Wang, Z. L., & Joy, D. (2006). Fundamentals of scanning electron microscopy (SEM). In Scanning microscopy for nanotechnology (pp. 1-40). Springer, New York, NY.spa
dc.relation.referencesZhu, T., & Dittrich, M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Frontiers in bioengineering and biotechnology, 4, 4spa
dc.relation.referencesZimmerman, S. A., Ferry, J. G., & Supuran, C. T. (2007). Inhibition of the archaeal β-class (Cab) and γ-class (Cam) carbonic anhydrases. Current topics in medicinal chemistry, 7(9), 901-908.spa
dc.relation.referencesZingarelli, J. C. (2005). Detection of residual stress in SiC MEMS using micro-Raman spectroscopy (No. AFIT/GEO/ENP/05-06). AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING AND MANAGEMENT/DEPT OF ENGINEERING PHYSICS.spa
dc.relation.referencesZingarelli, J. C. (2005). Detection of residual stress in SiC MEMS using micro-Raman spectroscopy (No. AFIT/GEO/ENP/05-06). AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING AND MANAGEMENT/DEPT OF ENGINEERING PHYSICS.spa
dc.relation.referencesZhu, T., & Dittrich, M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Frontiers in bioengineering and biotechnology, 4, 4.spa
dc.relation.referencesZhu, X., Li, W., Zhan, L., Huang, M., Zhang, Q., & Achal, V. (2016). The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil. Environmental Pollution, 219, 149-155.spa
dc.relation.referencesAPHA-AWWA-WEF (2012). “Standard Methods for the Examination of Water and Wastewater”. 22th Edition. USA, 3-67 y 3-68, method 3500-Cr B.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.ddc660 - Ingeniería química::669 - Metalurgiaspa
dc.subject.proposalBiomineralizationeng
dc.subject.proposalBacterias Ureolíticasspa
dc.subject.proposalBiomineralizaciónspa
dc.subject.proposalMetalseng
dc.subject.proposalMetalesspa
dc.subject.proposalMetalloidseng
dc.subject.proposalMICPeng
dc.subject.proposalMetaloidesspa
dc.subject.proposalMICPspa
dc.subject.proposalUreolytic Bacteriaeng
dc.titlePrecipitación de carbonatos inducida microbiológicamente como alternativa para remediar entornos naturales contaminados con metales y metaloides tóxicosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030586413.2020.pdf
Tamaño:
2.39 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: