Polinomios ortogonales de Zernike tipo Sobolev: cuadratura e interpolación
| dc.contributor.advisor | Dueñas Ruiz, Herbert Alonso | |
| dc.contributor.author | Pulido Combita, Gabriel Arturo | |
| dc.date.accessioned | 2026-02-12T13:09:28Z | |
| dc.date.available | 2026-02-12T13:09:28Z | |
| dc.date.issued | 2024-06 | |
| dc.description | Ilustraciones | spa |
| dc.description.abstract | En este trabajo estudiamos y desarrollamos algunas propiedades de los polinomios ortogonales clásicos sobre la bola unidad, los cuales son ortogonales respecto al producto interno: [Fórmula], donde la función de peso W_{\mu} es (1-|x|^2)^{\mu}, tal que \mu>-1 y b_{\mu} es una constante de normalización que cumple < 1,1 >_{\mu}=1. Trabajamos en el caso en que \mu=0 y d=2, el cual se denomina Caso Zernike. En este caso, tomamos varios productos internos tipo Sobolev encontrados en la literatura y consideramos el caso especial de Zernike. A partir de esto, desarrollamos las bases, logrando escribirlas como combinaciones lineales de la parte radial de los polinomios de Zernike no perturbados. Mostramos varios ejemplos de polinomios en este contexto y graficamos los primeros polinomios, escribiéndolos explícitamente. A su vez, estudiamos la cuadratura e interpolación tipo Zernike desarrolladas en investigaciones recientes [1]. Presentamos una obtención explícita de estos resultados, reproduciendo los resultados para la cuadratura e interpolación, cuyo resultado principal para la cuadratura es: [Fórmula], en donde Z_{N.n}^l(x) representa los polinomios de Zernike clásicos, y R_{N,n}, S_{N}^l las partes radiales y angulares de esta familia. Para el resultado de interpolación, asumimos una función que pueda ser representada como combinaciones lineales de Zernike, [Fórmula], y reproducimos el resultado de las constantes que acompañan los polinomios de Zernike mostradas en [1], [Fórmula] Para ambas, cuadratura e interpolación, realizamos varios experimentos numéricos, demostrando su fiabilidad y explorando posibles aplicaciones numéricas. (Texto tomado de la fuente) | spa |
| dc.description.abstract | In this work, we study and develop some properties of classical orthogonal polynomials on the unit ball, which are orthogonal with respect to the inner product: [Mathematical Formula] where the weight function W_{\mu} is (1-|x|^2)^{\mu}, such that \mu>-1 and b_{\mu} is a normalization constant that satisfies < 1,1 >_{\mu}=1. We focus on the case where \mu=0 and d=2, which is referred as the Zernike Case. In this case, we consider various Sobolev-type inner products found in the literature and examine the special case of Zernike. Based on this, we developed the basis, succeeding in writing them as linear combinations of the radial part of the unperturbed Zernike polynomials. We show several examples of polynomials in this context and graph the first polynomials, writing them explicitly. In turn, we studied the Zernike-type quadrature and interpolation developed in recent research [1]. We present an explicit derivation of these results, reproducing the quadrature and interpolation, with the main expression for quadrature being: [Mathematical Formula] where Z_{N,n}^l(x) represents the classical Zernike polynomials, and R_{N,n} and S_{N}^l represent the radial and angular parts of this family, respectively. For the interpolation result, we assume a function that can be represented as linear combinations of Zernike polynomials, [Mathematical Formula], and we reproduce the result of the constants accompanying the Zernike polynomials as shown in [1], [Mathematical Formula] For both, quadrature and interpolation, we carried out several numerical experiments, demonstrating their reliability and exploring potential numerical applications. | eng |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magister en Ciencias Matemáticas | |
| dc.description.notes | Distinción meritoria otorgada por el consejo de la facultad de ciencias de la universidad nacional de Colombia. | spa |
| dc.format.extent | x, 114 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89520 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Ciencias | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | |
| dc.relation.references | Greengard, P., \& Serkh, K. (2018). Zernike Polynomials: Evaluation, Quadrature, and Interpolation. arXiv preprint arXiv:1811.02720. | |
| dc.relation.references | Howland, H. C. (2000). The history and methods of ophthalmic wavefront sensing. Journal of Refractive Surgery, 16(5), S552-S553. | |
| dc.relation.references | Kintner, E. C. (1976). On the mathematical properties of the Zernike polynomials. Optica Acta: International Journal of Optics, 23(8), 679-680. | |
| dc.relation.references | Jagerman, L. S. (2008). Ophthalmologists, Meet Zernike and Fourier. Trafford Publishing. | |
| dc.relation.references | Alvarez-Nodarse, R. MONOGRAFÍAS DEL SEMINARIO MATEMATICO “GARCÍA DE GALDEANO”. | |
| dc.relation.references | Dunkl, C. F., \& Xu, Y. (2014). Orthogonal polynomials of several variables (No. 155). Cambridge University Press. | |
| dc.relation.references | Marcellán, F., \& Xu, Y. (2015). On Sobolev orthogonal polynomials. Expositiones Mathematicae, 33(3), 308-352. | |
| dc.relation.references | Lee, J. K., \& Littlejohn, L. L. (2006). Sobolev orthogonal polynomials in two variables and second order partial differential equations. Journal of mathematical analysis and applications, 322(2), 1001-1017. | |
| dc.relation.references | Chihara, T. S. (2011). An introduction to orthogonal polynomials. Courier Corporation. | |
| dc.relation.references | von F, Z. (1934). Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. physica, 1(7-12), 689-704. | |
| dc.relation.references | Datta, K. B., \& Datta, S. (2022). Application of Zernike polynomials in solving certain first and second order partial differential equations. arXiv preprint arXiv:2207.07380. | |
| dc.relation.references | Mello, M. V., Paschoa, V. G., Pérez, T. E., \& Piñar, M. A. (2011). Multivariate Sobolev-type orthogonal polynomials. Jaen journal on approximation, 241-259. | |
| dc.relation.references | Serkh, K. (2015). On generalized prolate spheroidal functions. Technical Report TR-1519, Department of Mathematics, Yale University. | |
| dc.relation.references | Clavijo, J. (2019). Polinomios ortogonales de Zernike Estudio de sus aplicaciones en óptica, [Tesis de pregrado, Universidad Nacional de Colombia] | |
| dc.relation.references | Niu, K., \& Tian, C. (2022). Zernike polynomials and their applications. Journal of Optics, 24(12), 123001. | |
| dc.relation.references | Wyant, J. C. (2003). Zernike polynomials for the web. Retrieved October, 1, 2007. | |
| dc.relation.references | Herreros, D., Lederman, R. R., Krieger, J. M., Jiménez-Moreno, A., Martínez, M., Myška, D., ... \& Carazo, J. M. (2023). Estimating conformational landscapes from Cryo-EM particles by 3D Zernike polynomials. Nature Communications, 14(1), 154. | |
| dc.relation.references | Szegö, G. (1975). Orthogonal polynomials, vol. 23. In American Mathematical Society Colloquium Publications. | |
| dc.relation.references | Jacobi, C. G. J. (1859). Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe. | |
| dc.relation.references | Abramowitz, M., \& Stegun, I. A. (Eds.). (1968). Handbook of mathematical functions with formulas, graphs, and mathematical tables (Vol. 55). US Government printing office. | |
| dc.relation.references | Soto, A. S. (2009). Física matemática. Universidad de Antioquia. | |
| dc.relation.references | Stieltjes, T. J. (1885). Sur quelques théoremes d’algebre. CR Acad. Sci. Paris, 100, 439-440. | |
| dc.relation.references | Stieltjes, T. J. (1885). Sur les polynômes de Jacobi. CR Acad. Sci. Paris, 100, 620-622. | |
| dc.relation.references | Ismail, M. E. (2000). An electrostatics model for zeros of general orthogonal polynomials. Pacific journal of Mathematics, 193(2), 355-369. | |
| dc.relation.references | Dai, F. (2013). Approximation theory and harmonic analysis on spheres and balls. | |
| dc.relation.references | MacRobert, T. M. (1967). Spherical harmonics: An elementary treatise on harmonic functions, with applications. (No Title). | |
| dc.relation.references | Thirulogasanthar, K., Saad, N., \& Honnouvo, G. (2015). 2D-Zernike polynomials and coherent state quantization of the unit disc. Mathematical Physics, Analysis and Geometry, 18(1), 13. | |
| dc.relation.references | Noll, R. J. (1976). Zernike polynomials and atmospheric turbulence. JOsA, 66(3), 207-211. | |
| dc.relation.references | Bochner, S. (1929). Über sturm-liouvillesche polynomsysteme. Mathematische Zeitschrift, 29(1), 730-736. | |
| dc.relation.references | Bracciali, C. F., Delgado, A. M., Fernández, L., Pérez, T. E., \& Piñar, M. A. (2010). New steps on Sobolev orthogonality in two variables. Journal of computational and applied mathematics, 235(4), 916-926. | |
| dc.relation.references | Althammer, P. (1962). Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation. | |
| dc.relation.references | Lizarte, F., Pérez, T. E., \& Piñar, M. A. (2021). The radial part of a class of Sobolev polynomials on the unit ball. Numerical Algorithms, 87, 1369-1389. | |
| dc.relation.references | Pérez, T. E., Piñar, M. A., \& Xu, Y. (2013). Weighted Sobolev orthogonal polynomials on the unit ball. Journal of approximation theory, 171, 84-104. | |
| dc.relation.references | Xu, Y. (2008). Sobolev orthogonal polynomials defined via gradient on the unit ball. Journal of approximation theory, 152(1), 52-65. | |
| dc.relation.references | Piñar, M. A., \& Xu, Y. (2018). Best polynomial approximation on the unit ball. IMA Journal of Numerical Analysis, 38(3), 1209-1228. | |
| dc.relation.references | Xu, Y. (2006). A family of Sobolev orthogonal polynomials on the unit ball. Journal of Approximation Theory, 138(2), 232-241. | |
| dc.relation.references | Marriaga, M. E., Pérez, T. E., Piñar, M. A., \& Recarte, M. J. (2023). Approximation via gradients on the ball. The Zernike case. Journal of Computational and Applied Mathematics, 430, 115258. | |
| dc.relation.references | Atkinson, K., \& Hansen, O. (2005). Solving the nonlinear Poisson equation on the unit disk. The Journal of Integral Equations and Applications, 223-241. | |
| dc.relation.references | Stoer, J., Bulirsch, R., Bartels, R., Gautschi, W., \& Witzgall, C. (1980). Introduction to numerical analysis (Vol. 2). New York: springer-verlag. | |
| dc.relation.references | Chong, C. W., Raveendran, P., \& Mukundan, R. (2003). A comparative analysis of algorithms for fast computation of Zernike moments. Pattern Recognition, 36(3), 731-742. | |
| dc.relation.references | Burden, R. L., \& Faires, J. D. (1997). Numerical analysis. Brooks Cole. | |
| dc.relation.references | Lowan, A. N., Davids, N., \& Levenson, A. (1942). Table of the zeros of the Legendre polynomials of order 1-16 and the weight coefficients for Gauss' mechanical quadrature formula (Vol. 18). | |
| dc.relation.references | Glaser, A., Liu, X., \& Rokhlin, V. (2007). A fast algorithm for the calculation of the roots of special functions. SIAM Journal on Scientific Computing, 29(4), 1420-1438. | |
| dc.relation.references | Appell, P. (1890). Sur une classe de polynômes à deux variables et le calcul approché des intégrales doubles. Annales de la Faculté des sciences de Toulouse pour les sciences mathématiques et les sciences physiques, 4(2), H1-H20. | |
| dc.relation.references | Cools, R., Mysovskikh, I. P., \& Schmid, H. J. (2001). Cubature formulae and orthogonal polynomials. Journal of computational and applied mathematics, 127(1-2), 121-152. | |
| dc.relation.references | Mysovskih, I. P. (1970). A multidimensional analogon of quadrature formulae of Gaussian type and the generalised problem of Radon. Voprosy Vychisl. i Prikl. Mat., Tashkent, 38, 55-69. | |
| dc.relation.references | Bhatia, A. B., \& Wolf, E. (1954, January). On the circle polynomials of Zernike and related orthogonal sets. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 50, No. 1, pp. 40-48). Cambridge University Press. | |
| dc.relation.references | Tatian, B. (1974). Aberration balancing in rotationally symmetric lenses. JOSA, 64(8), 1083-1091. | |
| dc.relation.references | Liang, J., Grimm, B., Goelz, S., \& Bille, J. F. (1994). Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor. JOSA A, 11(7), 1949-1957. | |
| dc.relation.references | ANSI Z80.28–2004, Ophthalmics—methods of reporting optical aberrations of eyes, 2004. | |
| dc.relation.references | Thibos, L. N., Applegate, R. A., Schwiegerling, J. T., \& Webb, R. (2002). Standards for reporting the optical aberrations of eyes. Journal of refractive surgery, 18(5), S652-S660. | |
| dc.relation.references | Mahajan, V. N. (1981). Zernike annular polynomials for imaging systems with annular pupils. JOSA, 71(1), 75-85. | |
| dc.relation.references | Milanetti, E., Miotto, M., Di Rienzo, L., Nagaraj, M., Monti, M., Golbek, T. W., ... \& Ruocco, G. (2021). In-silico evidence for a two receptor based strategy of SARS-CoV-2. Frontiers in molecular biosciences, 8, 690655. | |
| dc.relation.references | Sun, T. (2018). Chebyshev Interpolation for Function in 1D. arXiv preprint arXiv:1810.04282. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.armarc | Cuadratura de Gauss | spa |
| dc.subject.armarc | Interpolación (Matemáticas) | spa |
| dc.subject.bne | Polinomios ortogonales | spa |
| dc.subject.ddc | 510 - Matemáticas | |
| dc.subject.ddc | 500 - Ciencias naturales y matemáticas | |
| dc.subject.lcc | Orthogonal polynomials | eng |
| dc.subject.lcc | Gaussian quadrature formulas | eng |
| dc.subject.lcc | Interpolation | eng |
| dc.subject.proposal | Polinomios ortogonales | spa |
| dc.subject.proposal | Polinomios en varias variables | spa |
| dc.subject.proposal | Productos internos tipo Sobolev | spa |
| dc.subject.proposal | Polinomios de Zernike | spa |
| dc.subject.proposal | Cuadratura Gaussiana | spa |
| dc.subject.proposal | Interpolación | spa |
| dc.subject.proposal | Orthogonal polynomials | eng |
| dc.subject.proposal | Polynomials in several variables | eng |
| dc.subject.proposal | Sobolev-type inner products | eng |
| dc.subject.proposal | Zernike polynomials | eng |
| dc.subject.proposal | Gaussian quadrature | eng |
| dc.subject.proposal | Interpolation | eng |
| dc.title | Polinomios ortogonales de Zernike tipo Sobolev: cuadratura e interpolación | spa |
| dc.title.translated | Sobolev-type Zernike orthogonal polynomials: quadrature and interpolation | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Maestros | |
| dcterms.audience.professionaldevelopment | Público general | |
| dcterms.audience.professionaldevelopment | Especializada | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo_de_grado___Gabriel_Pulido..pdf
- Tamaño:
- 9.87 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

