Efecto de un programa de ejercicio de fuerza sobre mujeres mayores de 60 años con obesidad sarcopénica
| dc.contributor.advisor | González Clavijo, Angelica Maria | |
| dc.contributor.advisor | Hernández Álvarez, Edgar Debray | |
| dc.contributor.author | Alonso González, Carol Daniela | |
| dc.contributor.orcid | Alonso González, Carol Daniela [0000-0003-0022-7355] | |
| dc.contributor.researchgroup | Salud Muscular y Biomarcadores | |
| dc.date.accessioned | 2026-01-20T19:40:32Z | |
| dc.date.available | 2026-01-20T19:40:32Z | |
| dc.date.issued | 2025 | |
| dc.description | Ilustraciones, fotografías, gráficos | spa |
| dc.description.abstract | Efecto de un programa de ejercicio de fuerza sobre mujeres mayores de 60 años con obesidad sarcopénica Introducción: El envejecimiento de la población mundial está aumentando, lo que resulta en una mayor esperanza de vida, particularmente entre las mujeres. No obstante, esta población presenta una mayor predisposición a padecer comorbilidades que impactan en su calidad de vida y funcionalidad. La obesidad sarcopénica emerge como una condición preocupante, asociada a un mayor riesgo de enfermedades cardiovasculares, discapacidad y mortalidad. Desde el concepto del envejecimiento saludable, el ejercicio físico es una herramienta costo-efectiva y de gran impacto en la calidad de vida de esta población. El objetivo del presente estudio es determinar los efectos de un programa de ejercicio físico de fuerza en mujeres mayores de 60 años con obesidad sarcopénica. Metodología: Estudio cuasiexperimental de antes y después sobre los efectos de un programa de ejercicio de fuerza supervisado de 12 semanas, en mujeres mayores de 60 años con obesidad sarcopénica. Medición y comparación de variables antropométricas, función y fuerza muscular, calidad de vida y componentes musculares ecográficos. Análisis de tipo descriptivo con medias y desviación estándar. El estudio fue avalado por el Comité de Ética de la Facultad de Medicina de la Universidad Nacional de Colombia. Resultados: Dieciséis participantes asistieron a las sesiones de ejercicio. Cambios positivos en fuerza muscular medida por dinamometría manual (17,25±2,08 kg vs 19,81±2,54 kg; p= 0,006), función muscular (SPPB 10,06±2,05 vs 11,12±1,63, p= 0,02) y calidad de vida (65,08±10,58 vs 85,59±8,37; p=0) fueron observados. No se registraron cambios significativos en las variables antropométricas y ultrasonográficas. Conclusión: Un programa de ejercicio de fuerza de 12 semanas en mujeres mayores con obesidad sarcopénica tiene efectos positivos en la fuerza, función muscular y calidad de vida. La buena adherencia, ausencia de eventos adversos y adaptabilidad del programa respaldan su aplicabilidad y seguridad. No obstante, se requieren estudios con mayor población para confirmar estos hallazgos y explorar su sostenibilidad a largo plazo. (Texto tomado de la fuente) | spa |
| dc.description.abstract | Effect of a Strength Training Program on Women Over 60 Years Old with Sarcopenic Obesity Introduction: The global aging population is steadily increasing, leading to greater life expectancy among older adults, particularly women. However, women are more prone to developing comorbidities that negatively affect both their quality of life and functional capacity. Sarcopenic obesity has emerged as a concerning condition, as it is associated with an increased risk of cardiovascular disease, disability, and mortality. From the perspective of healthy aging, physical exercise is a cost-effective and impactful strategy to improve quality of life in this population. The aim of the present study is to determine the effects of a progressive overload strength training program in women over 60 years old with sarcopenic obesity. Methods: Quasi-experimental pre-post study on the effects of a 12-week supervised strength training program in women over 60 years old with sarcopenia and obesity/overweight. Anthropometry, muscle function, muscle strength, quality of life, and both quantitative and qualitative muscle components assessed by ultrasonography, were measured and compared. A descriptive analysis was conducted using means and standard deviations. The study was approved by the Ethics Committee of the Faculty of Medicine at the National University of Colombia. Outcomes: Sixteen participants attended the exercise sessions. Positive changes in muscle strength measured by handgrip dynamometry (17,25±2,08 kg vs 19,81±2,54 kg; p= 0,006), as well as in muscle function (SPPB 10,06±2,05 vs 11,12±1,63, p= 0,02) and quality of life(65,08±10,58 vs 85,59±8,37; p=0), were observed. No significant changes were observed in any of the anthropometric variables or in the ultrasonographic measurements. Conclusion: A 12-week strength training program in older women with sarcopenic obesity has positive effects on strength, muscle function, and quality of life. The good adherence, absence of adverse events, and adaptability of the program support its applicability and safety. However, studies with greater sample size are needed to confirm these findings and explore their long-term sustainability. | eng |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Fisiología | |
| dc.description.researcharea | Obesidad y Sarcopenia | |
| dc.format.extent | xii, 103 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89268 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Medicina | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Medicina - Maestría en Fisiología | |
| dc.relation.references | 1. Freitas HR, Malva JO. Getting ahead of the ageing curve: learning from EU experiences for a healthier demographic transition. Front Public Health [Internet]. 2025 Oct 17 [cited 2025 Nov 4];13. Available from: https://www.frontiersin.org/journals/public- health/articles/10.3389/fpubh.2025.1678040/full | |
| dc.relation.references | 2. Garmany A, Terzic A. Global Healthspan-Lifespan Gaps Among 183 World Health Organization Member States. JAMA Netw Open. 2024 Dec 11;7(12):e2450241. | |
| dc.relation.references | 3. Deelen J. Targeting multimorbidity: Using healthspan and lifespan to identify biomarkers of ageing that pinpoint shared disease mechanisms. eBioMedicine [Internet]. 2021 May 1 [cited 2025 June 7];67. Available from: https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(21)00157-2/fulltext | |
| dc.relation.references | 4. Álvarez-Bustos A, Carnicero-Carreño JA, Davies B, Garcia-Garcia FJ, Rodríguez- Artalejo F, Rodríguez-Mañas L, et al. Role of sarcopenia in the frailty transitions in older adults: a population-based cohort study. J Cachexia Sarcopenia Muscle. 2022 Oct;13(5):2352–60. | |
| dc.relation.references | 5. Behr LC, Simm A, Kluttig A, Grosskopf (Großkopf) A. 60 years of healthy aging: On definitions, biomarkers, scores and challenges. Ageing Res Rev. 2023 July 1;88:101934. | |
| dc.relation.references | 6. Borba VZC, Costa TM da RL. Sarcopenic obesity: a review. Arch Endocrinol Metab. 2024 Dec 2;68. | |
| dc.relation.references | 7. Prado CM, Batsis JA, Donini LM, Gonzalez MC, Siervo M. Sarcopenic obesity in older adults: a clinical overview. Nat Rev Endocrinol. 2024 May;20(5):261–77. | |
| dc.relation.references | 8. Harridge SDR, Lazarus NR. Physical Activity, Aging, and Physiological Function. Physiology. 2017 Mar;32(2):152–61. | |
| dc.relation.references | 9. Organizacion Mundial de la Salud. Organizacion Mundial de la Salud. 2022 [cited 2023 Oct 1]. Envejecimiento y Salud. Available from: https://www.who.int/news- room/fact-sheets/detail/ageing-and-health | |
| dc.relation.references | 10. Observatorio de Envejecimiento y Vejez. Indicadores envejecimiento y vejez [Internet]. [cited 2023 Dec 28]. Available from: https://www.arcgis.com/apps/dashboards/105ba51b48f148f7b4ff21f21ea31b32 | |
| dc.relation.references | 11. Flórez CE, Martínez Rodríguez LJ, Aranco N. Envejecimiento y atención a la dependencia en Colombia. 2019 Sept 19; Available from: https://doi.org/10.18235/0001884 | |
| dc.relation.references | 12. Global health estimates Life expectancy and healthy life expectancy [Internet]. [cited 2025 Nov 17]. Available from: https://www.who.int/data/gho/data/themes/mortality- and-global-health-estimates/ghe-life-expectancy-and-healthy-life-expectancy | |
| dc.relation.references | 13. Woessner MN, Tacey A, Levinger-Limor A, Parker AG, Levinger P, Levinger I. The Evolution of Technology and Physical Inactivity: The Good, the Bad, and the Way Forward. Front Public Health [Internet]. 2021 [cited 2023 Oct 1];9. Available from: https://www.frontiersin.org/articles/10.3389/fpubh.2021.655491 | |
| dc.relation.references | 14. Bredella MA. Sex Differences in Body Composition. In: Mauvais-Jarvis F, editor. Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity [Internet]. Cham: Springer International Publishing; 2017 [cited 2024 Mar 4]. p. 9–27. (Advances in Experimental Medicine and Biology). Available from: https://doi.org/10.1007/978-3-319-70178-3_2 | |
| dc.relation.references | 15. Kim S, Won CW. Sex-different changes of body composition in aging: a systemic review. Arch Gerontol Geriatr. 2022 Sept 1;102:104711. | |
| dc.relation.references | 16. Bowden Davies KA, Pickles S, Sprung VS, Kemp GJ, Alam U, Moore DR, et al. Reduced physical activity in young and older adults: metabolic and musculoskeletal implications. Ther Adv Endocrinol Metab. 2019 Jan 1;10:2042018819888824. | |
| dc.relation.references | 17. Salinas-Rodríguez A, Rivera-Almaraz A, Manrique-Espinoza B. Sarcopenic obesity is associated with long-term trajectories of physical activity and sedentary behavior. Exp Gerontol. 2025 June 1;204:112752. | |
| dc.relation.references | 18. Morgan PT, Smeuninx B, Breen L. Exploring the Impact of Obesity on Skeletal Muscle Function in Older Age. Front Nutr. 2020 Dec 1;7:569904. | |
| dc.relation.references | 19. Eglseer D, Traxler M, Schoufour JD, Weijs PJM, Voortman T, Boirie Y, et al. Nutritional and exercise interventions in individuals with sarcopenic obesity around retirement age: a systematic review and meta-analysis. Nutr Rev. 2023 Mar 7;81(9):1077–90. | |
| dc.relation.references | 20. Stimson AM, Anderson C, Holt AM, Henderson AJ. Why don’t women engage in muscle strength exercise? An integrative review. Health Promot J Austr. 2024;35(4):911–23. | |
| dc.relation.references | 21. Sandlund M, Pohl P, Ahlgren C, Skelton DA, Melander-Wikman A, Bergvall-Kåreborn B, et al. Gender Perspective on Older People’s Exercise Preferences and Motivators in the Context of Falls Prevention: A Qualitative Study. BioMed Res Int. 2018;2018(1):6865156. | |
| dc.relation.references | 22. Seguin RA, Economos CD, Palombo R, Hyatt R, Kuder J, Nelson ME. Strength Training and Older Women: A Cross-Sectional Study Examining Factors Related to Exercise Adherence. J Aging Phys Act. 2010 Apr;18(2):201–18. | |
| dc.relation.references | 23. Tenchov R, Sasso JM, Wang X, Zhou QA. Aging Hallmarks and Progression and Age- Related Diseases: A Landscape View of Research Advancement. ACS Chem Neurosci. 2023 Dec 14;15(1):1–30. | |
| dc.relation.references | 24. Gianfredi V, Nucci D, Pennisi F, Maggi S, Veronese N, Soysal P. Aging, longevity, and healthy aging: the public health approach. Aging Clin Exp Res. 2025 Apr 17;37(1):125. | |
| dc.relation.references | 25. Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, et al. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front Med [Internet]. 2018 Mar 12;5. Available from: https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2018.00061/full | |
| dc.relation.references | 26. Khan HTA, Addo KM, Findlay H. Public Health Challenges and Responses to the Growing Ageing Populations. Public Health Chall. 2024;3(3):e213. | |
| dc.relation.references | 27. Rudnicka E, Napierała P, Podfigurna A, Męczekalski B, Smolarczyk R, Grymowicz M. The World Health Organization (WHO) approach to healthy ageing. Maturitas. 2020 Sept;139:6. | |
| dc.relation.references | 28. Lazarus NR, Izquierdo M, Higginson IJ, Harridge SDR. Exercise Deficiency Diseases of Ageing: The Primacy of Exercise and Muscle Strengthening as First-Line Therapeutic Agents to Combat Frailty. J Am Med Dir Assoc. 2018 Sept 1;19(9):741– 3. | |
| dc.relation.references | 29. de Jong JCBC, Attema BJ, van der Hoek MD, Verschuren L, Caspers MPM, Kleemann R, et al. Sex differences in skeletal muscle-aging trajectory: same processes, but with a different ranking. GeroScience. 2023 Aug 1;45(4):2367–86. | |
| dc.relation.references | 30. Distefano G, Goodpaster BH. Effects of Exercise and Aging on Skeletal Muscle. Cold Spring Harb Perspect Med. 2018 Mar;8(3):a029785. | |
| dc.relation.references | 31. Argilés JM, Campos N, Lopez-Pedrosa JM, Rueda R, Rodriguez-Mañas L. Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk: Roles in Health and Disease. J Am Med Dir Assoc. 2016 Sept;17(9):789–96. | |
| dc.relation.references | 32. Furrer R, Handschin C. Biomarkers of aging: functional aspects still trump molecular parameters. Npj Aging. 2025 Mar 3;11(1):15. | |
| dc.relation.references | 33. Furrer R, Handschin C. Biomarkers of aging: from molecules and surrogates to physiology and function. Physiol Rev. 2025 July;105(3):1609–94. | |
| dc.relation.references | 34. Correa-de-Araujo R, Addison O, Miljkovic I, Goodpaster BH, Bergman BC, Clark RV, et al. Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging. Front Physiol. 2020 Aug 7;11:963. | |
| dc.relation.references | 35. Bilski J, Pierzchalski P, Szczepanik M, Bonior J, Zoladz JA. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells. 2022 Jan 4;11(1):160. | |
| dc.relation.references | 36. Perkisas S, Baudry S, Bauer J, Beckwée D, De Cock AM, Hobbelen H, et al. The SARCUS project: evidence-based muscle assessment through ultrasound. Eur Geriatr Med. 2019 Feb;10(1):157–8. | |
| dc.relation.references | 37. Ashir A, Jerban S, Barrère V, Wu Y, Shah SB, Andre MP, et al. Skeletal Muscle Assessment Using Quantitative Ultrasound: A Narrative Review. Sensors. 2023 May 15;23(10):4763. | |
| dc.relation.references | 38. Huang N, Ge M, Liu X, Tian X, Yin P, Bao Z, et al. A framework of biomarkers for skeletal muscle aging: a consensus statement by the Aging Biomarker Consortium. Life Med. 2025 Jan 26;3(6):lnaf001. | |
| dc.relation.references | 39. Billot M, Calvani R, Urtamo A, Sánchez-Sánchez JL, Ciccolari-Micaldi C, Chang M, et al. Preserving Mobility in Older Adults with Physical Frailty and Sarcopenia: Opportunities, Challenges, and Recommendations for Physical Activity Interventions. Clin Interv Aging. 2020 Sept 16;15:1675–90. | |
| dc.relation.references | 40. Ghiotto L, Muollo V, Tatangelo T, Schena F, Rossi AP. Exercise and physical performance in older adults with sarcopenic obesity: A systematic review. Front Endocrinol [Internet]. 2022 [cited 2023 Dec 28];13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9366852/ | |
| dc.relation.references | 41. Chiu SC, Yang RS, Yang RJ, Chang SF. Effects of resistance training on body composition and functional capacity among sarcopenic obese residents in long-term care facilities: a preliminary study. BMC Geriatr. 2018 Jan 22;18:21. | |
| dc.relation.references | 42. Hsu KJ, Liao CD, Tsai MW, Chen CN. Effects of Exercise and Nutritional Intervention on Body Composition, Metabolic Health, and Physical Performance in Adults with Sarcopenic Obesity: A Meta-Analysis. Nutrients. 2019 Sept 9;11(9):2163. | |
| dc.relation.references | 43. Debes WA, Sadaqa M, Németh Z, Aldardour A, Prémusz V, Hock M. Effect of Resistance Exercise on Body Composition and Functional Capacity in Older Women with Sarcopenic Obesity—A Systematic Review with Narrative Synthesis. J Clin Med. 2024 Jan;13(2):441. | |
| dc.relation.references | 44. Qiu H, Zheng W, Zhou X, Liu Q, Zhao X. Training modalities for elder sarcopenic obesity: a systematic review and network meta-analysis. Front Nutr [Internet]. 2025 Feb 19 [cited 2025 Nov 17];12. Available from: https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2025.1537291/full | |
| dc.relation.references | 45. Chen L, Zhou H, Gong Y, Tang Y, Su H, Zhang Z, et al. Clinical outcome changes in sarcopenic obesity: a meta-analysis of exercise training methods. BMC Geriatr. 2025 Jan 15;25(1):33. | |
| dc.relation.references | 46. Edholm P, Strandberg E, Kadi F. Lower limb explosive strength capacity in elderly women: effects of resistance training and healthy diet. J Appl Physiol. 2017 July;123(1):190–6. | |
| dc.relation.references | 47. Chen HT, Chung YC, Chen YJ, Ho SY, Wu HJ. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. J Am Geriatr Soc. 2017 Apr;65(4):827–32. | |
| dc.relation.references | 48. Liao CD, Tsauo JY, Lin LF, Huang SW, Ku JW, Chou LC, et al. Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity: A CONSORT-compliant prospective randomized controlled trial. Medicine (Baltimore). 2017 June;96(23):e7115. | |
| dc.relation.references | 49. Chen HT, Wu HJ, Chen YJ, Ho SY, Chung YC. Effects of 8-week kettlebell training on body composition, muscle strength, pulmonary function, and chronic low-grade inflammation in elderly women with sarcopenia. Exp Gerontol. 2018 Oct 2;112:112–8. | |
| dc.relation.references | 50. Huang SW, Ku JW, Lin LF, Liao CD, Chou LC, Liou TH. Body composition influenced by progressive elastic band resistance exercise of sarcopenic obesity elderly women: a pilot randomized controlled trial. Eur J Phys Rehabil Med. 2017 Aug;53(4):556–63. | |
| dc.relation.references | 51. Smith C, Woessner MN, Sim M, Levinger I. Sarcopenia definition: Does it really matter? Implications for resistance training. Ageing Res Rev. 2022 June 1;78:101617. | |
| dc.relation.references | 52. Cho MR, Lee S, Song SK. A Review of Sarcopenia Pathophysiology, Diagnosis, Treatment and Future Direction. J Korean Med Sci. 2022 May 4;37(18):e146. | |
| dc.relation.references | 53. Kirk B, Miller S, Zanker J, Duque G. A clinical guide to the pathophysiology, diagnosis and treatment of osteosarcopenia. Maturitas. 2020 Oct;140:27–33. | |
| dc.relation.references | 54. Sayer AA, Cruz-Jentoft A. Sarcopenia definition, diagnosis and treatment: consensus is growing. Age Ageing. 2022 Oct 24;51(10):afac220. | |
| dc.relation.references | 55. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019 Jan 1;48(1):16–31. | |
| dc.relation.references | 56. Bhasin S, Travison TG, Manini TM, Patel S, Pencina KM, Fielding RA, et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J Am Geriatr Soc. 2020;68(7):1410–8. | |
| dc.relation.references | 57. Coletta G, Phillips SM. An elusive consensus definition of sarcopenia impedes research and clinical treatment: A narrative review. Ageing Res Rev. 2023 Apr 1;86:101883. | |
| dc.relation.references | 58. Axelrod CL, Dantas WS, Kirwan JP. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism. 2023 Sept 1;146:155639. | |
| dc.relation.references | 59. Koliaki C, Liatis S, Dalamaga M, Kokkinos A. Sarcopenic Obesity: Epidemiologic Evidence, Pathophysiology, and Therapeutic Perspectives. Curr Obes Rep. 2019 Dec 1;8(4):458–71. | |
| dc.relation.references | 60. Donini LM, Busetto L, Bischoff SC, Cederholm T, Ballesteros-Pomar MD, Batsis JA, et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes Facts. 2022 Feb 23;15(3):321–35. | |
| dc.relation.references | 61. Gortan Cappellari G, Guillet C, Poggiogalle E, Ballesteros Pomar MD, Batsis JA, Boirie Y, et al. Sarcopenic obesity research perspectives outlined by the sarcopenic obesity global leadership initiative (SOGLI) – Proceedings from the SOGLI consortium meeting in Rome November 2022. Clin Nutr. 2023 May 1;42(5):687–99. | |
| dc.relation.references | 62. Petroni ML, Caletti MT, Grave RD, Bazzocchi A, Gómez MPA, Marchesini G. Prevention and Treatment of Sarcopenic Obesity in Women. Nutrients [Internet]. 2019 June [cited 2023 Dec 28];11(6). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627872/ | |
| dc.relation.references | 63. Gao Q, Mei F, Shang Y, Hu K, Chen F, Zhao L, et al. Global prevalence of sarcopenic obesity in older adults: A systematic review and meta-analysis. Clin Nutr. 2021 July 1;40(7):4633–41. | |
| dc.relation.references | 64. Anderson LJ, Liu H, Garcia JM. Sex Differences in Muscle Wasting. In: Mauvais-Jarvis F, editor. Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity [Internet]. Cham: Springer International Publishing; 2017 [cited 2023 Nov 16]. p. 153–97. (Advances in Experimental Medicine and Biology). Available from: https://doi.org/10.1007/978-3-319-70178-3_9 | |
| dc.relation.references | 65. Brown JC, Harhay MO, Harhay MN. Sarcopenia and mortality among a population- based sample of community-dwelling older adults. J Cachexia Sarcopenia Muscle. 2016 June;7(3):290–8. | |
| dc.relation.references | 66. Tagliafico AS, Bignotti B, Torri L, Rossi F. Sarcopenia: how to measure, when and why. Radiol Med (Torino). 2022;127(3):228–37. | |
| dc.relation.references | 67. Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol. 2018 Sept;14(9):513–37. | |
| dc.relation.references | 68. Paranhos Amorim DN, Nascimento D da C, Stone W, Alves VP, Coelho Vilaça e Silva KH. Body composition and functional performance of older adults. Osteoporos Sarcopenia. 2022 June;8(2):86–91. | |
| dc.relation.references | 69. Rehman A, Lathief S, Charoenngam N, Pal L. Aging and Adiposity—Focus on Biological Females at Midlife and Beyond. Int J Mol Sci. 2024 Jan;25(5):2972. | |
| dc.relation.references | 70. Opoku AA, Abushama M, Konje JC. Obesity and menopause. Best Pract Res Clin Obstet Gynaecol. 2023 June 1;88:102348. | |
| dc.relation.references | 71. Hong S hyeon, Choi KM. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int J Mol Sci. 2020 Jan 13;21(2):494. | |
| dc.relation.references | 72. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020 June 15;877:173090. | |
| dc.relation.references | 73. Wei S, Nguyen TT, Zhang Y, Ryu D, Gariani K. Sarcopenic obesity: epidemiology, pathophysiology, cardiovascular disease, mortality, and management. Front Endocrinol. 2023 June 30;14:1185221. | |
| dc.relation.references | 74. Larsson L, Degens H, Li M, Salviati L, Lee Y il, Thompson W, et al. Sarcopenia: Aging- Related Loss of Muscle Mass and Function. Physiol Rev. 2019 Jan 1;99(1):427–511. | |
| dc.relation.references | 75. Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018 Feb;9(1):3–19. | |
| dc.relation.references | 76. Wiedmer P, Jung T, Castro JP, Pomatto LCD, Sun PY, Davies KJA, et al. Sarcopenia – Molecular mechanisms and open questions. Ageing Res Rev. 2021 Jan 1;65:101200. | |
| dc.relation.references | 77. Yamakawa H, Kusumoto D, Hashimoto H, Yuasa S. Stem Cell Aging in Skeletal Muscle Regeneration and Disease. Int J Mol Sci. 2020 Mar 6;21(5):1830. | |
| dc.relation.references | 78. Chen W, Datzkiw D, Rudnicki MA. Satellite cells in ageing: use it or lose it. Open Biol. 2020 May 20;10(5):200048. | |
| dc.relation.references | 79. Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol. 2022 Aug 12;13:892749. | |
| dc.relation.references | 80. Scott D, Trbojevic T, Skinner E, Clark RA, Levinger P, Haines TP, et al. Associations of calf inter- and intra-muscular adipose tissue with cardiometabolic health and physical function in community-dwelling older adults. J Musculoskelet Neuronal Interact. 2015 Dec;15(4):350–7. | |
| dc.relation.references | 81. Nishikawa H, Asai A, Fukunishi S, Takeuchi T, Goto M, Ogura T, et al. Screening Tools for Sarcopenia. In Vivo. 2021 Nov 3;35(6):3001–9. | |
| dc.relation.references | 82. Martien S, Delecluse C, Boen F, Seghers J, Pelssers J, Van Hoecke AS, et al. Is knee extension strength a better predictor of functional performance than handgrip strength among older adults in three different settings? Arch Gerontol Geriatr. 2015 Mar 1;60(2):252–8. | |
| dc.relation.references | 83. Yeung SSY, Reijnierse EM, Trappenburg MC, Blauw GJ, Meskers CGM, Maier AB. Knee extension strength measurements should be considered as part of the comprehensive geriatric assessment. BMC Geriatr. 2018 June 1;18:130. | |
| dc.relation.references | 84. Beaudart C, Rolland Y, Cruz-Jentoft AJ, Bauer JM, Sieber C, Cooper C, et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice. Calcif Tissue Int. 2019 July 1;105(1):1–14. | |
| dc.relation.references | 85. Baek SH, Sung JH, Park JW, Son MH, Lee JH, Kim BJ. Usefulness of muscle ultrasound in appendicular skeletal muscle mass estimation for sarcopenia assessment. PLOS ONE. 2023 Jan 17;18(1):e0280202. | |
| dc.relation.references | 86. Tosato M, Marzetti E, Cesari M, Savera G, Miller RR, Bernabei R, et al. Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res. 2017 Feb;29(1):19–27. | |
| dc.relation.references | 87. Kuriyan R. Body composition techniques. Indian J Med Res. 2018 Nov;148(5):648– 58. | |
| dc.relation.references | 88. Messina C, Albano D, Gitto S, Tofanelli L, Bazzocchi A, Ulivieri FM, et al. Body composition with dual energy X-ray absorptiometry: from basics to new tools. Quant Imaging Med Surg. 2020 Aug;10(8):1687–98. | |
| dc.relation.references | 89. Chianca V, Albano D, Messina C, Gitto S, Ruffo G, Guarino S, et al. Sarcopenia: imaging assessment and clinical application. Abdom Radiol. 2022 Sept 1;47(9):3205– 16. | |
| dc.relation.references | 90. Di Vincenzo O, Marra M, Di Gregorio A, Pasanisi F, Scalfi L. Bioelectrical impedance analysis (BIA) -derived phase angle in sarcopenia: A systematic review. Clin Nutr Edinb Scotl. 2021 May;40(5):3052–61. | |
| dc.relation.references | 91. Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis – Clinical relevance and applicability of impedance parameters. Clin Nutr. 2012 Dec 1;31(6):854–61. | |
| dc.relation.references | 92. Padilla CJ, Ferreyro FA, Arnold WD. Anthropometry as a readily accessible health assessment of older adults. Exp Gerontol. 2021 Oct 1;153:111464. | |
| dc.relation.references | 93. Gross DC, Cheever CR, Batsis JA. Understanding the development of sarcopenic obesity. Expert Rev Endocrinol Metab. 2023;18(6):469–88. | |
| dc.relation.references | 94. von Berens Å, Obling SR, Nydahl M, Koochek A, Lissner L, Skoog I, et al. Sarcopenic obesity and associations with mortality in older women and men – a prospective observational study. BMC Geriatr. 2020 June 9;20(1):199. | |
| dc.relation.references | 95. Yoo MC, Won CW, Soh Y. Association of high body mass index, waist circumference, and body fat percentage with sarcopenia in older women. BMC Geriatr. 2022 Dec 5;22:937. | |
| dc.relation.references | 96. Piqueras P, Ballester A, Durá-Gil JV, Martinez-Hervas S, Redón J, Real JT. Anthropometric Indicators as a Tool for Diagnosis of Obesity and Other Health Risk Factors: A Literature Review. Front Psychol. 2021 July 9;12:631179. | |
| dc.relation.references | 97. Assumpção D de, Ferraz R de O, Borim FSA, Neri AL, Francisco PMSB. Waist circumference, waist-to-height ratio and overweight cut-off points: a cross-sectional study with elderly people in seven Brazilian cities, 2008-2009. Epidemiol E Serviços Saúde. 2020 July 17;29:e2019502. | |
| dc.relation.references | 98. Deniz O, Cruz-Jentoft A, Sengul Aycicek G, Unsal P, Esme M, Ucar Y, et al. Role of Ultrasonography in Estimating Muscle Mass in Sarcopenic Obesity. J Parenter Enter Nutr. 2020;44(8):1398–406. | |
| dc.relation.references | 99. Cassiers E, Bastijns S, Perkisas S, Vandewoude M, De Cock AM. Muscle measurements in daily clinical practice: correlations between ultrasound, bioelectrical impedance analysis and hand grip strength. J Frailty Sarcopenia Falls. 2022 Dec 1;7(4):192–8. | |
| dc.relation.references | 100. López Jiménez E, Neira Álvarez M, Ramírez Martín R, Alonso Bouzón C, Amor Andrés MS, Bermejo Boixareu C, et al. “SARCOPENIA MEASURED BY ULTRASOUND IN HOSPITALIZED OLDER ADULTS” (ECOSARC): multi-centre, prospective observational study protocol. BMC Geriatr. 2023 Mar 22;23(1):163. | |
| dc.relation.references | 101. Soni NJ, Arntfiled R, Kory P. Point-of-Care Ultrasound. 2nd ed. Elsevier; 2020. | |
| dc.relation.references | 102. Perkisas S, Baudry S, Bauer J, Beckwée D, De Cock AM, Hobbelen H, et al. Application of ultrasound for muscle assessment in sarcopenia: towards standardized measurements. Eur Geriatr Med. 2018 Dec;9(6):739–57. | |
| dc.relation.references | 103. Fukumoto Y, Ikezoe T, Yamada Y, Tsukagoshi R, Nakamura M, Mori N, et al. Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur J Appl Physiol. 2012 Apr;112(4):1519–25. | |
| dc.relation.references | 104. Stock MS, Thompson BJ. Echo intensity as an indicator of skeletal muscle quality: applications, methodology, and future directions. Eur J Appl Physiol. 2021 Feb;121(2):369–80. | |
| dc.relation.references | 105. Perkisas S, Bastijns S, Baudry S, Bauer J, Beaudart C, Beckwée D, et al. Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update. Eur Geriatr Med. 2021 Feb;12(1):45–59. | |
| dc.relation.references | 106. Alizadeh Pahlavani H. Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors. Front Endocrinol [Internet]. 2022 Feb 17 [cited 2024 Apr 19];13. Available from: https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2022.8117 51/full | |
| dc.relation.references | 107. Izquierdo M, Merchant RA, Morley JE, Anker SD, Aprahamian I, Arai H, et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J Nutr Health Aging. 2021 July 1;25(7):824–53. | |
| dc.relation.references | 108. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–31. | |
| dc.relation.references | 109. Hurst C, Robinson SM, Witham MD, Dodds RM, Granic A, Buckland C, et al. Resistance exercise as a treatment for sarcopenia: prescription and delivery. Age Ageing. 2022 Feb 12;51(2):afac003. | |
| dc.relation.references | 110. Zaleski AL, Taylor BA, Panza GA, Wu Y, Pescatello LS, Thompson PD, et al. Coming of Age: Considerations in the Prescription of Exercise for Older Adults. Methodist DeBakey Cardiovasc J. 2016;12(2):98–104. | |
| dc.relation.references | 111. Ioannidou P, Dóró Z, Schalla J, Wätjen W, Diel P, Isenmann E. Analysis of combinatory effects of free weight resistance training and a high-protein diet on body composition and strength capacity in postmenopausal women - A 12-week randomized controlled trial. J Nutr Health Aging. 2024 Oct 1;28(10):100349. | |
| dc.relation.references | 112. Yasuda T. Selected Methods of Resistance Training for Prevention and Treatment of Sarcopenia. Cells. 2022 Apr 20;11(9):1389. | |
| dc.relation.references | 113. da Silva Gonçalves L, Santos Lopes da Silva L, Rodrigues Benjamim CJ, Tasinafo MF, Bohn L, Ferreira Abud G, et al. The Effects of Different Exercise Training Types on Body Composition and Physical Performance in Older Adults with Sarcopenic Obesity: A Systematic Review and Meta-Analysis. J Nutr Health Aging. 2023 Nov 1;27(11):1076–90. | |
| dc.relation.references | 114. Thomas E, Gentile A, Lakicevic N, Moro T, Bellafiore M, Paoli A, et al. The effect of resistance training programs on lean body mass in postmenopausal and elderly women: a meta-analysis of observational studies. Aging Clin Exp Res. 2021 Nov 1;33(11):2941–52. | |
| dc.relation.references | 115. Gómez Álvarez N, Jofré Hermosilla N, Matus Castillo C, Pavez Adasme G. Effects of muscle strength training in postmenopausal women with metabolic syndrome. Systematic review. Cult CCD [Internet]. 2019 [cited 2025 Nov 17];14(42). Available from: https://repositorio.ucam.edu/handle/10952/6016 | |
| dc.relation.references | 116. Polo-Ferrero L, Navarro-López V, Fuentes M, Lacal J, Cancelas-Felgueras MD, Santos-Blázquez N, et al. Effect of Resistance Training on Older Adults with Sarcopenic Obesity: A Comprehensive Systematic Review and Meta-Analysis of Blood Biomarkers, Functionality, and Body Composition. Nurs Rep. 2025 Mar;15(3):89. | |
| dc.relation.references | 117. Zurita-Cruz JN, Márquez-González H, Miranda-Novales G, Villasís-Keever MÁ. Estudios experimentales: diseños de investigación para la evaluación de intervenciones en la clínica. Rev Alerg México. 65(2):178–86. | |
| dc.relation.references | 118. Otzen T, Manterola C. Técnicas de Muestreo sobre una Población a Estudio. Int J Morphol. 2017 Mar;35(1):227–32. | |
| dc.relation.references | 119. NHANES. Anthropometry Procedures Manual 2021 [Internet]. Center for Disease Control and Prevention; 2021. Available from: https://wwwn.cdc.gov/nchs/data/nhanes/public/2021/manuals/2021-Anthropometry- Procedures-Manual-508.pdf | |
| dc.relation.references | 120. Weir CB, Jan A. BMI Classification Percentile And Cut Off Points. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2024 Mar 20]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK541070/ | |
| dc.relation.references | 121. Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011 July 1;40(4):423–9. | |
| dc.relation.references | 122. Mantilla Toloza SC, Gómez-Conesa A. El Cuestionario Internacional de Actividad Física. Un instrumento adecuado en el seguimiento de la actividad física poblacional. Rev Iberoam Fisioter Kinesiol. 2007 Jan 1;10(1):48–52. | |
| dc.relation.references | 123. Ramírez-Vélez R, López Sáez De Asteasu M, Morley JE, Cano-Gutierrez CA, Izquierdo M. Performance of the Short Physical Performance Battery in Identifying the Frailty Phenotype and Predicting Geriatric Syndromes in Community-Dwelling Elderly. J Nutr Health Aging. 2021 Feb 1;25(2):209–17. | |
| dc.relation.references | 124. Ticinesi A, Meschi T, Narici MV, Lauretani F, Maggio M. Muscle Ultrasound and Sarcopenia in Older Individuals: A Clinical Perspective. J Am Med Dir Assoc. 2017 Apr 1;18(4):290–300. | |
| dc.relation.references | 125. Harris-Love MO, Seamon BA, Teixeira C, Ismail C. Ultrasound estimates of muscle quality in older adults: reliability and comparison of Photoshop and ImageJ for the grayscale analysis of muscle echogenicity. PeerJ. 2016 Feb 22;4:e1721. | |
| dc.relation.references | 126. Stock MS, Whitson M, Burton AM, Dawson NT, Sobolewski EJ, Thompson BJ. Echo Intensity Versus Muscle Function Correlations in Older Adults are Influenced by Subcutaneous Fat Thickness. Ultrasound Med Biol. 2018 Aug;44(8):1597–605. | |
| dc.relation.references | 127. Beaudart C, Biver E, Reginster JY, Rizzoli R, Rolland Y, Bautmans I, et al. Development of a self-administrated quality of life questionnaire for sarcopenia in elderly subjects: the SarQoL. Age Ageing. 2015 Nov;44(6):960–6. | |
| dc.relation.references | 128. Montero-Errasquín B, Vaquero-Pinto N, Sánchez-Cadenas V, Geerinck A, Sánchez- García E, Mateos-Nozal J, et al. Spanish translation, cultural adaptation and validation of the SarQoL®: a specific health-related quality of life questionnaire for sarcopenia. BMC Musculoskelet Disord. 2022 Mar 1;23:191. | |
| dc.relation.references | 129. Fonfría-Vivas R, Pérez-Ros P, Barrachina-Igual J, Pablos-Monzó A, Martínez-Arnau FM. Assessing quality of life with SarQol is useful in screening for sarcopenia and sarcopenic obesity in older women. Aging Clin Exp Res. 2023 Oct 1;35(10):2069–79. | |
| dc.relation.references | 130. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med Sci Sports Exerc. 2011 July;43(7):1334. | |
| dc.relation.references | 131. Chen N, He X, Feng Y, Ainsworth BE, Liu Y. Effects of resistance training in healthy older people with sarcopenia: a systematic review and meta-analysis of randomized controlled trials. Eur Rev Aging Phys Act. 2021 Nov 11;18(1):23. | |
| dc.relation.references | 132. Herda AA, Nabavizadeh O. Short-term resistance training in older adults improves muscle quality: A randomized control trial. Exp Gerontol. 2021 Mar 1;145:111195. | |
| dc.relation.references | 133. Morishita S, Tsubaki A, Takabayashi T, Fu JB. Relationship Between the Rating of Perceived Exertion Scale and the Load Intensity of Resistance Training. Strength Cond J. 2018 Apr;40(2):94. | |
| dc.relation.references | 134. Robertson RJ, Goss FL, Rutkowski J, Lenz B, Dixon C, Timmer J, et al. Concurrent Validation of the OMNI Perceived Exertion Scale for Resistance Exercise. Med Sci Sports Exerc. 2003 Feb;35(2):333. | |
| dc.relation.references | 135. Ribeiro AS, Nunes JP, Schoenfeld BJ. Selection of Resistance Exercises for Older Individuals: The Forgotten Variable. Sports Med. 2020 June 1;50(6):1051–7. | |
| dc.relation.references | 136. Peoples BM, Harrison KD, Santamaria-Guzman KG, Campos-Vargas SE, Monaghan PG, Roper JA. Functional lower extremity strength influences stepping strategy in community-dwelling older adults during single and dual-task walking. Sci Rep. 2024 June 11;14(1):13379. | |
| dc.relation.references | 137. Kenny M, Ranabahu T, Vallance P, Zhang Y, Gurr J, Färnqvist K, et al. Exercise adherence in trials of therapeutic exercise interventions for common musculoskeletal conditions: A scoping review. Musculoskelet Sci Pract. 2023 June;65:102748. | |
| dc.relation.references | 138. Mateus JC, Varela MT, Caicedo DM, Arias NL, Jaramillo CD, Morales LC, et al. ¿Responde la Resolución 8430 de 1993 a las necesidades actuales de la ética de la investigación en salud con seres humanos en Colombia? Biomédica. 2019 Sept 1;39(3):448–63. | |
| dc.relation.references | 139. Ministerio de Salud. Resolucion Numero 8430 de 1993 [Internet]. 1993 [cited 2024 Mar 15]. Available from: https://www.minsalud.gov.co/sites/rid/lists/bibliotecadigital/ride/de/dij/resolucion- 8430-de-1993.pdf | |
| dc.relation.references | 140. Miranda-Novales MG, Villasís-Keever MÁ, Miranda-Novales MG, Villasís-Keever MÁ. El protocolo de investigación VIII. La ética de la investigación en seres humanos. Rev Alerg México. 2019 Mar;66(1):115–22. | |
| dc.relation.references | 141. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016 June;15(2):155–63. | |
| dc.relation.references | 142. Buckinx F, Aubertin-Leheudre M. Sarcopenia in Menopausal Women: Current Perspectives. Int J Womens Health. 2022 June 23;14:805–19. | |
| dc.relation.references | 143. Rubino D, Schon S. Treating obesity to optimize women’s health outcomes. Menopause. 2025 May;32(S1):S19. | |
| dc.relation.references | 144. Khor EQE, Lim JP, Tay L, Yeo A, Yew S, Ding YY, et al. Obesity Definitions in Sarcopenic Obesity: Differences in Prevalence, Agreement and Association with Muscle Function. J Frailty Aging. 2020 Jan 1;9(1):37–43. | |
| dc.relation.references | 145. Tutunchi H, Ebrahimi-Mameghani M, Ostadrahimi A, Asghari-Jafarabadi M. What are the optimal cut-off points of anthropometric indices for prediction of overweight and obesity? Predictive validity of waist circumference, waist-to-hip and waist-to-height ratios. Health Promot Perspect. 2020 Mar 30;10(2):142–7. | |
| dc.relation.references | 146. Du R, Yuan J, Huang Y, Jiang G, Duan Z, Yang H, et al. Sarcopenia is not associated with hypertension, but sarcopenic obesity increases risk of hypertension: a 7-year cohort study. Front Public Health [Internet]. 2025 Jan 15 [cited 2025 Nov 17];12. Available from: https://www.frontiersin.org/journals/public- health/articles/10.3389/fpubh.2024.1479169/full | |
| dc.relation.references | 147. Qu Q, Guo Q, Sun J, Lu X, Cheang I, Zhu X, et al. Low lean mass with obesity in older adults with hypertension: prevalence and association with mortality rate. BMC Geriatr. 2023 Oct 3;23(1):619. | |
| dc.relation.references | 148. Wang M, Tan Y, Shi Y, Wang X, Liao Z, Wei P. Diabetes and Sarcopenic Obesity: Pathogenesis, Diagnosis, and Treatments. Front Endocrinol. 2020 Aug 25;11:568. | |
| dc.relation.references | 149. Spanoudaki M, Giaginis C, Mentzelou M, Bisbinas A, Solovos E, Papadopoulos K, et al. Sarcopenia and Sarcopenic Obesity and Osteoarthritis: A Discussion among Muscles, Fat, Bones, and Aging. Life. 2023 June;13(6):1242. | |
| dc.relation.references | 150. Wannamethee SG, Atkins JL. Sarcopenic Obesity and Cardiometabolic Health and Mortality in Older Adults: a Growing Health Concern in an Ageing Population. Curr Diab Rep. 2023 Nov 1;23(11):307–14. | |
| dc.relation.references | 151. Ministerio de Salud y Protección Social. Análisis de Situación de Salud Colombia. 2024 [Internet]. Ministerio de Salud y Protección Social; 2024 [cited 2025 Nov 17]. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/PSP/asis- colombia-2024.pdf | |
| dc.relation.references | 152. Ministerio de Salud. Boletín técnico: Personas mayores [Internet]. 2024. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/PS/boletines- personas-mayores-dic-2024.pdf#page=20.54 | |
| dc.relation.references | 153. Ministerio de Salud y Protección Social. Carga de enfermedad por Enfermedades Crónicas No Transmisibles y Discapacidad en Colombia. 2015 | |
| dc.relation.references | 154. Gretebeck KA, Sabatini LM, Black DR, Gretebeck RJ. Physical Activity, Functional Ability, and Obesity in Older Adults: A Gender Difference. J Gerontol Nurs. 2017 Sept 1;43(9):38–46. | |
| dc.relation.references | 155. Tomkinson GR, Lang JJ, Rubín L, McGrath R, Gower B, Boyle T, et al. International norms for adult handgrip strength: A systematic review of data on 2.4 million adults aged 20 to 100+ years from 69 countries and regions. J Sport Health Sci. 2025 Dec 1;14:101014. | |
| dc.relation.references | 156. Vaishya R, Misra A, Vaish A, Ursino N, D’Ambrosi R. Hand grip strength as a proposed new vital sign of health: a narrative review of evidences. J Health Popul Nutr. 2024 Jan 9;43(1):7. | |
| dc.relation.references | 157. Lavin KM, Roberts BM, Fry CS, Moro T, Rasmussen BB, Bamman MM. The Importance of Resistance Exercise Training to Combat Neuromuscular Aging. Physiology. 2019 Mar 1;34(2):112–22. | |
| dc.relation.references | 158. Aging Biomarker Consortium, Suo J, Gan Y, Xie Y, Xu S, Wang J, et al. A framework of biomarkers for skeletal aging: a consensus statement by the Aging Biomarker Consortium. Life Med. 2023 Dec 1;2(6):lnad045. | |
| dc.relation.references | 159. Cartee GD, Hepple RT, Bamman MM, Zierath JR. Exercise Promotes Healthy Aging of Skeletal Muscle. Cell Metab. 2016 June 14;23(6):1034–47. | |
| dc.relation.references | 160. Sawaya Y, Ishizaka M, Hirose T, Shiba T, Onoda K, Kubo A, et al. Minimal detectable change in handgrip strength and usual and maximum gait speed scores in community- dwelling Japanese older adults requiring long-term care/support. Geriatr Nur (Lond). 2021 Sept 1;42(5):1184–9. | |
| dc.relation.references | 161. Feng Y, Shi R. Estrogen in skeletal muscle: metabolism, mechanisms, and exercise- induced changes. J Endocrinol Invest [Internet]. 2025 Oct 21 [cited 2025 Nov 17]; Available from: https://doi.org/10.1007/s40618-025-02726-x | |
| dc.relation.references | 162. Jang SY, Choi KM. Impact of Adipose Tissue and Lipids on Skeletal Muscle in Sarcopenia. J Cachexia Sarcopenia Muscle. 2025 July 10;16(4):e70000. | |
| dc.relation.references | 163. Siddique U, Frazer AK, Avela J, Walker S, Ahtiainen JP, Howatson G, et al. Determining the cortical, spinal and muscular adaptations to strength-training in older adults: A systematic review and meta-analysis. Ageing Res Rev. 2022 Dec 1;82:101746. | |
| dc.relation.references | 164. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002 Oct;93(4):1318–26. | |
| dc.relation.references | 165. Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med Auckl NZ. 2006;36(2):133– 49. | |
| dc.relation.references | 166. Mcleod JC, Currier BS, Lowisz CV, Phillips SM. The influence of resistance exercise training prescription variables on skeletal muscle mass, strength, and physical function in healthy adults: An umbrella review. J Sport Health Sci. 2024 Jan;13(1):47– 60. | |
| dc.relation.references | 167. Wiegmann S, Felsenberg D, Armbrecht G, Dietzel R. Longitudinal changes in muscle power compared to muscle strength and mass. J Musculoskelet Neuronal Interact. 2021;21(1):13–25. | |
| dc.relation.references | 168. Brady AO, Straight CR. Muscle capacity and physical function in older women: What are the impacts of resistance training? J Sport Health Sci. 2014 Sept 1;3(3):179–88. | |
| dc.relation.references | 169. Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018 Apr 1;48(4):765–85. | |
| dc.relation.references | 170. Guizelini PC, de Aguiar RA, Denadai BS, Caputo F, Greco CC. Effect of resistance training on muscle strength and rate of force development in healthy older adults: A systematic review and meta-analysis. Exp Gerontol. 2018 Feb 1;102:51–8. | |
| dc.relation.references | 171. Kwon S, Perera S, Pahor M, Katula JA, King AC, Groessl EJ, et al. What is a meaningful change in Physical Performance? Findings from a clinical trial in older adults (The LIFE-P Study). J Nutr Health Aging. 2009 June;13(6):538–44. | |
| dc.relation.references | 172. Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful Change and Responsiveness in Common Physical Performance Measures in Older Adults. J Am Geriatr Soc. 2006;54(5):743–9. | |
| dc.relation.references | 173. Guralnik J, Bandeen-Roche K, Bhasin SAR, Eremenco S, Landi F, Muscedere J, et al. Clinically Meaningful Change for Physical Performance: Perspectives of the ICFSR Task Force. J Frailty Aging. 2020 Jan 1;9(1):9–13. | |
| dc.relation.references | 174. Goldberg A, Chavis M, Watkins J, Wilson T. The five-times-sit-to-stand test: validity, reliability and detectable change in older females. Aging Clin Exp Res. 2012 Aug 1;24(4):339–44. | |
| dc.relation.references | 175. Reid KF, Fielding RA. Skeletal Muscle Power: A Critical Determinant of Physical Functioning In Older Adults. Exerc Sport Sci Rev. 2012 Jan;40(1):4–12. | |
| dc.relation.references | 176. Muñoz-Bermejo L, Adsuar JC, Mendoza-Muñoz M, Barrios-Fernández S, Garcia- Gordillo MA, Pérez-Gómez J, et al. Test-Retest Reliability of Five Times Sit to Stand Test (FTSST) in Adults: A Systematic Review and Meta-Analysis. Biology. 2021 June 9;10(6):510. | |
| dc.relation.references | 177. Witham MD, Heslop P, Dodds RM, Clegg AP, Hope SV, McDonald C, et al. Performance of the SarQoL quality of life tool in a UK population of older people with probable sarcopenia and implications for use in clinical trials: findings from the SarcNet registry. BMC Geriatr. 2022 Apr 27;22(1):368. | |
| dc.relation.references | 178. Diago-Galmés A, Guillamón-Escudero C, Tenías-Burillo JM, Soriano JM, Fernandez- Garrido J. Evaluating the Screening Capability of the SarQoL Questionnaire in Sarcopenic Obesity: A Comparison Study Between Spanish and Belgian Community- Dwelling Older Adults. Nutrients. 2024 Nov 15;16(22):3904. | |
| dc.relation.references | 179. Savvakis I, Adamakidou T, Kleisiaris C. Physical-activity interventions to reduce fear of falling in frail and pre-frail older adults: a systematic review of randomized controlled trials. Eur Geriatr Med. 2024 Apr 1;15(2):333–44. | |
| dc.relation.references | 180. Dos Santos VR, Antunes M, Dos Santos L, Nascimento MA, Pina FLC, Carneiro NH, et al. Effects of Different Resistance Training Frequencies on Body Composition, Muscular Strength, Muscle Quality, and Metabolic Biomarkers in Sarcopenic Older Women. J Strength Cond Res. 2024 Sept 1;38(9):e521–8. | |
| dc.relation.references | 181. Liao CD, Tsauo JY, Huang SW, Ku JW, Hsiao DJ, Liou TH. Effects of elastic band exercise on lean mass and physical capacity in older women with sarcopenic obesity: A randomized controlled trial. Sci Rep. 2018 Feb 2;8:2317. | |
| dc.relation.references | 182. Stojanović MDM, Mikić MJ, Milošević Z, Vuković J, Jezdimirović T, Vučetić V. Effects of Chair-Based, Low-Load Elastic Band Resistance Training on Functional Fitness and Metabolic Biomarkers in Older Women. J Sports Sci Med. 2021 Mar;20(1):133– 41. | |
| dc.relation.references | 183. Seo MW, Jung SW, Kim SW, Lee JM, Jung HC, Song JK. Effects of 16 Weeks of Resistance Training on Muscle Quality and Muscle Growth Factors in Older Adult Women with Sarcopenia: A Randomized Controlled Trial. Int J Environ Res Public Health. 2021 June 23;18(13):6762. | |
| dc.relation.references | 184. Liu HW, Lee OKS. Effects of resistance training with elastic bands on bone mineral density, body composition, and osteosarcopenic obesity in elderly women: A meta- analysis. J Orthop. 2024 July;53:168–75. | |
| dc.relation.references | 185. Schott N, Johnen B, Holfelder B. Effects of free weights and machine training on muscular strength in high-functioning older adults. Exp Gerontol. 2019 July 15;122:15–24. | |
| dc.relation.references | 186. Shaner AA, Vingren JL, Hatfield DL, Budnar RGJ, Duplanty AA, Hill DW. The Acute Hormonal Response to Free Weight and Machine Weight Resistance Exercise. J Strength Cond Res. 2014 Apr;28(4):1032. | |
| dc.relation.references | 187. Wong V, Spitz RW, Bell ZW, Viana RB, Chatakondi RN, Abe T, et al. Exercise induced changes in echo intensity within the muscle: a brief review. J Ultrasound. 2020 Jan 10;23(4):457–72. | |
| dc.relation.references | 188. Bali AU, Harmon KK, Burton AM, Phan DC, Mercer NE, Lawless NW, et al. Muscle strength, not age, explains unique variance in echo intensity. Exp Gerontol. 2020 Oct 1;139:111047. | |
| dc.relation.references | 189. Knowles KS, Pagan JI, Beausejour JP, Mongold SJ, Anderson AW, Stout JR, et al. Changes in Muscle Quality Following Short-Term Resistance Training in Older Adults: A Comparison of Echo Intensity and Texture Analysis. Ultrasound Med Biol. 2025 Apr 1;51(4):675–82. | |
| dc.relation.references | 190. Scanlon TC, Fragala MS, Stout JR, Emerson NS, Beyer KS, Oliveira LP, et al. Muscle architecture and strength: adaptations to short-term resistance training in older adults. Muscle Nerve. 2014 Apr;49(4):584–92. | |
| dc.relation.references | 191. Watanabe Y, Yamada Y, Fukumoto Y, Ishihara T, Yokoyama K, Yoshida T, et al. Echo intensity obtained from ultrasonography images reflecting muscle strength in elderly men. Clin Interv Aging. 2013;8:993–8. | |
| dc.relation.references | 192. Girts RM, Harmon KK, Pagan JI, Alberto A, Hernandez MG, Stock MS. The influence of ultrasound image depth and gain on skeletal muscle echo intensity. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2022 Aug 1;47(8):839–46. | |
| dc.relation.references | 193. Cox CE. Role of Physical Activity for Weight Loss and Weight Maintenance. Diabetes Spectr Publ Am Diabetes Assoc. 2017 Aug;30(3):157–60. | |
| dc.relation.references | 194. Buskard ANL, Petrella RJ. Resistance Training and Weight Loss in Older Adults: A Scoping Review. Sports Med - Open. 2023 Aug 1;9:67. | |
| dc.relation.references | 195. Madrid DA, Beavers KM, Walkup MP, Ambrosius WT, Rejeski WJ, Marsh AP, et al. Effect of Exercise Modality during Weight Loss on Changes in Muscle and Bone Quality in Older Adults with Obesity. Exp Gerontol. 2023 Apr;174:112126. | |
| dc.relation.references | 196. Morgan R, Kalbarczyk A, Mohan D, Jacobs C, Mishra M, Tyagi P, et al. Counting older women: Measuring the health and wellbeing of older women in LMICs. Cell Rep Med. 2024 June 18;5(6):101607. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
| dc.subject.bne | Ejercicio físico | spa |
| dc.subject.ddc | 610 - Medicina y salud::612 - Fisiología humana | |
| dc.subject.ddc | 610 - Medicina y salud | |
| dc.subject.proposal | Obesidad Sarcopénica | spa |
| dc.subject.proposal | Ejercicio de Fuerza | spa |
| dc.subject.proposal | Adulto Mayor | spa |
| dc.subject.proposal | Envejecimiento Saludable | spa |
| dc.subject.proposal | Sarcopenic Obesity | eng |
| dc.subject.proposal | Strength Training | eng |
| dc.subject.proposal | Elderly | eng |
| dc.subject.proposal | Healthy Aging | eng |
| dc.subject.wikidata | Obesidad sarcopénica | spa |
| dc.subject.wikidata | Sarcopenic obesity | eng |
| dc.subject.wikidata | Tercera edad | spa |
| dc.subject.wikidata | Old age | eng |
| dc.subject.wikidata | Envejecimiento saludable | spa |
| dc.title | Efecto de un programa de ejercicio de fuerza sobre mujeres mayores de 60 años con obesidad sarcopénica | spa |
| dc.title.translated | Effect of a Strength Training Program on Women Over 60 Years Old with Sarcopenic Obesity | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Bibliotecarios | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Maestros | |
| dcterms.audience.professionaldevelopment | Padres y familias | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |

