Polinomios ortogonales de Zernike tipo Sobolev: cuadratura e interpolación

dc.contributor.advisorDueñas Ruiz, Herbert Alonso
dc.contributor.authorPulido Combita, Gabriel Arturo
dc.date.accessioned2026-02-12T13:09:28Z
dc.date.available2026-02-12T13:09:28Z
dc.date.issued2024-06
dc.descriptionIlustracionesspa
dc.description.abstractEn este trabajo estudiamos y desarrollamos algunas propiedades de los polinomios ortogonales clásicos sobre la bola unidad, los cuales son ortogonales respecto al producto interno: [Fórmula], donde la función de peso W_{\mu} es (1-|x|^2)^{\mu}, tal que \mu>-1 y b_{\mu} es una constante de normalización que cumple < 1,1 >_{\mu}=1. Trabajamos en el caso en que \mu=0 y d=2, el cual se denomina Caso Zernike. En este caso, tomamos varios productos internos tipo Sobolev encontrados en la literatura y consideramos el caso especial de Zernike. A partir de esto, desarrollamos las bases, logrando escribirlas como combinaciones lineales de la parte radial de los polinomios de Zernike no perturbados. Mostramos varios ejemplos de polinomios en este contexto y graficamos los primeros polinomios, escribiéndolos explícitamente. A su vez, estudiamos la cuadratura e interpolación tipo Zernike desarrolladas en investigaciones recientes [1]. Presentamos una obtención explícita de estos resultados, reproduciendo los resultados para la cuadratura e interpolación, cuyo resultado principal para la cuadratura es: [Fórmula], en donde Z_{N.n}^l(x) representa los polinomios de Zernike clásicos, y R_{N,n}, S_{N}^l las partes radiales y angulares de esta familia. Para el resultado de interpolación, asumimos una función que pueda ser representada como combinaciones lineales de Zernike, [Fórmula], y reproducimos el resultado de las constantes que acompañan los polinomios de Zernike mostradas en [1], [Fórmula] Para ambas, cuadratura e interpolación, realizamos varios experimentos numéricos, demostrando su fiabilidad y explorando posibles aplicaciones numéricas. (Texto tomado de la fuente)spa
dc.description.abstractIn this work, we study and develop some properties of classical orthogonal polynomials on the unit ball, which are orthogonal with respect to the inner product: [Mathematical Formula] where the weight function W_{\mu} is (1-|x|^2)^{\mu}, such that \mu>-1 and b_{\mu} is a normalization constant that satisfies < 1,1 >_{\mu}=1. We focus on the case where \mu=0 and d=2, which is referred as the Zernike Case. In this case, we consider various Sobolev-type inner products found in the literature and examine the special case of Zernike. Based on this, we developed the basis, succeeding in writing them as linear combinations of the radial part of the unperturbed Zernike polynomials. We show several examples of polynomials in this context and graph the first polynomials, writing them explicitly. In turn, we studied the Zernike-type quadrature and interpolation developed in recent research [1]. We present an explicit derivation of these results, reproducing the quadrature and interpolation, with the main expression for quadrature being: [Mathematical Formula] where Z_{N,n}^l(x) represents the classical Zernike polynomials, and R_{N,n} and S_{N}^l represent the radial and angular parts of this family, respectively. For the interpolation result, we assume a function that can be represented as linear combinations of Zernike polynomials, [Mathematical Formula], and we reproduce the result of the constants accompanying the Zernike polynomials as shown in [1], [Mathematical Formula] For both, quadrature and interpolation, we carried out several numerical experiments, demonstrating their reliability and exploring potential numerical applications.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Matemáticas
dc.description.notesDistinción meritoria otorgada por el consejo de la facultad de ciencias de la universidad nacional de Colombia.spa
dc.format.extentx, 114 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89520
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.relation.referencesGreengard, P., \& Serkh, K. (2018). Zernike Polynomials: Evaluation, Quadrature, and Interpolation. arXiv preprint arXiv:1811.02720.
dc.relation.referencesHowland, H. C. (2000). The history and methods of ophthalmic wavefront sensing. Journal of Refractive Surgery, 16(5), S552-S553.
dc.relation.referencesKintner, E. C. (1976). On the mathematical properties of the Zernike polynomials. Optica Acta: International Journal of Optics, 23(8), 679-680.
dc.relation.referencesJagerman, L. S. (2008). Ophthalmologists, Meet Zernike and Fourier. Trafford Publishing.
dc.relation.referencesAlvarez-Nodarse, R. MONOGRAFÍAS DEL SEMINARIO MATEMATICO “GARCÍA DE GALDEANO”.
dc.relation.referencesDunkl, C. F., \& Xu, Y. (2014). Orthogonal polynomials of several variables (No. 155). Cambridge University Press.
dc.relation.referencesMarcellán, F., \& Xu, Y. (2015). On Sobolev orthogonal polynomials. Expositiones Mathematicae, 33(3), 308-352.
dc.relation.referencesLee, J. K., \& Littlejohn, L. L. (2006). Sobolev orthogonal polynomials in two variables and second order partial differential equations. Journal of mathematical analysis and applications, 322(2), 1001-1017.
dc.relation.referencesChihara, T. S. (2011). An introduction to orthogonal polynomials. Courier Corporation.
dc.relation.referencesvon F, Z. (1934). Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. physica, 1(7-12), 689-704.
dc.relation.referencesDatta, K. B., \& Datta, S. (2022). Application of Zernike polynomials in solving certain first and second order partial differential equations. arXiv preprint arXiv:2207.07380.
dc.relation.referencesMello, M. V., Paschoa, V. G., Pérez, T. E., \& Piñar, M. A. (2011). Multivariate Sobolev-type orthogonal polynomials. Jaen journal on approximation, 241-259.
dc.relation.referencesSerkh, K. (2015). On generalized prolate spheroidal functions. Technical Report TR-1519, Department of Mathematics, Yale University.
dc.relation.referencesClavijo, J. (2019). Polinomios ortogonales de Zernike Estudio de sus aplicaciones en óptica, [Tesis de pregrado, Universidad Nacional de Colombia]
dc.relation.referencesNiu, K., \& Tian, C. (2022). Zernike polynomials and their applications. Journal of Optics, 24(12), 123001.
dc.relation.referencesWyant, J. C. (2003). Zernike polynomials for the web. Retrieved October, 1, 2007.
dc.relation.referencesHerreros, D., Lederman, R. R., Krieger, J. M., Jiménez-Moreno, A., Martínez, M., Myška, D., ... \& Carazo, J. M. (2023). Estimating conformational landscapes from Cryo-EM particles by 3D Zernike polynomials. Nature Communications, 14(1), 154.
dc.relation.referencesSzegö, G. (1975). Orthogonal polynomials, vol. 23. In American Mathematical Society Colloquium Publications.
dc.relation.referencesJacobi, C. G. J. (1859). Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe.
dc.relation.referencesAbramowitz, M., \& Stegun, I. A. (Eds.). (1968). Handbook of mathematical functions with formulas, graphs, and mathematical tables (Vol. 55). US Government printing office.
dc.relation.referencesSoto, A. S. (2009). Física matemática. Universidad de Antioquia.
dc.relation.referencesStieltjes, T. J. (1885). Sur quelques théoremes d’algebre. CR Acad. Sci. Paris, 100, 439-440.
dc.relation.referencesStieltjes, T. J. (1885). Sur les polynômes de Jacobi. CR Acad. Sci. Paris, 100, 620-622.
dc.relation.referencesIsmail, M. E. (2000). An electrostatics model for zeros of general orthogonal polynomials. Pacific journal of Mathematics, 193(2), 355-369.
dc.relation.referencesDai, F. (2013). Approximation theory and harmonic analysis on spheres and balls.
dc.relation.referencesMacRobert, T. M. (1967). Spherical harmonics: An elementary treatise on harmonic functions, with applications. (No Title).
dc.relation.referencesThirulogasanthar, K., Saad, N., \& Honnouvo, G. (2015). 2D-Zernike polynomials and coherent state quantization of the unit disc. Mathematical Physics, Analysis and Geometry, 18(1), 13.
dc.relation.referencesNoll, R. J. (1976). Zernike polynomials and atmospheric turbulence. JOsA, 66(3), 207-211.
dc.relation.referencesBochner, S. (1929). Über sturm-liouvillesche polynomsysteme. Mathematische Zeitschrift, 29(1), 730-736.
dc.relation.referencesBracciali, C. F., Delgado, A. M., Fernández, L., Pérez, T. E., \& Piñar, M. A. (2010). New steps on Sobolev orthogonality in two variables. Journal of computational and applied mathematics, 235(4), 916-926.
dc.relation.referencesAlthammer, P. (1962). Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation.
dc.relation.referencesLizarte, F., Pérez, T. E., \& Piñar, M. A. (2021). The radial part of a class of Sobolev polynomials on the unit ball. Numerical Algorithms, 87, 1369-1389.
dc.relation.referencesPérez, T. E., Piñar, M. A., \& Xu, Y. (2013). Weighted Sobolev orthogonal polynomials on the unit ball. Journal of approximation theory, 171, 84-104.
dc.relation.referencesXu, Y. (2008). Sobolev orthogonal polynomials defined via gradient on the unit ball. Journal of approximation theory, 152(1), 52-65.
dc.relation.referencesPiñar, M. A., \& Xu, Y. (2018). Best polynomial approximation on the unit ball. IMA Journal of Numerical Analysis, 38(3), 1209-1228.
dc.relation.referencesXu, Y. (2006). A family of Sobolev orthogonal polynomials on the unit ball. Journal of Approximation Theory, 138(2), 232-241.
dc.relation.referencesMarriaga, M. E., Pérez, T. E., Piñar, M. A., \& Recarte, M. J. (2023). Approximation via gradients on the ball. The Zernike case. Journal of Computational and Applied Mathematics, 430, 115258.
dc.relation.referencesAtkinson, K., \& Hansen, O. (2005). Solving the nonlinear Poisson equation on the unit disk. The Journal of Integral Equations and Applications, 223-241.
dc.relation.referencesStoer, J., Bulirsch, R., Bartels, R., Gautschi, W., \& Witzgall, C. (1980). Introduction to numerical analysis (Vol. 2). New York: springer-verlag.
dc.relation.referencesChong, C. W., Raveendran, P., \& Mukundan, R. (2003). A comparative analysis of algorithms for fast computation of Zernike moments. Pattern Recognition, 36(3), 731-742.
dc.relation.referencesBurden, R. L., \& Faires, J. D. (1997). Numerical analysis. Brooks Cole.
dc.relation.referencesLowan, A. N., Davids, N., \& Levenson, A. (1942). Table of the zeros of the Legendre polynomials of order 1-16 and the weight coefficients for Gauss' mechanical quadrature formula (Vol. 18).
dc.relation.referencesGlaser, A., Liu, X., \& Rokhlin, V. (2007). A fast algorithm for the calculation of the roots of special functions. SIAM Journal on Scientific Computing, 29(4), 1420-1438.
dc.relation.referencesAppell, P. (1890). Sur une classe de polynômes à deux variables et le calcul approché des intégrales doubles. Annales de la Faculté des sciences de Toulouse pour les sciences mathématiques et les sciences physiques, 4(2), H1-H20.
dc.relation.referencesCools, R., Mysovskikh, I. P., \& Schmid, H. J. (2001). Cubature formulae and orthogonal polynomials. Journal of computational and applied mathematics, 127(1-2), 121-152.
dc.relation.referencesMysovskih, I. P. (1970). A multidimensional analogon of quadrature formulae of Gaussian type and the generalised problem of Radon. Voprosy Vychisl. i Prikl. Mat., Tashkent, 38, 55-69.
dc.relation.referencesBhatia, A. B., \& Wolf, E. (1954, January). On the circle polynomials of Zernike and related orthogonal sets. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 50, No. 1, pp. 40-48). Cambridge University Press.
dc.relation.referencesTatian, B. (1974). Aberration balancing in rotationally symmetric lenses. JOSA, 64(8), 1083-1091.
dc.relation.referencesLiang, J., Grimm, B., Goelz, S., \& Bille, J. F. (1994). Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor. JOSA A, 11(7), 1949-1957.
dc.relation.referencesANSI Z80.28–2004, Ophthalmics—methods of reporting optical aberrations of eyes, 2004.
dc.relation.referencesThibos, L. N., Applegate, R. A., Schwiegerling, J. T., \& Webb, R. (2002). Standards for reporting the optical aberrations of eyes. Journal of refractive surgery, 18(5), S652-S660.
dc.relation.referencesMahajan, V. N. (1981). Zernike annular polynomials for imaging systems with annular pupils. JOSA, 71(1), 75-85.
dc.relation.referencesMilanetti, E., Miotto, M., Di Rienzo, L., Nagaraj, M., Monti, M., Golbek, T. W., ... \& Ruocco, G. (2021). In-silico evidence for a two receptor based strategy of SARS-CoV-2. Frontiers in molecular biosciences, 8, 690655.
dc.relation.referencesSun, T. (2018). Chebyshev Interpolation for Function in 1D. arXiv preprint arXiv:1810.04282.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.armarcCuadratura de Gaussspa
dc.subject.armarcInterpolación (Matemáticas)spa
dc.subject.bnePolinomios ortogonalesspa
dc.subject.ddc510 - Matemáticas
dc.subject.ddc500 - Ciencias naturales y matemáticas
dc.subject.lccOrthogonal polynomialseng
dc.subject.lccGaussian quadrature formulaseng
dc.subject.lccInterpolationeng
dc.subject.proposalPolinomios ortogonalesspa
dc.subject.proposalPolinomios en varias variablesspa
dc.subject.proposalProductos internos tipo Sobolevspa
dc.subject.proposalPolinomios de Zernikespa
dc.subject.proposalCuadratura Gaussianaspa
dc.subject.proposalInterpolaciónspa
dc.subject.proposalOrthogonal polynomialseng
dc.subject.proposalPolynomials in several variableseng
dc.subject.proposalSobolev-type inner productseng
dc.subject.proposalZernike polynomialseng
dc.subject.proposalGaussian quadratureeng
dc.subject.proposalInterpolationeng
dc.titlePolinomios ortogonales de Zernike tipo Sobolev: cuadratura e interpolaciónspa
dc.title.translatedSobolev-type Zernike orthogonal polynomials: quadrature and interpolationeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentEspecializada
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo_de_grado___Gabriel_Pulido..pdf
Tamaño:
9.87 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: