Influencia de la actividad de agua en la oxidación del aceite de sacha inchi (Plukenetia volubilis L.) formulado en sistemas aceite - agua - tensioactivo

dc.contributor.advisorMora Huertas, Claudia Elizabethspa
dc.contributor.authorTirano Zapata, Laura Catalinaspa
dc.contributor.researchgroupDesarrollo y Calidad de Productos Farmacéuticos y Cosméticosspa
dc.date.accessioned2025-04-28T20:32:37Z
dc.date.available2025-04-28T20:32:37Z
dc.date.issued2024-10-10
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLos aceites de origen vegetal ricos en ácidos grasos poliinsaturados son de gran interés en los campos farmacéutico y cosmético dados los beneficios que ofrecen gracias a su composición. Sin embargo, este tipo de compuestos son suceptibles frente a los fenómenos de oxidación lipídica, lo que compromete la estabilidad y seguridad de los productos en los que se incluyen. Por esta razón resulta útil encontrar estrategias para su estabilización, las que deben estar en sintonía con las tendencias en el desarrollo de productos, como por ejemplo el diseño de formulaciones minimalistas. En este sentido, la presente investigación se decanta por la disminución de excipientes en la formula explorando la posible correlación entre la actividad de agua y la oxidación del aceite sea como materia o en sistemas heterodispersos tipo emulsión, emulgel y bigel de composición similar cuyas actividades de agua fueron dependientes de la presencia o no de glicerina en su composición. Los resultados sugieren que la actividad de agua influencia el comportamiento de oxidación primaria y secundaria del aceite especialmente a actividades de agua menores de 0.5. De otro lado, independiente del tipo de producto o de la presencia o no de glicerol, el agua disponible en el medio parece no influenciar el proceso de oxidación del aceite en los sistemas diseñados. (Texto tomado de la fuente).spa
dc.description.abstractVegetable oils rich in polyunsaturated fatty acids are of great interest in the pharmaceutical and cosmetic fields due to the benefits they offer thanks to their composition. However, this type of compound has disadvantages when faced with lipid oxidation phenomena, which compromises the stability and safety of the products in which they are included. For this reason, it is useful to find strategies for their stabilization, which must align with product development trends, such as the design of minimalist formulations. In this sense, the present research opts for the reduction of excipients in the formula, exploring the possible correlation between water activity and oil oxidation, whether as a substance or in heterodisperse systems such as emulsion, emulgel, and bigel of similar composition whose water activities were dependent on the presence or absence of glycerin in their composition. The results suggest that water activity influences the behavior of primary and secondary oxidation of oil, especially at water activities lower than 0.5. On the other hand, regardless of the product type or the presence or absence of glycerol, the water available in the medium does not seem to influence the oil oxidation process in design systems. Ingléseng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Farmacéuticasspa
dc.description.researchareaFarmacotecnia – Desarrollo de Formas Farmacéuticas y Cosméticasspa
dc.format.extentxxvi, 110 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88131
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAgoda-Tandjawa, G., Dieudé-Fauvel, E., Girault, R., Baudez, J.C., 2013. Using water activity measurements to evaluate rheological consistency and structure strength of sludge. Chemical Engineering Journal. 228, 799-805. https://doi.org/10.1016/j.cej.2013.05.012.spa
dc.relation.referencesAhmad, A., Ahsan, H., 2020. Lipid-based formulations in cosmeceuticals and biopharmaceuticals. Biomedical Dermatology. 4, 1-10. https://doi.org/10.1186/s41702-020-00062-9.spa
dc.relation.referencesAhmed, E.M., 2015. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research. 6, 105-121. https://doi.org/10.1016/j.jare.2013.07.006.spa
dc.relation.referencesAiache, J.-M., Gauthier, P., 1999. Stable gel mixture in the form of a mixture of oleogel and aqueous gel. WO99/62497.spa
dc.relation.referencesAkbari, S., Nour, A.H., 2018. Emulsion types, stability mechanisms and rheology: A review, International Journal of Innovative Research and Scientific Studies. 1, 14-21.spa
dc.relation.referencesAktas, A.B., Dastan, T., Katin, K.P., Kaya, S., 2023. Determination of oxidative stability of different vegetable oils by means of middle infrared spectroscopy and DFT calculations. Microchemical Journal. 194, 109232. https://doi.org/10.1016/j.microc.2023.109232.spa
dc.relation.referencesAli Khan, B., Akhtar, N., Shoaib Khan, H.M., Waseem, K., Mahmood, T., Raul, A., Iqbal, M., Khan, H., 2011. Basics of pharmaceutical emulsions: A review. African Journal of Pharmacy and Pharmacology 5, 2715-2725.spa
dc.relation.referencesAllouche, J., Tyrode, E., Sadtler, V., Choplin, L., Salager, J.L., 2004. Simultaneous conductivity and viscosity measurements as a technique to track emulsion inversion by the phase-inversion-temperature method. Langmuir 20, 2134-2140. https://doi.org/10.1021/la035334r.spa
dc.relation.referencesAlum, B.N., 2024. Saponification process and soap chemistry. INOSR Applied Sciences 12, 51-56. https://doi.org/10.59298/INOSRAS/2024/12.2.515600.spa
dc.relation.referencesAmini, M., Golmakani, M.T., Abbasi, A., Nader, M., 2023. Effects of sesame dehulling on physicochemical and sensorial properties of its oil. Food Science Nutrition 11, 6596-6603. https://doi.org/10.1002/fsn3.3608.spa
dc.relation.referencesAngeli, J.P.F., Garcia, C.C.M., Sena, F., Freitas, F.P., Miyamoto, S., Medeiros, M.H.G., Di Mascio, P., 2011. Lipid hydroperoxide-induced and hemoglobin-enhanced oxidative damage to colon cancer cells. Free Radical Biology and Medicine 51, 503-515. https://doi.org/10.1016/j.freeradbiomed.2011.04.015.spa
dc.relation.referencesAnton, N., Vandamme, T.F., 2011. Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharamaceutical Research. 28, 978-985. https://doi.org/10.1007/s11095-010-0309-1.spa
dc.relation.referencesAslam, A., Schroën, K., 2023. Lipid oxidation in food emulsions: a review dedicated to the role of the interfacial area. Food Science 51, 1-7. https://doi.org/10.1016/j.cofs.2023.101009.spa
dc.relation.referencesBaird-Parker, A.C., Freame, B., 1967. Combined effect of water activity, pH and temperature on the growth of clostridium botulinum from spore and vegetative cell inocula. Journal of Applied Bacteriology 30, 420-429. https:// https://doi.org/10.1128%2Faem.51.4.844-848.1986.spa
dc.relation.referencesBaker, G.L., Sims, C.A., Gorbet, D.A., Sanders, T.H., O'keefe, S.F., 2002. Storage water activity effect on oxidation and sensory properties of high-oleic peanuts, Journal of food science 67(5), 1600-1603. https://doi.org/10.1111/j.1365-2621.2002.tb08690.x.spa
dc.relation.referencesBaltuonytė, G., Eisinaitė, V., Kazernavičiūtė, R., Vinauskienė, R., Jasutienė ILeskauskaitė D., 2022. Novel formulation of bigel-based vegetable oil spreads enriched with lingonberry pomace. Foods. 11(15), 2213. https://doi.org/10.3390/foods11152213.spa
dc.relation.referencesBao, Y., Pignitter, M., 2023. Mechanisms of lipid oxidation in water-in-oil emulsions and oxidomics-guided discovery of targeted protective approaches. Comprehensive Reviews in Food Science and Food Safety. 22, 2678-2705. https://doi.org/10.1111/1541-4337.13158.spa
dc.relation.referencesBarden, L., Decker, E.A., 2013. Lipid oxidation in low-moisture food: A review. Critical reviews in food science and nutrition, 56(15), 2467-2482. https://doi.org/10.1080/10408398.2013.848833.spa
dc.relation.referencesBarra, J., Lescure, F., Doelker, E., Bustamante, P., 1997. The expanded hansen approach to solubility parameters. Paracetamol and citric acid in individual solvents. Journal of Pharmacy and Pharmacology. 49, 644-651. https://doi.org/10.1111/j.2042-7158.1997.tb06086.x.spa
dc.relation.referencesBegum, S.G., Chetty, C.M., Pavithra, B., Akhila, B., Gayathri, C., Ruksar, S., Sravani, T., Voleti, V.K., 2019. A review on emulgels-a novel approach for topical drug delivery. Asian Journal of Pharmaceutical Research and Development. 7, 70-77. https://doi.org/10.22270/ajprd.v7i2.477.spa
dc.relation.referencesBell, L.N., 2020. Moisture effects on food's chemical stability, in: Barbosa Cánovas, G. V, Fontana, A.J., Schmidt, S.J., Labuza, T.P. (Eds.), Water activity in foods fundamentals and applications. John Wiley and Sons, Inc, Chicago, pp. 227-254.spa
dc.relation.referencesBerton Claire C, Ropers, M.-H., Genot, C., 2014. Lipid oxidation in oil-in-water emulsions involvement of the interfacial layer. Comprehensive Reviews in Food Science and Food Safety. 13, 945-977. https://doi.org/10.1111/1541-4337.12097spa
dc.relation.referencesBlandamer, M.J., Engberts, J.B.F.N., Gleeson, P.T., Reis, J.C.R., 2005. Activity of water in aqueous systems; A frequently neglected property. Chemical Society Reviews journal. 34, 440-458. https://doi.org/10.1039/b400473f.spa
dc.relation.referencesBudilarto, E.S., Kamal-Eldin, A., 2015. Stabilization of cod liver oil with a quaternary combination of α-tocopherol and synergists: Method of assessment. European Journal of Lipid Science and Technology. 117, 1598-1606. https://doi.org/10.1002/ejlt.201400637.spa
dc.relation.referencesBury, M., Erni Stamm, W.A., 1995. Application of a new method based on conductivity measurements to determine the creaming stability of o/w emulsions. International Journal of Pharmaceutics. 124, 183–194. https://doi.org/https://doi.org/10.1016/0378-5173(95)00075-T.spa
dc.relation.referencesBustamante, P., Navarro-Lupión, J., Escalera, B., 2005. A new method to determine the partial solubility parameters of polymers from intrinsic viscosity. European Journal of Pharmaceutical Sciences. 24, 229-237. https://doi.org/10.1016/j.ejps.2004.10.012.spa
dc.relation.referencesCengiz, A., Hennebelle, M., Berton-Carabin, C., Schroën, K., 2023. Effects often overlooked in lipid oxidation in oil-in-water emulsions: Agitation conditions and headspace-to-emulsion ratio. JAOCS, Journal of the American Oil Chemists' Society. 101, 441-450. https://doi.org/10.1002/aocs.12787.spa
dc.relation.referencesChaiyasit, W., Elias, R.J., McClements, D.J., Decker, E.A., 2007. Role of physical structures in bulk oils on lipid oxidation. Critical Reviews in Food Science and Nutrition. 47, 299-317. https://doi.org/10.1080/10408390600754248.spa
dc.relation.referencesChen, B., Mcclements, D.J., Decker, E.A., 2011. Minor components in food oils: A critical review of their roles on lipid oxidation chemistry in bulk oils and emulsions. Critical Reviews in Food Science and Nutrition. 51(10), 901-916. https://doi.org/10.1080/10408398.2011.606379.spa
dc.relation.referencesChen, J., Zhang, L., Li, Q., Wang, M., Dong, Y., Yu, X., 2020. Comparative study on the evolution of polar compound composition of four common vegetable oils during different oxidation processes. LWT. 129, 109538. https://doi.org/10.1016/j.lwt.2020.109538.spa
dc.relation.referencesChen, X.W., Hu, Q.H., Li, X.X., Ma, C.G., 2022. Systematic comparison of structural and lipid oxidation in oil-in-water and water-in-oil biphasic emulgels: effect of emulsion type, oil-phase composition, and oil fraction. Journal of the Science of Food and Agriculture 102, 4200-4209. https://doi.org/10.1002/jsfa.11770.spa
dc.relation.referencesChen, X.W., Li, X.X., Hu, Q.H., Sun, S. De, Wan, Z.L., 2023. Multifactorial revealing the association between components and lipid oxidation of edible vegetable oils in bulk and emulsion systems. LWT. 183, 114909. https://doi.org/10.1016/j.lwt.2023.114909.spa
dc.relation.referencesCheng, C., Yu, X., McClements, D.J., Huang, Q., Tang, H., Yu, K., Xiang, X., Chen, P., Wang, X., Deng, Q., 2019. Effect of flaxseed polyphenoles on physical stabilityand oxidative stability oil in water nanoemulsions. Food Chemistry. 301, 1-10. https://doi.org/doi.org/10.1016/j.foodchem.2019.125207.spa
dc.relation.referencesChirife, J., Fontana, A., 2020. Introduction: Historical Highlights of Water Activity Research, in: Barbosa-Cánovas, G. V, Fontana, A.J., Schmidt, S., Labuza, T.P. (Eds.), Water Activity in Foods Fundamentals and Applications. Blackwell, Chicago, pp. 1–12.spa
dc.relation.referencesChirinos, R., Zuloeta, G., Pedreschi, R., Mignolet, E., Larondelle, Y., Campos, D., 2013. sacha inchi (Plukenetia volubilis) A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chem.141, 17-32. https://doi.org/10.1016/j.foodchem.2013.04.078.spa
dc.relation.referencesChoe, E., Min, D.B., 2006. Mechanisms and factors for edible oil oxidation. Comprehensive Food Science and Food Safety Reviews in 5, 169-186. https://doi.org/https://doi.org/10.1111/j.1541-4337.2006.00009.x.spa
dc.relation.referencesCisneros, F.H., Paredes, D., Arana, A., Cisneros-Zevallos, L., 2014. Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-inchi (Plukenetia volubilis L.). Journal of Agricultural and Food Chemistry. 62, 5191-5197. https://doi.org/10.1021/jf500936j.spa
dc.relation.referencesCodex Alimentarius, 1999. Codex Standard for Named Vegetable Oils. Codex-Stan 210 –1999. Disponible en: https://www.fao.org/fao-who-codexalimentarius/en/.spa
dc.relation.referencesCorazza, M., Lauriola, M.M., Zappaterra, M., Bianchi, A., Virgili, A., 2010. Surfactants, skin cleansing protagonists. Journal of the European Academy of Dermatology and Venereology. 24, 1–6. https://doi.org/https://doi.org/10.1111/j.1468-3083.2009.03349.x.spa
dc.relation.referencesĆorković, I., Pichler, A., Šimunović J., Kopjar, M., 2021. Hydrogels: Characteristics and application as delivery systems of Phenolic and aroma compounds. Foods. 10(6), 1252. https://doi.org/10.3390/foods10061252.spa
dc.relation.referencesCorredor, M., 2016. Formulaciones del tipo bigel como sistemas de entrega de moléculas biológicamente activas. Universidad Nacional de Colombia Sede Bogotá, Bogotá D.C.spa
dc.relation.referencesCorredor-Chaparro, M.Y., Vargas-Riveros, D., Mora-Huertas, C.E., 2022. Hypromellose - Collagen hydrogels/sesame oil organogel based bigels as controlled drug delivery systems. Journal of Drug Delivery Science and Technology. 75, 103637. https://doi.org/10.1016/j.jddst.2022.103637.spa
dc.relation.referencesCui, L., Decker, E.A., 2016. Phospholipids in foods: Prooxidants or antioxidants. Journal Science of Food and Agriculture. 96(1), 18-31. https://doi.org/10.1002/jsfa.7320.spa
dc.relation.referencesCui, L., Fan, J., Sun, Y., Zhu, Z., Yi, J., 2018. The prooxidant activity of salts on the lipid oxidation of lecithin-stabilized oil-in-water emulsions. Food Chemistry. 252, 28-32. https://doi.org/10.1016/j.foodchem.2018.01.094.spa
dc.relation.referencesCui, L., McClements, D.J, Decker, E.A., 2015. Impact of phosphatifylethanolamine on the antioxidant activity of α-tocopherol and Trolox in bulk oil. Journal of Agricultural and Food Chemistry. 63, 3288-3294. https://doi.org/10.1021/acs.jafc.5b00243.spa
dc.relation.referencesDanish, M., Mumtaz, M.W., Fakhar, M., Rashid, U., 2017. Response surface methodology an imperative tool for the optimized purification of the residual glycerol from biodiesel production process. Chiang Mai Journal of Science. 44, 1570–1582.spa
dc.relation.referencesDe Benedictis, L., Huck, C., 2016. New approach to optimize near-infrared spectra with design of experiments and determination of milk compounds as influence factors for changing milk over time. Food Chemistry. 212, 552-560. https://doi.org/10.1016/J.Foodchem.2016.06.012spa
dc.relation.referencesDessì, M., Borzacchiello, A., Mohamed, T.H.A., Abdel-Fattah, W.I., Ambrosio, L., 2013. Novel biomimetic thermosensitive β-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering. Journal of Biomedical Materials Research. 101, 2984–2993. https://doi.org/10.1002/jbm.a.34592.spa
dc.relation.referencesDhara, O., Chakrabarti, P., 2020. Lipid based nutaceuticals and nanoformulations: emerging applications in pharmaceuticals and cosmetics industries in: Guha, A. (Ed), Biological Sciences: impacts on modern civilization, current and future challenges. New Delhi publishers, New Delhi pp. 21- 36.spa
dc.relation.referencesDhyani, A., Prajapati, P., Chopra, R., Garg, M., Singh, P., 2021. Physicochemical Characteristics and Thermal Stability of Perilla Seed Oil of Indian Origin. Journal of Pharmaceutical Research International. 501-511. https://doi.org/10.9734/jpri/2021/v33i60a34511.spa
dc.relation.referencesDomínguez, I.L., Azuara, E., Vernon-Carter, E.J., Beristain, C.I., 2007. Thermodynamic analysis of the effect of water activity on the stability of macadamia nut. Journal of Food Engineering. 81, 566-571. https://doi.org/10.1016/j.jfoodeng.2006.12.012.spa
dc.relation.referencesEuropean Directorate for the Quality of Medicines and Healthcare Council of Europe (EQDM), 2023. European Pharmacopoeia, 11th ed. EQDM Council of Europe, Strasbourg.spa
dc.relation.referencesEsposito, C.L., Kirilov, P., Roullin, G. V, 2018. Organogels, promising drug delivery systems an update of state-of-the-art and recent applications. Journal of Controlled Release 271, 1–20. https://doi.org/10.1016/j.jconrel.2017.12.019spa
dc.relation.referencesFadda, A., Sanna, D., Sakar, E.H., Gharby, S., Mulas, M., Medda, S., Yesilcubuk, N.S., Karaca, A.C., Gozukirmizi, C.K., Lucarini, M., Lombardi-Boccia, G., Diaconeasa, Z., Durazzo, A., 2022. Innovative and sustainable technologies to enhance the oxidative stability of vegetable oils. Sustainability. 14, 1-29. https://doi.org/10.3390/su14020849.spa
dc.relation.referencesMasiero, JF., Barbosa, E.J., de Oliveira Macedo, L., de Souza, A., Nishitani Yukuyama, M., Arantes, G.J., Bou-Chacra, N.A., 2021. Vegetable oils in pharmaceutical and cosmetic lipid-based nanocarriers preparations. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2021.113838.spa
dc.relation.referencesFameau, A.L., Arnould, A., Saint-Jalmes, A., 2014. Responsive self-assemblies based on fatty acids. Current Opinion in Colloid & Interface Science. 19, 471-479. https://doi.org/10.1016/j.cocis.2014.08.005.spa
dc.relation.referencesFanali, C., Dugo, L., Cacciola, F., Beccaria, M., Grasso, S., Dachà, M., Dugo, P., Mondello, L., 2011. Chemical characterization of Sacha inchi (Plukenetia volubilis L.) oil. Journal of Agricultural and Food Chemistry Chem. 59, 13043-13049. https://doi.org/10.1021/jf203184y.spa
dc.relation.referencesFereidoon, S., Ying, Z., 2010. Lipid oxidation and improving the oxidative stability. Chemical Society Reviews. 39, 4067-4079. https://doi.org/10.1039/b922183m.spa
dc.relation.referencesFontana, A.J., 2007. Measurement of water activity, moisture sorption isotherms, and moisture content of foods, in: Barbosa-Canovas, G. V, Schmidt, S.J., Labuza, T.P., Fontana, A.J. (Eds.), Water Activity in Foods Fundamentals and Applications. Blacwell publishing profesional, Iowa, pp. 155-172.spa
dc.relation.referencesFontana, A.J., 2020. Apendice A, in: Barbosa, G. V, Fontana, A.J., Schmidt, S.J., Labuza, T.P., (Eds) Water Activity in Foods Fundamentals and applications. Jhon Weley and Sons., Chicago. pp 553.spa
dc.relation.referencesFontana, A.J., Campbell, C.S., 2004. water activity, in: Nollet, L.M.L. (Ed.), Handbook of Food Analysis, Physical Characterization and Nutrient Analysis. Marcel Dekker, Inc, New York, pp. 39–54.spa
dc.relation.referencesFrankel, N., 1980. Lipid oxidation. Journal of Lipid Research 19, 1–22. https://doi.org/10.1016/0163-7827(80)90006-5spa
dc.relation.referencesGharby, S., 2022. Refining Vegetable Oils: Chemical and Physical Refining. Scientific World Journal. 2022(1), 6627013. https://doi.org/10.1155/2022/6627013.spa
dc.relation.referencesGhelichi, S., Hafjathalian, M., Yesiltas, B., Sorense, A.-D.M., García, P.J., Jacobsen, C., 2023. oxidation and oxidative stability emulsions. Comprehensive Reviews. 22, 1864-1901. https://doi.org/10.1111/1541-4337.13134spa
dc.relation.referencesGirard, L., Herath, K., Escobar, H., Reimschuessel, R., Ceric, O., Jayasuriya, H., 2021. Development of UHPLC/Q-TOF analysis method to screen glycerin for direct detection of process contaminats 3-Monochloropropane-1,2-diol esters (3-MCPDEs) and glycidyl esters (GEs). Molecules. 26(9), 2449. https://doi.org/https://doi.org/10.3390/molecules26092449.spa
dc.relation.referencesGoodarzi, F., Zendehboudi, S., 2019. A comprehensive review on emulsions and emulsion stability in chemical and energy industries. Canadian Journal of Chemical Engineering. 97, 281-309. https://doi.org/10.1002/cjce.23336.spa
dc.relation.referencesGoyal, A., Tanwar, B., Kumar Sihag, M., Sharma, V., 2022. Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals. Food Chemistry. 373, 131459. https://doi.org/10.1016/j.foodchem.2021.131459.spa
dc.relation.referencesGuillén, M.D., Cabo, N., 2002. Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food Chemistry. 77, 503–510. https://doi.org/10.1016/S0308-8146(01)00371-5spa
dc.relation.referencesGuillén, M.D., Ruiz, A., Cabo, N., Chirinos, R., Pascual, G., 2003. Characterization of sacha inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR. comparison with linseed oil. JAOCS, Journal of the American Oil Chemists' Society. 8, 755-762. https://doi.org/10.1007/s11746-003-0768-z.spa
dc.relation.referencesGutiérrez, L.F., Quiñones-Segura, Y., Sanchez-Reinoso, Z., Díaz, D.L., Abril, J.I., 2017. Physicochemical properties of oils extracted from-γ irradiated Sacha Inchi (Plukenetia volubilis L.) seeds. Food Chemistry. 237, 581-587. https://doi.org/10.1016/j.foodchem.2017.05.148.spa
dc.relation.referencesGutierrez, L.F., Rosada, L.M., Jiménez, A., 2011. Chemical composition of Sacha Inchi (plukenetiavolubilis L.) seeds and characteristics of their lipid fraction. Grasas y Aceites 62, 76–83.spa
dc.relation.referencesGutiérrez, L.F., Sanchez-Reinoso, Z., Quiñones-Segura, Y., 2019. Effects of Dehulling Sacha Inchi (Plukenetia volubilis L.) Seeds on the Physicochemical and Sensory Properties of Oils Extracted by Means of Cold Pressing. JAOCS, Journal of the American Oil Chemists’ Society 96, 1187–1195. https://doi.org/10.1002/aocs.12270.spa
dc.relation.referencesHe, X., Fowler, A., Toner, M., 2006. Water activity and mobility in solutions of glycerol and small molecular weight sugar: implication for cryo- and lyopreservation. Journal of Applied Physics. 100(7). https://doi.org/doi.10.1063/1.2336304.spa
dc.relation.referencesHolman, R.T., Elmer, O.C., 1947. The rates of oxidation of unsaturated fatty acids and esters. Journal of the American oil chemist society. 127-129. https://doi.org/https://doi.org/10.1007/BF02643258.spa
dc.relation.referencesHomma, S., Fujimaki M., 1982. Effect of Water Activity on Lipid Oxidation and Browning of Kori-tofu. Journal of Agricultural and biological chemistry. 46, 301-304.spa
dc.relation.referencesHu, Y., Zhao, G., Zhang, M., Zhou, D., Zhu, B., 2021. Potential adverse health effects of dietary lipid oxidation products. Journal of Food Bioactives. 15. https://doi.org/10.31665/jfb.2021.15282.spa
dc.relation.referencesIbrahim, M.M., Hafez, S.A., Mahdy, M.M., 2013. Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem hydrochloride. Asian Journal of Pharmaceutical Sciences. 8, 48-57. https://doi.org/10.1016/j.ajps.2013.07.006.spa
dc.relation.referencesImre, L., 1963. The measurement of equilibrium relative humidity, Periodica Polytechnica Electrical Engineering (Archives). Budapest.spa
dc.relation.referencesIonescu, N., Ivopol, G.-C., Neagu, M., Popescu, M., Meghea, A., 2015. Fatty acids and antioxidant activity in vegetable oils used in cosmetic formulations. U.P.B. Sci. Bull. 77, 39-48.spa
dc.relation.referencesIxtaina, V.Y., Nolasco, S.M., Tomás, M.C., 2012. Oxidative stability of chia (Salvia hispanica L.) seed oil: Effect of antioxidants and storage conditions. JAOCS, Journal of the American Oil Chemists' Society. 89, 1077-1090. https://doi.org/10.1007/s11746-011-1990-x.spa
dc.relation.referencesJitchaiyapoom, T., Panjapornpon, C., Bardeeniz, S., Hussain, M.A., 2024. Production capacity prediction and optimization in the glycerin purification process: a simulation-assisted few-shot learning approach. Processes. 12(4), 661. https://doi.org/10.3390/pr12040661.spa
dc.relation.referencesJohnson, D.R., Decker, E.A., 2015. The role of oxygen in lipid oxidation reactions: A review. Annual Review of Food Science and Technology. 6, 171-190. https://doi.org/10.1146/annurev-food-022814-015532.spa
dc.relation.referencesKale, S.N., Deore, S.L., 2017. Emulsion micro emulsion and nano emulsion: A review. Systematic Reviews in Pharmacy. 8, 39-47. https://doi.org/10.5530/srp.2017.1.8.spa
dc.relation.referencesKarel, M., 1980. Lipid oxidation, secondary reactions and water activity of foods, in: Autoxidation in Food and Biological Systems. Springer Science and Business Media B.V., pp. 191-206.spa
dc.relation.referencesKasimoglu Z, Tontul I, Soylu A, Gulen K, Topuz A. The oxidative stability of flavoured virgin olive oil: the effect of the water activity of rosemary. J Food Measurement and Characterization. 2018; 12: 2080-2086.spa
dc.relation.referencesKhullar, R., Kumar, D., Seth, N., Saini, S., 2012. Formulation and evaluation of mefenamic acid emulgel for topical delivery. Saudi Pharmaceutical Journal 20, 63-67. https://doi.org/10.1016/j.jsps.2011.08.001.spa
dc.relation.referencesKiefer, J., Frank, K., Schuchmann, H.P., 2011. Attenuated total reflection infrared (ATR-IR) spectroscopy of a water-in-oil emulsion. Applied Spectroscopy 65, 1024-1028. https://doi.org/10.1366/11-06323.spa
dc.relation.referencesKim, J.Y., Yi, B.R., Lee, C., Gim, S.Y., Kim, M.J., Lee, J.H., 2016. Effects of pH on the rates of lipid oxidation in oil-water system. Applied Biological Chemistry. 59, 157-161. https://doi.org/10.1007/s13765-015-0146-3.spa
dc.relation.referencesKirilov, P., Anh Khanh, Le., C., Rum, S., Villa, C., Alice Denis, Halima Rabehi, Marek Haftek, Fabrice Pirot, 2015. Organogels for cosmetic and dermo-cosmetic applications-classification, preparation and characterization of organogel formulations-part 1. Household and personal care today. 10, 15–19.spa
dc.relation.referencesKittibunchakul, S., Hudthagosol, C., Sanporkha, P., Sapwarobol, S., Temviriyanukul, P., Suttisansanee, U., 2022. Evaluation of Sacha Inchi (Plukenetia volubilis L.) by-products as valuable and sustainable sources of health benefits. Horticulturae. 8. https://doi.org/10.3390/horticulturae8040344.spa
dc.relation.referencesKittipongpittaya, K., Panya, A., McClements, D.J., Decker, E.A., 2013. Impact of free fatty acids and phospholipids on reverse micelles formation and lipid oxidation in bulk oil.spa
dc.relation.referencesJAOCS, Journal of the American Oil Chemists' Society. 91, 453-462. https://doi.org/10.1007/s11746-013-2388-8.spa
dc.relation.referencesKlooster, S. ten, Schroën, K., Berton-Carabin, C., 2023. Lipid oxidation products in model food emulsions: do they stay in or leave droplets, that's the question. Food Chemistry. 405, 134992. https://doi.org/10.1016/j.foodchem.2022.134992.spa
dc.relation.referencesKou, Y., Schmidt, S.J., 1999. Vapor pressure and water activity measurements of saturated salt solutions made with D2O at 20 °C. Food Chem 66, 253–255.spa
dc.relation.referencesLabuza, T.P., Altunakar, B., 2020. Water Activity Prediction and Moisture Sorption Isotherms, in: Water Activity in Foods Fundamentals and Applications. p. 172.spa
dc.relation.referencesLabuza, T.P., Dugan, L.R., 1971. Kinetics of lipid oxidation in foods. C R C Critical Reviews in Food Technology. 2, 355-405. https://doi.org/10.1080/10408397109527127.spa
dc.relation.referencesLabuza, T.P., Maloney, J.F., Karel, M., 1966. Autoxidation of methyl linoleate in freeze-dried model systems II. Effect of water on cobal-catalyzed oxidation. J Food Sciences. 31, 878–4. https://doi.org/https://doi.org/10.1111/j.1365-2621.1966.tb03264.x.spa
dc.relation.referencesLatreille, B., Paquin, P., 1990. Evaluation of emulsion stability by centrifugation with conductivity measurements. J Food Sciences 55, 1666–1672. https://doi.org/https://doi.org/10.1111/j.1365-2621.1990.tb03595.x.spa
dc.relation.referencesLehtinen, O.P., Nugroho, R.W.N., Lehtimaa, T., Vierros, S., Hiekkataipale, P., Ruokolainen, J., Sammalkorpi, M., Österberg, M., 2017. Effect of temperature, water content and free fatty acid on reverse micelle formation of phospholipids in vegetable oil. Colloids Surf B Biointerfaces. 160, 355-363. https://doi.org/10.1016/j.colsurfb.2017.09.050.spa
dc.relation.referenceslessington, T., Theofel, C.G., Harris, L.J., 2013. A dry-inoculation method for nut kernels. Food Microbiology. 33, 292–297. https://doi.org/https://doi.org/10.1016/j.fm.2012.09.009.spa
dc.relation.referencesLi, H., Fan, Y.W., Li, J., Tang, L., Hu, J.N., Deng, Z.Y., 2013. Evaluating and predicting the oxidative stability of vegetable oils with different fatty acid compositions. Journal of Food Science. 78(4), H633-H641. https://doi.org/10.1111/1750-3841.12089.spa
dc.relation.referencesLi, R., Dai, T., Zhou, W., Fu, G., Wan, Y., McClements, D.J., Li, J., 2020. Impact of pH, ferrous ions, and tannic acid on lipid oxidation in plant-based emulsions containing saponin-coated flaxseed oil droplets. Food Research International. 136, 109618. https://doi.org/10.1016/j.foodres.2020.109618.spa
dc.relation.referencesLiang, L., Chen, F., Wang, X.-G., Jin, Q., Decker, E.A., Mcclements, D.J., 2017. Physical and oxidative stability of flaxseed oil-in-water emulsions fabricated from sunflower lecithins: Impact of blending lecithins with different phospholipid profiles. Journal of agricultural and food chemistry, 65(23), 4755-4765. https://doi.org/10.1021/acs.jafc.7b01469spa
dc.relation.referencesLight, K., Karboune, S., 2022. Emulsion, hydrogel and emulgel systems and novel applications in cannabinoid delivery: a review. Critical Reviews in Food Science and Nutrition. 62(29), 8199-8229. https://doi.org/10.1080/10408398.2021.1926903.spa
dc.relation.referencesLima, L.L., Bispo-dos-Santos, K., Trevisan, I.M.C., Rapôso, C., Velho, P.E.N.F., Bagatin, E., Rezende, R.A., da Silva, J.V.L., Ricci Leonardi, G., 2023. Developing botanical formulations for sustainable cosmetics. Cosmetics. 10(6), 159. https://doi.org/10.3390/cosmetics10060159.spa
dc.relation.referencesLiu, Lingyi, Jin, Z., Wang, M., Shen, W., Zhu, Z., Wang, Z., Liu, Lianliang, 2018. W/O nano-emulsions with olive leaf phenolics improved oxidative stability of sacha inchi oil. European Journal of Lipid Science and Technology. 120(5), 1700471. https://doi.org/10.1002/ejlt.201700471spa
dc.relation.referencesLiu, Q., Xu, Y.K., Zhang, P., Na, Z., Tang, T., Shi, Y.X., 2014. Chemical composition and oxidative evolution of Sacha Inchi (Plukentia volubilis L.) oil from Xishuangbanna (China). Grasas y Aceites. 65(1), e012. https://doi.org/10.3989/gya.075713.spa
dc.relation.referencesLourith, N., Kanlayavattanakul, M., Chaikul, P., 2024. Sacha Inchi: The Promising Source of Functional Oil for Anti-Aging Product. Journal of Oleo Science. 73, 429–435. https://doi.org/10.5650/jos.ess23147.spa
dc.relation.referencesLoza-Rodríguez, N., Millán-Sánchez, A., López, O., 2023. A biocompatible lipid-based bigel for topical applications. European Journal of Pharmaceutics and Biopharmaceutics. 190, 24–34. https://doi.org/10.1016/J.EJPB.2023.07.004.spa
dc.relation.referencesLu, W.C., Chiu, C.S., Chan, Y.J., Mulio, A.T., Li, P.H., 2023. New perspectives on different Sacha inchi seed oil extractions and its applications in the food and cosmetics industries. Critical Reviews in Food Science and Nutrition. 1-19. https://doi.org/10.1080/10408398.2023.2276882spa
dc.relation.referencesLupi, F.R., Gentile, L., Gabriele, D., Mazzulla, S., Baldino, N., de Cindio, B., 2015. Olive oil and hyperthermal water bigels for cosmetic uses. Journal of Colloid and Interface Science. 459, 70-78. https://doi.org/10.1016/j.jcis.2015.08.013.spa
dc.relation.referencesMadhujith, T., Sivakanthan, S., 2019. Oxidative stability of edible plant oils, in: Reference series in phytochemistry. Springer Science and Business Media B.V., pp. 529-551. https://doi.org/10.1007/978-3-319-78030-6_94.spa
dc.relation.referencesManeffa, A.J., Stenner, R., Matharu, A.S., Clark, J.H., Matubayasi, N., Shimizu, S., 2017. Water activity in liquid food systems: A molecular scale interpretation. Food Chemistry. 237, 1133–1138.spa
dc.relation.referencesManoharan, C., Basarkar, A., Singh, J., 2010. Various pharmaceutical disperse systems, in: Pharmaceutical Suspensions: From Formulation Development to Manufacturing. Springer New York, pp. 1-37. https://doi.org/10.1007/978-1-4419-1087-5_1.spa
dc.relation.referencesMaquirriain, M.A., Tonutti, L.G., Querini, C.A., Pisarello, M.L., 2022. Crude glycerine characterization: analysis of free fatty acids, fatty acid methyl esters, and acylglycerides. Biomass Convers Biorefinery. 12, 4889-4899. https://doi.org/10.1007/s13399-020-00962-0spa
dc.relation.referencesMartín-Illana, A., Notario-Pérez, F., Cazorla-Luna, R., Ruiz-Caro, R., Bonferoni, M.C., Tamayo, A., Veiga, M., 2022. Bigels as drug delivery systems: From their components to their applications. Drug Discover Today, 27, 1008-1026. https://doi.org/10.1016/j.drudis.2021.12.011.spa
dc.relation.referencesMartinović, N., Polak, T., Ulrih, N.P., Abramovic, H., 2020. Mustard seed: phenolic composition and effects on lipid oxidation in oil, oil-in-water emulsion and oleogel. Industrial Crops and Products. 156, 112851. https://doi.org/10.1016/j.indcrop.2020.112851.spa
dc.relation.referencesMas-Bargues, C., Escrivá, C., Dromant, M., Borrás, C., Viña, J., 2021. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Archives of Biochemistry and Biophysics. 709, 108941. https://doi.org/10.1016/J.ABB.2021.108941.spa
dc.relation.referencesMcClements, D.J., 2012. Advances in fabrication of emulsions with enhanced functionality using structural design principles. Current Opinion in Colloid & Interface Science. 17, 235-245 https://doi.org/10.1016/j.cocis.2012.06.002".spa
dc.relation.referencesMcClements, D.J., Decker, E.A., 2000. Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of Food Sciences 65, 1270-1282. https://doi.org/10.1111/j.1365-2621.2000.tb10596.x.spa
dc.relation.referencesMeissner, P.M., Keppler, J.K., Stöckmann, H., Schrader, K., Schwarz, K., 2019. Influence of water addition on lipid oxidation in protein oleogels. European Journal of Lipid Science and Technology. 121. https://doi.org/10.1002/ejlt.201800479.spa
dc.relation.referencesMilutinov, J., Krstonošic, V., Cirin, D., Pavlovic, N., 2023. Emulgels: promising carrier systems for food ingredients and drugs. Polymers. 15(10), 2302. https://doi.org/10.3390/polym15102302.spa
dc.relation.referencesMiñana, M., Goncalves, E., 2011. Cuaderno FIRP S372-A. Aplicaciones Cosméticas y Farmacéuticas de los Surfactantes. Mérida.spa
dc.relation.referencesMishra, S., Anand, S., Pandey, A., 2024. Vegetable oils in pharmaceutical industry, in: Bajpai, D., Gupta, A., Agarwal, P., Mishra, A., Kumar, A. (Eds.), Oils and fats as raw materials for industry. John Wiley & Sons, Hoboken, USA, pp. 231-252.spa
dc.relation.referencesMiyashita, K., Tagaki, T., 1986. Study on the oxidative rate and prooxidant activity of free fatty acids. Journal of the American Oil Chemists' Society. 63, 1380-1384. https://doi.org/10.1007/BF02679607.spa
dc.relation.referencesMuangrat, R., Veeraphong, P., Chantee, N., 2018. Screw press extraction of Sacha inchi seeds: Oil yield and its chemical composition and antioxidant properties. Journal of Food Process Preservation. 42(6), e13635 https://doi.org/10.1111/jfpp.13635.spa
dc.relation.referencesMukherjee, S., Majee, S.B., Biswas, G.R., 2019. Formulation and in vitro characterization of soybean oil-hpmck4m based bigel matrix for topical drug delivery. International Journal of Applied Pharmaceutics. 11, 33-38. https://doi.org/10.22159/ijap.2019v11i5.33987.spa
dc.relation.referencesMuncan, J., Kovacs, Z., Pollner, B., Ikuta, K., Ohtani, Y., Terada, F., Tsenkova, R., 2021. Near infrared aquaphotomics study on common dietary fatty acids in cow's liquid, thawed milk. Food Control. 122, 107805. https://doi.org/10.1016/j.foodcont.2020.107805.spa
dc.relation.referencesMurdan, S., Gregoriadis, G., Florence, A.T., 1999. Novel sorbitan monostearate organogels. Journal of Pharmaceutical Sciences. 88, 608-614. https://doi.org/10.1021/js980342r.spa
dc.relation.referencesMusakhanian, J., Rodier, J.-D., Dave, M., 2022. Oxidative stability in lipid formulations: a review of the mechanisms, drivers, and inhibitors of oxidation. AAPS pharma SciTech. 14–30. https://doi.org/doi.org/10.1208/s12249-022-02282-0.spa
dc.relation.referencesNadai, C., Giacomini, A., Corich, V., 2021. The addition of wine yeast Starmerella bacillaris to grape skin surface influences must fermentation and glycerol production. Oeno One 55, 47–55. https://doi.org/10.20870/oeno-one.2021.55.2.4556.spa
dc.relation.referencesNadarzynski, A., Scholz, J., Schröder, M.S., 2022. Skin Barrier Enhancing Alternative Preservation Strategy of O/W Emulsions by Water Activity Reduction with Natural Multifunctional Ingredients. Cosmetics. 9(3), 53. https://doi.org/10.3390/cosmetics9030053.spa
dc.relation.referencesNakagawa, H., Oyama, T., 2019. Molecular Basis of Water Activity in Glicerol-Water Mixtures. Frontiers in chemistry. 7, 731. https://doi.org/10.3389/fchem.2019.00731.spa
dc.relation.referencesNascimento, T.A. do, Lopes, T.I.B., Nazario, C.E.D., Oliveira, S.L., Alcantara, G.B., 2021. Vegetable oils: Are they true? A point of view from ATR-FTIR, 1H NMR, and regiospecific analysis by 13C NMR. Food Research International. 144, 110362. https://doi.org/10.1016/j.foodres.2021.110362.spa
dc.relation.referencesNavarro-Lupión, F.J., Bustamante, P., Escalera, B., 2005. Relationship between swelling of hydroxypropylmethylcellulose and the Hansen and Karger partial solubility parameters. Journal of pharmaceutical sciences, 94(7), 1608-1616. https://doi.org/10.1002/jps.20370.spa
dc.relation.referencesNawar, W.W., 1996. Lipids, in: Fennema, O.R. (Ed.), Fennema's O.R. Marcel Dekker, New York, pp. 225-314.spa
dc.relation.referencesNelson, K.A., Labuza, T.P., 1992. Relationship Between Water and Lipid Oxidation Rates. pp. 93-103. https://doi.org/10.1021/bk-1992-0500.ch006.spa
dc.relation.referencesNollet, M.L., 2024. Food bioactive compounds an overview and health benefits, In: Nollet L., Ahmad, J. (Eds), Bioactive compounds from food benefits and analysis. CRC Press, Taylor & Francis Group, Boca Raton FL, pp. 3-29.spa
dc.relation.referencesNorhazlindah, M.F., Jahurul, M.H.A., Norliza, M., Shihabul, A., Islam, S., Nyam, K.L., Zaidul, I.S.M., 2023. Techniques for extraction, characterization, and application of oil from sacha inchi (Plukenetia volubilis L.) seed: a review. Journal of Food Measurement and Characterization. 17(1), 904-915. https://doi.org/10.1007/s11694-022-01663-0.spa
dc.relation.referencesNugroho, R.W.N., Outinen, M., Toikkanen, O., Heino, A., Sawada, D., Rojas, O.J., 2021. Effect of water activity on the functional, colloidal, physical, and microstructural properties of infant formula powder. Journal of Colloid Interface Sciences. 586, 56-66. https://doi.org/10.1016/j.jcis.2020.10.069.spa
dc.relation.referencesOlaimat, A.N., Osaili, T.M., Al-Holy, M.A., Al-Nabulsi, A.A., Obaid, R.S., Alaboudi, A.R., Ayyash, M., Holley, R., 2020. Microbial safety of oily, low water activity food products: A review. Food Microbiology. 92, 103571. https://doi.org/10.1016/J.FM.2020.103571.spa
dc.relation.referencesParaskevopoulou, D., Boskou, D., Paraskevopoulou, A., 2007. Oxidative stability of olive oil-lemon juice salad dressings stabilized with polysaccharides. Food Chemistry. 101, 1197-1204. https://doi.org/10.1016/j.foodchem.2006.03.022.spa
dc.relation.referencesPedrielli, P., Skibsted, L.H., 2002. Antioxidant synergy and regeneration effect of quercetin, (-)-epicatechin, and (+)-catechin on α-tocopherol in homogeneous solutions of peroxidating methyl linoleate. Journal of Agricultural and Food Chemistry. 50, 7138-7144. https://doi.org/10.1021/jf020437l.spa
dc.relation.referencesPenagos-Calvete, D., Duque, V., Marimon, C., Parra, D.M., Restrepo-Arango, S.K., Scherf-Clavel, O., Holzgrabe, U., Montoya, G., Salamanca, C.H., 2019. Glycerolipid composition and advanced physicochemical considerations of sacha inchi oil toward cosmetic products formulation. Cosmetics. 6, 1-15. https://doi.org/10.3390/CosmeticS6040070.spa
dc.relation.referencesPérez-Mateos, M., Montero, P., Gómez-Guillén, M.C., 2009. Formulation and stability of biodegradable films made from cod gelatin and sunflower oil blends. Food Hydrocolloids, 23(1), 53-61. https://doi.org/10.1016/j.foodhyd.2007.11.011.spa
dc.relation.referencesPerioli, L., Ambrogi, V., Venezia, L., Giovagnoli, S., Pagano, C., Rossi, C., 2009. Formulation studies of benzydamine mucoadhesive formulations for vaginal administration. Drug development and industrial pharmacy, 35(7), 769-779. https://doi.org/10.1080/03639040802592435spa
dc.relation.referencesPoiana, M.A., Ungureanu, C.M., Moigradean, D., Dogaru, D., Stoin, D., Hadaruga, N.-G., Raba, D.-N., Dumbrava, D.-G., Moldovan, C., Rivis, A., 2021. Improving the oxidative stability of edible oils: current trends, challenges and solutions. Journal of agroalimentary process and technology. 27, 473-482.spa
dc.relation.referencesPoyato, C., Navarro-Blasco, I., Calvo, M.I., Cavero, R.Y., Astiasarán, I., Ansorena, D., 2013. Oxidative stability of O-W and W-O-W emulsions Effect of lipid composition and antioxidant polarity. Food Research Internationa.l 51, 132-140.spa
dc.relation.referencesPrior, B.A., 1979. Measurement of water activity in foods: a review. Journal of Food protection. 42(8), 668-674. https://doi.org/10.4315/0362-028X-42.8.668spa
dc.relation.referencesPrior, B.A., Casaleggio, C., Van Vuuren, H.J.J., 1977. Psychrometric determination of water activity in the high aw range, Journal of Food Protection. 40(8), 537-539. https://doi.org/10.4315/0362-028X-42.8.668.spa
dc.relation.referencesQuek, S.Y., Chok, N.K., Swedlund, P., 2007. The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46(5), 386-392. https://doi.org/10.4315/0362-028X-40.8.537spa
dc.relation.referencesRabasco-Alvarez, A.M., González-Rodríguez, M.L., 2000. Lipids in pharmaceutical and cosmetics preparations. Grasas y aceites 51, 74-96. https://doi.org/https://doi.org/10.3989/gya.2000.v51.i1-2.409.spa
dc.relation.referencesRaeisi Estabragh, M.A., Sajadi Bami, M., Dehghannoudeh, G., Noudeh, Y.D., Moghimipour, E., 2023. Cellulose derivatives and natural gums as gelling agents for preparation of emulgel-based dosage forms: A brief review. International Journal of Biological Macromolecules, 241, 124538. https://doi.org/10.1016/j.ijbiomac.2023.124538.spa
dc.relation.referencesRard, J.A., 2019. The isopiestic method: 100 years later and still in use. Journal of Solution Chemistry. 48(3), 271-282. https://doi.org/10.1007/s10953-019-00848-4.spa
dc.relation.referencesRave M, Echeverri J, Salamanca C. Improvement of the physical stability of oil-in-water nanoemulsions elaborated with Sacha inchi oil employing ultra-high-pressure homogenization. Journal of Food Engineering. 273, 109801. https://doi.org/10.1016/j.jfoodeng.2019.109801spa
dc.relation.referencesRayner, M., Marku, D., Eriksson, M., Sjöö, M., Dejmek, P., Wahlgren, M., 2014. Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 458, 48-62. https://doi.org/10.1016/j.colsurfa.2014.03.053.spa
dc.relation.referencesRazzaq, F.A., Asif, M., Asghar, S., Iqbal, M.S., Khan, I.U., Khan, S.U.D., Irfan, M., Syed, H.K., Khames, A., Mahmood, H., Ibrahim, A.Y., El Sisi, A.M., 2021. Glimepiride-loaded nanoemulgel; development, in vitro characterization, ex vivo permeation and in vivo antidiabetic evaluation. Cells. 10(9), 2404. https://doi.org/10.3390/cells10092404.spa
dc.relation.referencesReid, D.S., 2007. Water activity: fundamentals and relationship, in: Barbosa-Cánovas, G. V, Fontana, A.J., Schmidt, S.J., Labuza, T.P. (Eds.), Water Activity in Foods. Blackwell, Ames, pp. 14–28.spa
dc.relation.referencesRodríguez, G., Villanueva, E., Glorio, P., Baquerizo, M., 2015. Oxidative stability and estimate of the shelf life of sacha inchi (Plukenetia volubilis L.) oil. Scientia agropecuaria. 155-163. https://doi.org/10.17268/sci.agropecu.2015.03.02.spa
dc.relation.referencesRodzi, N.A.R.M., Lee, L.K., 2022. Sacha Inchi (Plukenetia Volubilis L.): recent insight on phytochemistry, pharmacology, organoleptic, safety and toxicity perspectives. Heliyon. 8(9). https://doi.org/10.1016/j.heliyon.2022.e10572.spa
dc.relation.referencesRohman, A., Che Man, Y.B., 2013. Application of FTIR spectroscopy for monitoring the stabilities of selected vegetable oils during thermal oxidation. International Journal of Food Properties. 16(7), 1594-1603. https://doi.org/10.1080/10942912.2011.603874.spa
dc.relation.referencesRohman, A., Man, Y.B.C., 2010. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Research International. 43, 886-892. https://doi.org/10.1016/j.foodres.2009.12.006.spa
dc.relation.referencesRoos, Y.H., 2020. State and supplemented phase diagrams for the characterization of food, in: Barbosa Cánovas, G. V, Fontana, A.J., Schmidt, S.J., Labuza, T.P. (Eds.), Water activity in foods fundamentals and applications. John Wiley and Sons Inc, pp. 45-60.spa
dc.relation.referencesSadeghi, R., Shahebrahimi, Y., 2011. Vapor-liquid equilibria of aqueous polymer solutions from vapor-pressure osmometry and isopiestic measurements. Journal of Chemical & Engineering Data, 56(4), 789-799. https://doi.org/10.1021/je100178s.spa
dc.relation.referencesSaengsorn, K., Jimtaisong, A., 2017. Determination of hydrophilic–lipophilic balance value and emulsion properties of sacha inchi oil. Asian Pacific Journal of Tropical Biomedicine. 7(12), 1092-1096. https://doi.org/10.1016/j.apjtb.2017.10.011.spa
dc.relation.referencesSagiri, S.S., Singh, V.K., Kulanthaivel, S., Banerjee, I., Basak, P., Battachrya, M.K., Pal, K., 2015. Stearate organogel-gelatin hydrogel based bigels: Physicochemical, thermal, mechanical characterizations and in vitro drug delivery applications. Journal of the mechanical behavior of biomedical materials, 43, 1-17. https://doi.org/10.1016/j.jmbbm.2014.11.026.spa
dc.relation.referencesSahoo, S., Kumar, N., Bhattacharya, C., Sagiri, S.S., Jain, K., Pal, K., Ray, S.S., Nayak, B., 2011. Organogels: Properties and applications in drug delivery. Designed monomers and polymers.14(2), 95-108. https://doi.org/10.1163/138577211X555721.spa
dc.relation.referencesSahoo, S., Singh, V.K., Uvanesh, K., Biswal, D., Anis, A., Rana, U.A., Al-Zahrani, S.M., Pal, K., 2015. Development of ionic and non-ionic natural gum-based bigels: Prospects for drug delivery application. Journal of Applied Polymer Science, 132(38). https://doi.org/10.1002/app.42561.spa
dc.relation.referencesSantillana Farakos, S.M., Frank, J.F., Schaffner, D.W., 2013. Modeling the influence of temperature, water activity and water mobility on the persistence of Salmonella in low-moisture foods. International journal of food microbiology. 166(2), 280-293. https://doi.org/10.1016/J.Ijfoodmicro.2013.07.007.spa
dc.relation.referencesSartori, A.G. de O., de Alencar, S.M., Bastos, D.H.M., d'Arce, M.A.B.R., Skibsted, L.H., 2018. Effect of water activity on lipid oxidation and nonenzymatic browning in Brazil nut flour. European Food Research and Technology 244, 1657-1663. https://doi.org/10.1007/s00217-018-3078-4.spa
dc.relation.referencesSato, A.C.K., Moraes, K.E.F.P., Cuhna, R.L., 2014. Development of gelled emulsions with improved oxidative and pH stability. Food Hydrocoll 34, 184–192.spa
dc.relation.referencesSato, T., Hamada, Y., Sumikawa, M., Araki, S., Yamamoto, H., 2014. Solubility of oxygen in organic solvents and calculation of the Hansen solubility parameters of oxygen. Industrial & Engineering Chemistry Research, 53(49), 19331-19337. https://doi.org/10.1021/ie502386t.spa
dc.relation.referencesSawalha, H., Den Adel, R., Venema, P., Bot, A., Flöter, E., Van Der Linden, E., 2012. Organogel-emulsions with mixtures of β-sitosterol and β-oryzanol: Influence of water activity and type of oil phase on gelling capability. Journal of Agricultural and Food Chemistry 60, 3462-3470. https://doi.org/10.1021/jf300313f.spa
dc.relation.referencesSblani, S.S., Rahman, S., Labuza, T.P., 2001. Measurement of water activity using isopiestic method. Current protocol in food analytical chemistry A2.3.1- A2.3.10.spa
dc.relation.referencesSchaich, K.M., 2005. Lipid oxidation: theoretical aspects, in: Shahidi, F. (Ed.), Bailey's industrial oil and fat products. John Wiley and Sons Inc, New Jersey, pp. 269-355.spa
dc.relation.referencesScott, W.J., 1953. Water relations of staphylococcus aureus at 30°C. Australian Journal Biological Sciences 6, 549–564. https://doi.org/10.1071/BI9530549spa
dc.relation.referencesScott, W.J., 1957. Water Relations of Food Spoilage Microorganisms. Advances in Food Research 7, 93–127. https://doi.org/10.1016/S0065-2628(08)60247-5spa
dc.relation.referencesScrimgeour, C., 2005. Chemistry of fatty acids, in: Shahidi, F. (Ed.), Bailey’s Industrial Oil and Fat Products. John Wiley and Sons Inc, New Jersey, pp. 1–45.spa
dc.relation.referencesSettapong, A., Wattanachant, C., 2012. Quantitative analysis of chemical compositions from various sources of crude glycerine, Chiang Mai University Journal of Natural Sciences, 11, 157-161.spa
dc.relation.referencesShafiur, M., Sablani, S.S., 2009. Water activity measurement methods of foods, in: Rahman, S.M. (Ed.), Food properties handbook. Taylor and Francis Inc., pp. 9-32.spa
dc.relation.referencesShahidi, F., 2005. Bailey's industrial oil and fat products, Six. ed, Bailey's Industrial Oil and Fat Products. John Wiley and Sons Inc, New Jersey. https://doi.org/10.1002/047167849x.bio005.spa
dc.relation.referencesShakeel, A., Farooq, U., Gabriele, D., Marangoni, A.G., Lupi, F.R., 2021. Bigels and multi-component organogels: An overview from rheological perspective. Food Hydrocolloids. 111, 106190. https://doi.org/10.1016/j.foodhyd.2020.106190spa
dc.relation.referencesSharma, V., Nayak, S.K., Paul, S.R., Choudhary, B., Ray, S.S., Pal, K., 2018. Emulgels, in: polymeric gels. Elsevier.pp. 251-264. https://doi.org/10.1016/b978-0-08-102179-8.00009-0spa
dc.relation.referencesShen, Q., Zhang, Z., Emami, S., Chen, J., Leite Nobrega de Moura Bell, J.M., Taha, A.Y., 2021. Triacylglycerols are preferentially oxidized over free fatty acids in heated soybean oil. NPJ Science of Food. 5, 1-10. https://doi.org/10.1038/s41538-021-00086-3 .spa
dc.relation.referencesSilverstein, R.W., Bassler, C.G., 1962. Spectrometric identification of organic compounds. Journal of Chemical Education. 39, 546-553. https://doi.org/10.1021/ed039p546spa
dc.relation.referencesSilvestre, M.P.C., Chaiyasit, W., Brannan, R.G., McClements, D.J., Decker, E.A., 2000. Ability of surfactant headgroup size to alter lipid and antioxidant oxidation in oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 2057-2061. https://doi.org/10.1021/jf991162l.spa
dc.relation.referencesSingh, B., Kumar, R., 2019. Designing biocompatible sterile organogel-bigel formulations for drug delivery applications using green protocol. New Journal of Chemistry. 43, 3059-3070. https://doi.org/10.1039/c8nj05480k.spa
dc.relation.referencesSingh, V.K., Anis, A., Banerjee, I., Pramanik, K., Bhattacharya, M.K., Pal, K., 2014. Preparation and characterization of novel carbopol based bigels for topical delivery of metronidazole for the treatment of bacterial vaginosis. Materials Science and Engineering. C 44, 151-158. https://doi.org/10.1016/j.msec.2014.08.026.spa
dc.relation.referencesSingh, V.K., Qureshi, D., Nayak, S.K., Pal, K., 2018. Bigels, in: Polymeric gels: characterization, properties and biomedical applications. Elsevier. pp. 265-282. https://doi.org/10.1016/B978-0-08-102179-8.00010-7.spa
dc.relation.referencesSkiera, C., Steliopoulos, P., Kuballa, T., Holzgrabe, U., Diehl, B., 2012. 1H NMR approach as an alternative to the classical p-anisidine value method. European Food Research and Technology. 235, 1101–1105. https://doi.org/10.1007/s00217-012-1841-5.spa
dc.relation.referencesSørensen, A.D.M., Villeneuve, P., Jacobsen, C., 2017. Alkyl caffeates as antioxidants in O/W emulsions: Impact of emulsifier type and endogenous tocopherols. European Journal of Lipid Science and Technology. 119(6), 1600276. https://doi.org/10.1002/ejlt.201600276.spa
dc.relation.referencesSottero, B., Leonarduzzi, G., Testa, G., Gargiulo, S., Poli, G., Biasi, F., 2018. Lipid oxidation derived aldehydes and oxysterols between health and disease. European Journal of Lipid Science and Technology. 121(1), 1700047. https://doi.org/10.1002/ejlt.201700047.spa
dc.relation.referencesSreekumar, M., Mathan S., Mathew, S.S., Dharan, S.S., 2020. Bigels: An updated review. Journal of Pharmaceutical Sciences and Research. 12, 1306-1308.spa
dc.relation.referencesSubbiah, B., Blank, U.K.M., Morison, K.R., 2020. A review, analysis and extension of water activity data of sugars and model honey solutions. Food Chemistry. 326, 126981. https://doi.org/10.1016/j.foodchem.2020.126981.spa
dc.relation.referencesSun, C., Gunasekaran, S., Richards, M.P., 2007. Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocolloids. 21, 555-564. https://doi.org/10.1016/j.foodhyd.2006.06.003.spa
dc.relation.referencesSyamaladevi, R., Tang, J., Villa-Rojas, R., Sablani, S., Carter, B., Campbell G, 2016. Influence of water activy on thermal resistance of microorganisms in low moisture foods: a review. Comprehensive Reviews in Food Science and Food Safety. 15, 353–370. https://doi.org/doi: 10.1111/1541-4337.12190.spa
dc.relation.referencesTadros, T.F., 2009. Emulsion science and technology: a general introduction, in: Tadros, T. (Ed.), Emulsionscienceandtechnology. Wiley-VCH, Weinheim, pp. 1–55.spa
dc.relation.referencesTakeyama, E., Fukushima, M., 2013. Physicochemical properties of Plukenetia volubilis l. seeds and oxidative stability of cold-pressed oil (green nut oil), Food Science and Technology Research, 19(5), 875-882. https://doi.org/10.3136/fstr.19.875spa
dc.relation.referencesTalat, M., Zaman, M., Khan, R., Jamshaid, M., Akhtar, M., Mirza, A.Z., 2021. Emulgel: an effective drug delivery system. Drug Development and Industrial Pharmacy. 47(8), 1193-1199. https://doi.org/10.1080/03639045.2021.1993889.spa
dc.relation.referencesTalbot, G., 2011. The stability and shelf life of fats and oils, in: Food and Beverage Stability and Shelf Life. Elsevier. pp. 683-715. https://doi.org/10.1533/9780857092540.3.683spa
dc.relation.referencesThe United States Pharmacopeial Convention USP, 2024. The United States Pharmacopeia and National Formulary 2024., Rockville: The United States Pharmacopeial Convention.spa
dc.relation.referencesThirstrup, C., Deleebeeck, L., 2021. Review on Electrolytic Conductivity Sensors. IEEE Transactions on Instrumentation and Measurement. 70, 1-22. https://doi.org/10.1109/TIM.2021.3083562.spa
dc.relation.referencesTomaszewska-Gras, J., Islam, M., Grzeca, L., Kaczmarek, A., Fornal, E., 2021. Comprehensive thermal characteristics of different cultivars of flaxseed oil (Linum usittatissimum L.). Molecules. 26(7), 1958. https://doi.org/10.3390/molecules26071958.spa
dc.relation.referencesTorres-Figueroa, A. V., Pérez-Martínez, C.J., Carmelo Encinas, J., Burruel-Ibarra, S., Silvas-García, M.I., García Alegría, A.M., Del Castillo-Castro, T., 2021. Thermosensitive bioadhesive hydrogels based on poly(N-isopropylacrilamide) and poly (methyl vinyl ether-altmaleic anhydride) for the controlled release of metronidazole in the vaginal environment. Pharmaceutics. 13(8), 1284. https://doi.org/10.3390/pharmaceutics13081284.spa
dc.relation.referencesTowey, J.J., Dougan, L., 2012. Structural examination of the impact of glycerol on water structure. Journal of Physical Chemistry B 116, 1633-1641. https://doi.org/10.1021/jp2093862.spa
dc.relation.referencesTrivedi, D.R., Ballabh, A., Dastidar, P., Ganguly, B., 2004. Structure-property correlation of a new family of organogelators based on organic salts and their selective gelation of oil from oil/water mixtures. Chemistry–A European Journal. 10(21), 5311-5322. https://doi.org/10.1002/chem.200400122spa
dc.relation.referencesTroller, J.A., Christian, J.H.B., 1978. Water activity and food, Food science and technology. Academic Press, New York.spa
dc.relation.referencesVan de Voort, Frederick.R., Sedman, J., Ismail, A.A., 1996. Edible oil analysis by FTIR spectroscopy. Laboratory Robotics and automation 8, 205–212.spa
dc.relation.referencesVan Krevelen, D.W., Te Nijenhuis, K., 2009. Part VII Comprehensive tables, In: Van Krevelen, D.W., Te Nijenhuis, K. (Eds), Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam, pp. 904-920.spa
dc.relation.referencesVargas, D., 2015. Development of bigels systems of potential application in the pharmaceutical and cosmetics industries. Universidad Nacional de Colombia Sede Bogotá, Bogotá.spa
dc.relation.referencesVicente, J., de Souza-Cezarino, T., Pereira, L.J.B., da Rocha, E.P., Sá, G.R., Gamallo, O.D., de Carvalho, M.G., Garcia-Rojas, E.E., 2017. Microencapsulation of sacha inchi oil using emulsion-based delivery systems. Food Research International. 99, 612-622. https://doi.org/10.1016/j.foodres.2017.06.039.spa
dc.relation.referencesVilleneuve, P., Bourlieu-Lacanal, C., Durand, E., Lecomte, J., McClements, D.J., Decker, E.A., 2023. Lipid oxidation in emulsions and bulk oils: a review of the importance of micelles. Critical Reviews in Food Science and Nutrition. 6, 4687- 4727. https://doi.org/10.1080/10408398.2021.2006138.spa
dc.relation.referencesVintiloiu, A., Leroux, J.C., 2008. Organogels and their use in drug delivery - A review. Journal of Controlled Release. 125(3), 179-192. https://doi.org/10.1016/j.jconrel.2007.09.014.spa
dc.relation.referencesWang, D., Xiao, H., Lyu, X., Chen, H., Wei, F., 2023. Lipid oxidation in food science and nutritional health: A comprehensive review. Oil Crop Science. 8(1), 35-44. https://doi.org/10.1016/j.ocsci.2023.02.002.spa
dc.relation.referencesWang, S., Zhu, F., Kakuda, Y., 2018. Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses. Food chemistry. 265, 316-328. https://doi.org/10.1016/j.foodchem.2018.05.055.spa
dc.relation.referencesWaraho, T., Mcclements, D.J., Decker, E.A., 2011. Mechanisms of lipid oxidation in food dispersions. Trends in Food Science & Technology. 22, 3-13. https://doi.org/10.1016/j.tifs.2010.11.003.spa
dc.relation.referencesWhittinghill, J.M., Norton, J., Proctor, A., 2000. stability determination of soy lecithin-based emulsions by fourier transform infrared spectroscopy. JAOCS. 77. https://doi.org/doi.org/10.1007/s11746-000-0006-8.spa
dc.relation.referencesXenakis, A., Papadimitiou, V., Sotiroudis, T.G., 2009. Colloidal structures in natural oils. Current Opinion in Colloid & Interface Science. 15, 55-0. https://doi.org/10.1016/j.cocis.2009.11.007.spa
dc.relation.referencesXiao-Wei, C., Qi-Hua, H., Xiao-Xiao, L., Chuan-Guo Ma, 2022. Systematic comparison of structural and lipid Oxidation in oil in water and water in oil biphasic emulgels: effect of emulsion type, oil phase composition, an oil fraction. Journal Scientific Food Agriculture. 102, 4200-4209.spa
dc.relation.referencesXu, X., Sun, J., Liang, Y., Yang, C., Chen, Z., 211. Interaction of fatty acids with oxidation of cholesterol and b-sitosterol. Food Chemistry. 124, 162-170. http://doi:10.1016/j.foodchem.2010.06.003.spa
dc.relation.referencesXu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M.R., Wang, X., Martínez, M., Anadón, A., Martínez, M.A., 2021. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry. 353, 129488. https://doi.org/10.1016/j.foodchem.2021.129488.spa
dc.relation.referencesYi, J., Zhu, Z., Dong, W., McClemends, D.J, Decker E.A., 2013. Influence of free fatty acids on oxidative stability in water-in-walnut oil emulsions. European journal of lipid science and technology. 115, 1013-1020. https://doi.org/10.1002/ejlt.201200438.spa
dc.relation.referencesYohannes, L., Amare, D., Feleke, H., 2024. Microbiological quality of edible vegetable oils produced and marketed in Gondar City, Northwest Ethiopia. Environmental Monitoring and Assessment. 196(6), 509. https://doi.org/doi: 10.1007/s10661-024-12641.spa
dc.relation.referencesZeng, L., Lin, X., Li, P., Liu, F.Q., Guo, H., Li, W.H., 2021. Recent advances of organogels: from fabrications and functions to applications. Progress in Organic Coatings. 159, 106417. https://doi.org/10.1016/j.porgcoat.2021.106417.spa
dc.relation.referencesZhang, L., Sun, D.W., Zhang, Z., 2015. Methods for measuring water activity (aw) of foods and its applications to moisture sorption isotherm studies. Critical Reviews in Food Science and Nutrition 57, 1052–1058. https://doi.org/10.1080/10408398.2015.1108282.spa
dc.relation.referencesZheng, H., Mao, L., Cui, M., Liu, J., Gao, Y., 2020. Development of food-grade bigels based on-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction. Food Hydrocolloids. 105, 105855. https://doi.org/10.1016/j.foodhyd.2020.105855.spa
dc.relation.referencesZhou, L., Meng, F.B., Li, Y.C., Shi, X.D., Yang, Y.W., Wang, M., 2023. Effect of peach gum polysaccharide on the rheological and 3D printing properties of gelatin-based functional gummy candy. International Journal of Biological Macromolecules. 253, 127186. https://doi.org/10.1016/j.ijbiomac.2023.127186.spa
dc.relation.referencesZhu, Q.Y., Huang, Y., Tsang, D., Chen, Z.Y., 1999. Regeneration of α-tocopherol in human low-density lipoprotein by green tea catechin. Journal of Agricultural and Food Chemistry. 47, 2020–2025. https://doi.org/10.1021/jf9809941.spa
dc.relation.referencesZuorro, A., 2021. Water activity prediction in sugar and polyol systems using theoretical molecular descriptors. International Journal of Molecular Sciences. 22(20), 11044. https://doi.org/doi.org/10.3390/ijms222011044.spa
dc.relation.referencesRahman, M.S., Labuza, T.P., 2007. Water Activity and Food Preservation, in: Rahman, S.,(Ed), Handbook of Food Preservation. pp. 447–476.spa
dc.relation.referencesRamos-Escudero, F., González-Miret, M.L., Viñas-Ospino, A., Ramos Escudero, M., 2019. Quality, stability, carotenoids and chromatic parameters of commercial Sacha inchi oil originating from Peruvian cultivars. Journal of Food Science Technology. 56, 4901-4910. https://doi.org/10.1007/s13197-019-03960-x.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.proposalAceite de sacha inchispa
dc.subject.proposalOxidación lipídicaspa
dc.subject.proposalActividad de aguaspa
dc.subject.proposalEmulgelspa
dc.subject.proposalBigelspa
dc.subject.proposalEmulsiónspa
dc.subject.proposalSacha inchi oileng
dc.subject.proposalLipid oxidationeng
dc.subject.proposalWater activityeng
dc.subject.proposalEmulsionseng
dc.subject.proposalEmulgelseng
dc.subject.proposalBigelseng
dc.subject.wikidatatensoactivospa
dc.subject.wikidatasurfactanteng
dc.subject.wikidatalípidospa
dc.subject.wikidatalipideng
dc.subject.wikidataaceite vegetalspa
dc.subject.wikidatavegetable oileng
dc.titleInfluencia de la actividad de agua en la oxidación del aceite de sacha inchi (Plukenetia volubilis L.) formulado en sistemas aceite - agua - tensioactivospa
dc.title.translatedInfluence of water activity on the oxidation of sacha inchi (Plukenetia volubilis L.) oil formulated in oil-water-surfactant systemseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010213708.2025.pdf
Tamaño:
3.47 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: