Identificación del gen codificante para la Proteína Disulfuro Isomerasa 2 de Leishmania braziliensis y aproximación experimental para su deleción mediante CRISPR/Cas9
dc.contributor.advisor | Contreras Rodriguez, Luis Ernesto | |
dc.contributor.author | Murillo Villanueva, Pablo Enrique | |
dc.contributor.cvlac | Murillo Villanueva, Pablo Enrique [rh=0001673111] | |
dc.contributor.orcid | Murillo Villanueva, Pablo Enrique [0009000128771267] | |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2025-08-27T13:41:38Z | |
dc.date.available | 2025-08-27T13:41:38Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas | spa |
dc.description.abstract | La leishmaniasis es una enfermedad parasitaria causada por protozoos flagelados del género Leishmania, existiendo 20 especies que pueden infectar al ser humano, 9 de las cuales están presentes en el territorio colombiano. La enfermedad se clasifica en las formas cutánea (LC), mucocutánea (LMC) y visceral (LV). En Colombia, en el año 2023 se presentaron 4219, 84 y 3 casos de LC, LMC y LV, respectivamente. Leishmania braziliensis es el agente etiológico más común de LC y LMC en América Latina. Actualmente, no existen vacunas avaladas para uso humano contra la leishmaniasis, cuyo tratamiento depende del uso de medicamentos que resultan ineficaces dada su toxicidad y la presencia de cepas fármaco-resistentes. Una de las proteínas que se expresa en cepas altamente virulentas es la Proteína Disulfuro Isomerasa 2 (PDI-2), enzima tiol-disulfuro oxidorreductasa que cataliza la formación, reducción e isomerización de enlaces disulfuro a nivel del retículo endoplasmático (RE), contribuyendo con la proteostasis celular. En L. major, la inhibición enzimática de PDI-2 disminuye significativamente sus tasas de crecimiento, mientras que la sobre-expresión de una versión inactiva en promastigotes de L. donovani altera la secreción de fosfatasas alcalinas provenientes del RE, necesarias para la infección. Estas observaciones sugieren que PDI-2 constituye un blanco terapéutico promisorio, cuyo estudio en L. braziliensis, la especie predominante en Colombia, aún no se ha realizado. En consecuencia, en este trabajo se abordó la identificación y caracterización bioinformática de un candidato para PDI-2 en L. braziliensis (LbPDI2), incluyendo la expresión de la proteína recombinante 6xHis-SUMO-∆ALbPDI2, truncada en uno de sus dominios tiorredoxina N-terminales. Adicionalmente, se obtuvieron parásitos mutantes LbPDI2-/- mediante el sistema de edición CRISPR/Cas9. Análisis de viabilidad celular basados en EC50, indicaron que los parásitos mutantes aumentaron su resistencia al antimonio trivalente, principio activo de los medicamentos de primera línea contra la enfermedad, así como al 5-fluorouracilo, metotrexato, sulfato de zinc y genisteína, pero haciéndose más susceptibles a la geneticina 418, estreptomicina y ketoconazol. En relación con la anfotericina B, el peróxido de hidrógeno y el nitroprusiato de sodio, no se detectaron cambios en relación con los parásitos control (Wild Type, WT). Por otra parte, se inició la exploración de ensayos de muerte celular mediante citometría de flujo, así como una aproximación metabolómica, lográndose establecer condiciones experimentales de partida para eventuales ensayos que permitan identificar cambios moleculares en los parásitos mutantes ante el tratamiento con diversas sustancias. En conjunto, los resultados derivados del presente estudio sugieren la participación del candidato LbPDI2 en la defensa del parásito contra sustancias antimicrobianas y anticancerígenas, posicionándose como una potencial diana farmacológica contra la leishmaniasis (Texto tomado de la fuente). | spa |
dc.description.abstract | Leishmaniasis is a parasitic disease caused by flagellate protozoa of the genus Leishmania, with 20 species that can infect humans, 9 of which are present in Colombia. The disease is classified into cutaneous (CL), mucocutaneous (MCL) and visceral (VL) forms. In Colombia, 4219, 84 and 3 cases of CL, MCL and VL occurred in 2023, respectively. Leishmania braziliensis is the most common etiologic agent of CL and MCL in Latin America. Currently, there are no vaccines approved for human use against leishmaniasis, the treatment of which depends on the use of drugs that are ineffective due to their toxicity and the presence of drug-resistant strains. One of the proteins expressed in highly virulent strains is Protein Disulfide Isomerase 2 (PDI-2), a thiol-disulfide oxidoreductase enzyme that catalyzes the formation, reduction and isomerization of disulfide bonds at the endoplasmic reticulum (ER), contributing to cellular proteostasis. In L. major, enzymatic inhibition of PDI-2 significantly decreases its growth rates, while overexpression of an inactive version in L. donovani promastigotes alters the secretion of alkaline phosphatases from the ER, which are necessary for infection. These observations suggest that PDI-2 is a promising therapeutic target that has not yet been studied in L. braziliensis, the predominant species in Colombia. Accordingly, this work addressed the identification and bioinformatic characterization of a candidate for PDI-2 in L. braziliensis (LbPDI2), including the expression of the recombinant 6xHis-SUMO-∆ALbPDI2 protein, truncated in one of its N-terminal thioredoxin domains. Additionally, LbPDI2-/- mutant parasites were obtained using the CRISPR/Cas9 editing system. Cell viability analyses based on EC50 indicated that the mutant parasites increased their resistance to trivalent antimony, as well as to 5-fluorouracil, methotrexate, zinc sulfate, and genistein, but became more susceptible to geneticin 418, streptomycin, and ketoconazole. In relation to amphotericin B, hydrogen peroxide and sodium nitroprusside, no changes were detected in relation to control parasites (Wild Type, WT). On the other hand, the exploration of cell death assays by flow cytometry was initiated, as well as a metabolomic approach, establishing experimental conditions for eventual assays to identify molecular changes in the mutant parasites upon treatment with different substances. The results derived from the present study suggest the participation of the candidate LbPDI2 in the defense of the parasite against antimicrobial and anticancer substances, positioning it as a potential pharmacological target against leishmaniasis. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magister en Ciencias Bioquímica | |
dc.description.methods | Utilizando tres estructuras primarias de PDI-2 caracterizadas experimentalmente, pertenecientes a diferentes especies de Leishmania, se realizó alineamiento múltiple en CLC Main Workbench 25, con parámetros predeterminados. Con la secuencia consenso obtenida se realizó PSI-BLAST en el servidor NCBI, utilizando el genoma de L. braziliensis (MHOM/BR/75M2903). El péptido señal del candidato LbPDI2 identificado (XP_001569341.1 en NCBI) se predijo mediante SignalP 6.0 (Teufel et al., 2022), mientras que los dominios funcionales se determinaron con el servidor INTERPRO (Blum et al., 2025). Además, se predijeron regiones intrínsecamente desordenadas mediante Critical Assessment of Intrinsic protein Disorder (CAID) (Conte et al., 2023). Por otro lado, se obtuvo un modelo predictivo de la estructura terciaria utilizando RoseTTAFold (Baek et al., 2021), el cual se validó mediante diagrama de Ramachandran, evaluación de rotámeros y desviaciones del carbono beta (Cβ) en MOLPROBITY (Williams et al., 2018). Las estructuras se visualizaron con el software Pymol 3.1 (Schrödinger, LLC, 2016). A partir de la estructura terciaria, se determinaron los porcentajes de las estructuras secundarias con el servidor Yasara (krieger et al., 2014). | |
dc.description.researcharea | Bioquímica y Biología Molecular de Parásitos | |
dc.format.extent | 104 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88483 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | |
dc.relation.references | Achour, Y. B., Chenik, M., Louzir, H., & Dellagi, K. (2002). Identification of a disulfide isomerase protein of leishmania major as a putative virulence factor. Infection and Immunity, 70(7), 3576-3585. https://doi.org/10.1128/IAI.70.7.3576-3585.2002 | |
dc.relation.references | Ali, D., Abbady, A. Q., Kweider, M., & Soukkarieh, C. (2016). Cloning, expression, purification and characterization of Leishmania tropica PDI-2 protein. Open Life Sciences, 11(1), 166–176. https://doi.org/10.1515/biol-2016-0022 | |
dc.relation.references | Alpizar-Sosa, E. A., Ithnin, N. R. B., Wei, W., Pountain, A. W., Weidt, S. K., Donachie, A. M., Ritchie, R., Dickie, E. A., Burchmore, R. J. S., Denny, P. W., & Barrettid, M. P. (2022). Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Neglected Tropical Diseases, 16(9). https://doi.org/10.1371/journal.pntd.0010779 | |
dc.relation.references | Alzahrani, K. J. H., Ali, J. A. M., Eze, A. A., Looi, W. L., Tagoe, D. N. A., Creek, D. J., Barrett, M. P., & de Koning, H. P. (2017). Functional and genetic evidence that nucleoside transport is highly conserved in Leishmania species: Implications for pyrimidine-based chemotherapy. International Journal for Parasitology. Drugs and Drug Resistance, 7(2), 206-226. https://doi.org/10.1016/j.ijpddr.2017.04.003 | |
dc.relation.references | Andersson, S., Romero, A., Rodrigues, J. I., Hua, S., Hao, X., Jacobson, T., Karl, V., Becker, N., Ashouri, A., Rauch, S., Nyström, T., Liu, B., & Tamás, M. J. (2021). Genome-wide imaging screen uncovers molecular determinants of arsenite-induced protein aggregation and toxicity. Journal of Cell Science, 134(11), jcs258338. https://doi.org/10.1242/jcs.258338 | |
dc.relation.references | Angrisano, F., Sala, K. A., Tapanelli, S., Christophides, G. K., & Blagborough, A. M. (2019). Male-specific protein disulphide isomerase function is essential for plasmodium transmission and a vulnerable target for intervention. Scientific Reports, 9(1), 18300. https://doi.org/10.1038/s41598-019-54613-0 | |
dc.relation.references | Arase, S., Kasai, M., & Kanazawa, A. (2012). In planta assays involving epigenetically silenced genes reveal inhibition of cytosine methylation by genistein. Plant Methods, 8(1), 185. https://doi.org/10.1186/1746-4811-8-10 | |
dc.relation.references | Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., Millán, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, J. H., Rodrigues, A. V., Van Dijk, A. A., Ebrecht, A. C., … Baker, D. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557), 871-876. https://doi.org/10.1126/science.abj8754 | |
dc.relation.references | Barrera, M. C., Rojas, L. J., Weiss, A., Fernandez, O., McMahon-Pratt, D., Saravia, N. G., & Gomez, M. A. (2017). Profiling gene expression of antimony response genes in Leishmania (Viannia) panamensis and infected macrophages and its relationship with drug susceptibility. Acta Tropica, 176, 355–363. https://doi.org/10.1016/j.actatropica.2017.08.017 | |
dc.relation.references | Bhattacharya, A., Leprohon, P., & Ouellette, M. (2021). Combined gene deletion of dihydrofolate reductase-thymidylate synthase and pteridine reductase in Leishmania infantum. PLOS Neglected Tropical Diseases, 15(4), e0009377. https://doi.org/10.1371/journal.pntd.0009377 | |
dc.relation.references | Beneke, T., Madden, R., Makin, L., Valli, J., Sunter, J., & Gluenz, E. (2017). A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal Society Open Science, 4(5), 1–16. https://doi.org/10.1098/rsos.170095 | |
dc.relation.references | Binjubair, F. A., Parker, J. E., Warrilow, A. G., Puri, K., Braidley, P. J., Tatar, E., Kelly, S. L., Kelly, D. E., & Simons, C. (2020). Small‐molecule inhibitors targeting sterol 14α‐demethylase (Cyp51): Synthesis, molecular modelling and evaluation against candida albicans. ChemMedChem, 15(14), 1294-1309. https://doi.org/10.1002/cmdc.202000250 | |
dc.relation.references | Blum, M., Andreeva, A., Florentino, L. C., Chuguransky, S. R., Grego, T., Hobbs, E., Pinto, B. L., Orr, A., Paysan-Lafosse, T., Ponamareva, I., Salazar, G. A., Bordin, N., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunic, I., Llinares-López, F., … Bateman, A. (2025). InterPro: The protein sequence classification resource in 2025. Nucleic Acids Research, 53(D1), D444-D456. https://doi.org/10.1093/nar/gkae1082 | |
dc.relation.references | Borba, M., Castro, S., Mojoli, M., & Rodriguez, A. (2020). Situación actual de la leishmaniasis en el Uruguay. SALUD MILITAR, 39(1). https://doi.org/10.35954/SM2020.39.1.3 | |
dc.relation.references | Carvalho, S., Barreira da Silva, R., Shawki, A., Castro, H., Lamy, M., Eide, D., Costa, V., Mackenzie, B., & Tomás, A. M. (2015). LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites. Molecular Microbiology, 96(3), 581-595. https://doi.org/10.1111/mmi.12957 | |
dc.relation.references | Dirección de Vigilancia y Análisis del Riesgo en Salud Pública. (2024). Protocolo de vigilancia en salud pública de Leishmaniasis. Instituto Nacional de Salud. https://doi.org/10.33610/IMYH4569 | |
dc.relation.references | Conte, A. D., Mehdiabadi, M., Bouhraoua, A., Miguel Monzon, A., Tosatto, S. C. E., & Piovesan, D. (2023). Critical assessment of protein intrinsic disorder prediction (caid) ‐ Results of round 2. Proteins: Structure, Function, and Bioinformatics, 91(12), 1925-1934. https://doi.org/10.1002/prot.26582 | |
dc.relation.references | Cuervo, P., De Jesus, J. B., Saboia-Vahia, L., Mendonça-Lima, L., Domont, G. B., & Cupolillo, E. (2009). Proteomic characterization of the released/secreted proteins of Leishmania (Viannia) braziliensis promastigotes. Journal of Proteomics, 73(1), 79-92. https://doi.org/10.1016/j.jprot.2009.08.006 | |
dc.relation.references | Díaz-Magaña, A., Chávez-Moctezuma, M. P., Campos-García, J., Ramírez-Díaz, M. I., & Cervantes, C. (2017). A plasmid-encoded DsbA homologue is a growth-phase regulated thioredoxin. Plasmid, 89, 37-41. https://doi.org/10.1016/j.plasmid.2017.01.001 | |
dc.relation.references | Dinc, R. (2022). Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future. Korean Journal of Parasitology, 60(6), 379–391. https://doi.org/10.3347/kjp.2022.60.6.379 | |
dc.relation.references | Doleželová, E., Kunzová, M., Dejung, M., Levin, M., Panicucci, B., Regnault, C., Janzen, C. J., Barrett, M. P., Butter, F., & Zíková, A. (2020). Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei. PLoS Biology, 18(6), e3000741. https://doi.org/10.1371/journal.pbio.3000741 | |
dc.relation.references | Dousti, M., Hosseinpour, M., D Ghasemi, N., Mirfakhraee, H., Rajabi, S. K., Rashidi, S., & Hatam, G. (2023). The potential role of protein disulfide isomerases (Pdis) during parasitic infections: A focus on Leishmania spp. Pathogens and Disease, 81, ftad032. https://doi.org/10.1093/femspd/ftad032 | |
dc.relation.references | Drapal, M., Enfissi, E. M. A., Almeida, J., Rapacz, E., Nogueira, M., & Fraser, P. D. (2023). The potential of metabolomics in assessing global compositional changes resulting from the application of CRISPR/Cas9 technologies. Transgenic Research. https://doi.org/10.1007/s11248-023-00347-9 | |
dc.relation.references | Elamin, M., Al-Olayan, E., Abdel-Gaber, R., & Yehia, R. S. (2021). Anti-proliferative and apoptosis induction activities of curcumin on Leishmania major. Revista Argentina de Microbiología, 53(3), 240-247. https://doi.org/10.1016/j.ram.2020.08.004 | |
dc.relation.references | Espada, C. R., Albuquerque-Wendt, A., Hornillos, V., Gluenz, E., Coelho, A. C., & Uliana, S. R. B. (2021). Ros3 (Lem3p/cdc50) gene dosage is implicated in miltefosine susceptibility in leishmania (Viannia) braziliensis clinical isolates and in leishmania (Leishmania) major. ACS Infectious Diseases, 7(4), 849-858. https://doi.org/10.1021/acsinfecdis.0c00857 | |
dc.relation.references | Espada, C. R., Quilles, J. C., Albuquerque-Wendt, A., Cruz, M. C., Beneke, T., Lorenzon, L. B., Gluenz, E., Cruz, A. K., & Uliana, S. R. B. (2021). Effective Genome Editing in Leishmania ( Viannia) braziliensis Stably Expressing Cas9 and T7 RNA Polymerase. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.772311 | |
dc.relation.references | Fiebig, M., Kelly, S., & Gluenz, E. (2015). Comparative life cycle transcriptomics revises leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLOS Pathogens, 11(10), e1005186. https://doi.org/10.1371/journal.ppat.1005186 | |
dc.relation.references | Frézard, F., Monte-Neto, R., & Reis, P. G. (2014). Antimony transport mechanisms in resistant leishmania parasites. Biophysical Reviews, 6(1), 119-132. https://doi.org/10.1007/s12551-013-0134-y | |
dc.relation.references | Göhring, N., Fedtke, I., Xia, G., Jorge, A. M., Pinho, M. G., Bertsche, U., & Peschel, A. (2011). New role of the disulfide stress effector yjbh in β-lactam susceptibility of staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 55(12), 5452-5458. https://doi.org/10.1128/AAC.00286-11 | |
dc.relation.references | Gutierrez Guarnizo, S. A., Tikhonova, E. B., Karamyshev, A. L., Muskus, C. E., & Karamysheva, Z. N. (2023). Translational reprogramming as a driver of antimony-drug resistance in Leishmania. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-38221-1 | |
dc.relation.references | Habash, S. S., Sobczak, M., Siddique, S., Voigt, B., Elashry, A., & Grundler, F. M. W. (2017). Identification and characterization of a putative protein disulfide isomerase (Hspdi) as an alleged effector of Heterodera schachtii. Scientific Reports, 7(1), 13536. https://doi.org/10.1038/s41598-017-13418-9 | |
dc.relation.references | Hajjaran, H., Azarian, B., Mohebali, M., Hadighi, R., Assareh, A., & Vaziri, B. (2012). Comparative proteomics study on meglumine antimoniate sensitive and resistant Leishmania tropica isolated from Iranian anthroponotic cutaneous leishmaniasis patients. East Mediterr Health J, 18(2), 165–171. https://doi.org/10.26719/2012.18.2.165 | |
dc.relation.references | Hiranuma, N., Park, H., Baek, M., Anishchenko, I., Dauparas, J., & Baker, D. (2021). Improved protein structure refinement guided by deep learning based accuracy estimation. Nature Communications, 12(1), 1340. https://doi.org/10.1038/s41467-021-21511-x | |
dc.relation.references | Hong, B. X., & Soong, L. (2008). Identification and enzymatic activities of four protein disulfide isomerase (Pdi) isoforms of Leishmania amazonensis. Parasitology Research, 102(3), 437-446. https://doi.org/10.1007/s00436-007-0784-4 | |
dc.relation.references | Hoppe, G., Chai, Y. C., & Sears, J. (2003). Endogenous oxidoreductase expression is induced by aminoglycosides. Archives of Biochemistry and Biophysics, 414(1), 19-23. https://doi.org/10.1016/S0003-9861(03)00144-9 | |
dc.relation.references | Horibe, T., Nagai, H., Matsui, H., Hagiwara, Y., & Kikuchi, M. (2002). Aminoglycoside antibiotics bind to protein disulfide isomerase and inhibit its chaperone activity. The Journal of Antibiotics, 55(5), 528-530. https://doi.org/10.7164/antibiotics.55.528 | |
dc.relation.references | Horibe, T., Kikuchi, M., & Kawakami, K. (2008). Interaction of human protein disulfide isomerase and human P5 with drug compounds: Analysis using biosensor technology. Process Biochemistry, 43(12), 1330-1337. https://doi.org/10.1016/j.procbio.2008.07.018 | |
dc.relation.references | Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V., & Skrzypek, E. (2015). PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Research, 43(D1), D512-D520. https://doi.org/10.1093/nar/gku1267 | |
dc.relation.references | Imaoka, S. (2011). Chemical stress on protein disulfide isomerases and inhibition of their functions. En International Review of Cell and Molecular Biology (Vol. 290, pp. 121-166). Elsevier. https://doi.org/10.1016/B978-0-12-386037-8.00003-X | |
dc.relation.references | Jamdhade, M. D., Pawar, H., Chavan, S., Sathe, G., Umasankar, P. K., Mahale, K. N., Dixit, T., Madugundu, A. K., Prasad, T. S. K., Gowda, H., Pandey, A., & Patole, M. S. (2015). Comprehensive Proteomics Analysis of Glycosomes from Leishmania donovani. OMICS: A Journal of Integrative Biology, 19(3), 157-170. https://doi.org/10.1089/omi.2014.0163 | |
dc.relation.references | Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y., & Ishiguro-Watanabe, M. (2025). KEGG: Biological systems database as a model of the real world. Nucleic Acids Research, 53(D1), D672-D677. https://doi.org/10.1093/nar/gkae909 | |
dc.relation.references | Kawakami, N. Y., Tomiotto-Pellissier, F., Cataneo, A. H. D., Orsini, T. M., Thomazelli, A. P. F. D. S., Panis, C., Conchon-Costa, I., & Pavanelli, W. R. (2016). Sodium nitroprusside has leishmanicidal activity independent of iNOS. Revista da Sociedade Brasileira de Medicina Tropical, 49(1), 68-73. https://doi.org/10.1590/0037-8682-0266-2015 | |
dc.relation.references | Kramer, S., Queiroz, R., Ellis, L., Webb, H., Hoheisel, J. D., Clayton, C., & Carrington, M. (2008). Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(Alpha) phosphorylation at Thr169. Journal of Cell Science, 121(Pt 18), 3002-3014. https://doi.org/10.1242/jcs.031823 | |
dc.relation.references | Krieger, E., & Vriend, G. (2014). YASARA View—Molecular graphics for all devices—From smartphones to workstations. Bioinformatics, 30(20), 2981-2982. https://doi.org/10.1093/bioinformatics/btu426 | |
dc.relation.references | Kushawaha, P. K., Gupta, R., Tripathi, C. D. P., Sundar, S., & Dube, A. (2012). Evaluation of leishmania donovani protein disulfide isomerase as a potential immunogenic protein/vaccine candidate against visceral leishmaniasis. PLOS ONE, 7(4), e35670. https://doi.org/10.1371/journal.pone.0035670 | |
dc.relation.references | Laurindo, F. R. M., Pescatore, L. A., & De Castro Fernandes, D. (2012). Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radical Biology and Medicine, 52(9), 1954-1969. https://doi.org/10.1016/j.freeradbiomed.2012.02.037 | |
dc.relation.references | Lee, E.-H., Hyun, D.-H., Park, E.-H., & Lim, C.-J. (2010). A second protein disulfide isomerase plays a protective role against nitrosative and nutritional stresses in Schizosaccharomyces pombe. Molecular Biology Reports, 37(8), 3663-3671. https://doi.org/10.1007/s11033-010-0018-1 | |
dc.relation.references | León, E., Ortiz, V., Pérez, A., Téllez, J., Díaz, G. J., Ramírez H, M. H., & Contreras R, L. E. (2023). Anti-SpCas9 IgY Polyclonal Antibodies Production for CRISPR Research Use. ACS Omega, 8(37), 33809–33818. https://doi.org/10.1021/ACSOMEGA.3C04273 | |
dc.relation.references | Li, X., Li, J., Zhu, D., Zhang, N., Hao, X., Zhang, W., Zhang, Q., Liu, Y., Wu, X., & Tian, Y. (2022). Protein disulfide isomerase PDI-6 regulates Wnt secretion to coordinate inter-tissue UPRmt activation and lifespan extension in C. elegans. Cell Reports, 39(10), 110931. https://doi.org/10.1016/j.celrep.2022.110931 | |
dc.relation.references | Liao, M., Boldbaatar, D., Gong, H., Huang, P., Umemiya, R., Harnnoi, T., Zhou, J., Tanaka, T., Suzuki, H., & Xuan, X. (2008). Functional analysis of protein disulfide isomerases in blood feeding, viability and oocyte development in Haemaphysalis longicornis ticks. Insect Biochemistry and Molecular Biology, 38(3), 285-295. https://doi.org/10.1016/j.ibmb.2007.11.006 | |
dc.relation.references | Lovell, SC, Davis, IW, Arendall, WB, de Bakker, PI, Word, JM, Prisant, MG, Richardson, JS y Richardson, DC (2003). Validación estructural mediante geometría Cα: desviación de φ, ψ y Cβ . Proteínas: Estructura, Función y Bioinformática , 50(3), 437-450. doi:10.1002/prot.10286 | |
dc.relation.references | Lv, F., Xu, Y., Gabriel, D. W., Wang, X., Zhang, N., & Liang, W. (2022). Quantitative proteomic analysis reveals important roles of the acetylation of er-resident molecular chaperones for conidiation in fusarium oxysporum. Molecular & Cellular Proteomics, 21(5), 100231. https://doi.org/10.1016/j.mcpro.2022.100231 | |
dc.relation.references | Marcelino, E., Martins, T. M., Morais, J. B., Nolasco, S., Cortes, H., Hemphill, A., Leitão, A., & Novo, C. (2011). Besnoitia besnoiti protein disulfide isomerase (Bbpdi): Molecular characterization, expression and in silico modelling. Experimental Parasitology, 129(2), 164-174. https://doi.org/10.1016/j.exppara.2011.06.012 | |
dc.relation.references | Matsusaki, M., Kanemura, S., Kinoshita, M., Lee, Y. H., Inaba, K., & Okumura, M. (2020). The Protein Disulfide Isomerase Family: from proteostasis to pathogenesis. Biochimica et Biophysica Acta - General Subjects, 1864(2). https://doi.org/10.1016/j.bbagen.2019.04.003 | |
dc.relation.references | Mehta, A., & Shaha, C. (2006). Mechanism of metalloid-induced death in Leishmania spp.: Role of iron, reactive oxygen species, Ca2+, and glutathione. Free Radical Biology and Medicine, 40(10), 1857-1868. https://doi.org/10.1016/j.freeradbiomed.2006.01.024 | |
dc.relation.references | Mironov, A., Seregina, T., Shatalin, K., Nagornykh, M., Shakulov, R., & Nudler, E. (2020). CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia coli to oxidative stress and aminoglycosides. Proceedings of the National Academy of Sciences, 117(38), 23565-23570. https://doi.org/10.1073/pnas.2007817117 | |
dc.relation.references | Missiakas, D., Schwager, F., & Raina, S. (1995). Identification and characterization of a new disulfide isomerase-like protein (Dsbd) in Escherichia coli. The EMBO Journal, 14(14), 3415-3424. https://doi.org/10.1002/j.1460-2075.1995.tb07347.x | |
dc.relation.references | Morales Herrera, D. S., Contreras Rodríguez, L. E., Rubiano Castellanos, C. C., & Ramírez Hernández, M. H. (2020). Identification and sub-cellular localization of a NAD transporter in Leishmania braziliensis (Lbndt1). Heliyon, 6(7), e04331. https://doi.org/10.1016/j.heliyon.2020.e04331 | |
dc.relation.references | Moretti, N. S., Cestari, I., Anupama, A., Stuart, K., & Schenkman, S. (2018). Comparative proteomic analysis of lysine acetylation in trypanosomes. Journal of Proteome Research, 17(1), 374-385. https://doi.org/10.1021/acs.jproteome.7b00603 | |
dc.relation.references | Mule, S. N., Saad, J. S., Sauter, I. P., Fernandes, L. R., de Oliveira, G. S., Quina, D., Tano, F. T., Brandt-Almeida, D., Padrón, G., Stolf, B. S., Larsen, M. R., Cortez, M., & Palmisano, G. (2024). The protein map of the protozoan parasite Leishmania (Leishmania) amazonensis, Leishmania (viannia) braziliensis and Leishmania (Leishmania) infantum during growth phase transition and temperature stress. Journal of Proteomics, 295, 105088. https://doi.org/10.1016/j.jprot.2024.105088 | |
dc.relation.references | Muller, C., Bandemer, J., Vindis, C., Camaré, C., Mucher, E., Guéraud, F., Larroque-Cardoso, P., Bernis, C., Auge, N., Salvayre, R., & Negre-Salvayre, A. (2013). Protein disulfide isomerase modification and inhibition contribute to er stress and apoptosis induced by oxidized low density lipoproteins. Antioxidants & Redox Signaling, 18(7), 731-742. https://doi.org/10.1089/ars.2012.4577 | |
dc.relation.references | Nebl, T., Prieto, J. H., Kapp, E., Smith, B. J., Williams, M. J., Yates 3rd, J. R., Cowman, A. F., & Tonkin, C. J. (2011). Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the toxoplasma invasion motor complex. PLOS Pathogens, 7(9), e1002222. https://doi.org/10.1371/journal.ppat.1002222 | |
dc.relation.references | Nirujogi, R. S., Pawar, H., Renuse, S., Kumar, P., Chavan, S., Sathe, G., Sharma, J., Khobragade, S., Pande, J., Modak, B., Prasad, T. S. K., Harsha, H. C., Patole, M. S., & Pandey, A. (2014). Moving from unsequenced to sequenced genome: Reanalysis of the proteome of Leishmania donovani. Journal of Proteomics, 97, 48-61. https://doi.org/10.1016/j.jprot.2013.04.021 | |
dc.relation.references | Nørgaard, P., Tachibana, C., Bruun, A. W., & Winther, J. R. (2003). Gene regulation in response to protein disulphide isomerase deficiency. Yeast, 20(7), 645-652. https://doi.org/10.1002/yea.978 | |
dc.relation.references | Pan American Health Organization. (2022). Guideline for the Treatment of Leishmaniasis in the Americas. Second Edition. In Guideline for the Treatment of Leishmaniasis in the Americas. Second Edition. Pan American Health Organization. https://doi.org/10.37774/9789275125038 | |
dc.relation.references | Panizzutti, R., de Souza Leite, M., Pinheiro, C. M., & Meyer-Fernandes, J. R. (2006). The occurrence of free D-alanine and an alanine racemase activity in Leishmania amazonensis. FEMS Microbiology Letters, 256(1), 16-21. https://doi.org/10.1111/j.1574-6968.2006.00064.x | |
dc.relation.references | Peixoto, Á. S., Geyer, R. R., Iqbal, A., Truzzi, D. R., Soares Moretti, A. I., Laurindo, F. R. M., & Augusto, O. (2018). Peroxynitrite preferentially oxidizes the dithiol redox motifs of protein-disulfide isomerase. Journal of Biological Chemistry, 293(4), 1450-1465. https://doi.org/10.1074/jbc.M117.807016 | |
dc.relation.references | Peláez, R. G., Muskus, C. E., Cuervo, P., & Marín-Villa, M. (2012). Expresión diferencial de proteínas en leishmania (Viannia) panamensis asociadas con mecanismos de resistencia a antimoniato de meglumina. Biomedica, 32(3), 418–429. https://doi.org/10.7705/biomedica.v32i3.392 | |
dc.relation.references | Pierre, N., Barbé, C., Gilson, H., Deldicque, L., Raymackers, J.-M., & Francaux, M. (2014). Activation of ER stress by hydrogen peroxide in C2C12 myotubes. Biochemical and Biophysical Research Communications, 450(1), 459-463. https://doi.org/10.1016/j.bbrc.2014.05.143 | |
dc.relation.references | Quiñonez-Díaz, L., Mancilla-Ramírez, J., Avila-García, M., Ortiz-Avalos, J., Berron, A., González, S., Paredes, Y., & Galindo-Sevilla, N. (2012). Effect of ambient temperature on the clinical manifestations of experimental diffuse cutaneous leishmaniasis in a rodent model. Vector-Borne and Zoonotic Diseases, 12(10), 851-860. https://doi.org/10.1089/vbz.2011.0844 | |
dc.relation.references | Raj, S., Saha, G., Sasidharan, S., Dubey, V. K., & Saudagar, P. (2019). Biochemical characterization and chemical validation of Leishmania MAP Kinase-3 as a potential drug target. Scientific Reports, 9(1), 16209. https://doi.org/10.1038/s41598-019-52774-6 | |
dc.relation.references | Ramos, M. A., Mares, R. E., Magaña, P. D., Ortega, J. E., & Cornejo-Bravo, J. M. (2008). In silico identification of the protein disulfide isomerase family from a protozoan parasite. Computational Biology and Chemistry, 32(1), 67-71. https://doi.org/10.1016/j.compbiolchem.2007.09.002 | |
dc.relation.references | Rastrojo, A., Corvo, L., Lombraña, R., Solana, J. C., Aguado, B., & Requena, J. M. (2019). Analysis by RNA-seq of transcriptomic changes elicited by heat shock in Leishmania major. Scientific Reports, 9(1), 6919. https://doi.org/10.1038/s41598-019-43354-9 | |
dc.relation.references | Rensing, C., Mitra, B., & Rosen, B. P. (1997). Insertional inactivation of dsbA produces sensitivity to cadmium and zinc in Escherichia coli. Journal of Bacteriology, 179(8), 2769-2771. https://doi.org/10.1128/jb.179.8.2769-2771.1997 | |
dc.relation.references | Ribeiro, Juliana Martins, et al. “Deletion of the Lipid Droplet Protein Kinase Gene Affects Lipid Droplets Biogenesis, Parasite Infectivity, and Resistance to Trivalent Antimony in Leishmania Infantum.” PLOS Neglected Tropical Diseases, edited by Albert Descoteaux, vol. 18, no. 1, Jan. 2024, p. e0011880. DOI.org (Crossref), https://doi.org/10.1371/journal.pntd.0011880 | |
dc.relation.references | Rugani, J. N., Quaresma, P. F., Gontijo, C. F., Soares, R. P., & Monte-Neto, R. L. (2018). Intraspecies susceptibility of Leishmania (Viannia) braziliensis to antileishmanial drugs: Antimony resistance in human isolates from atypical lesions. Biomedicine and Pharmacotherapy, 108, 1170–1180. https://doi.org/10.1016/j.biopha.2018.09.149 | |
dc.relation.references | Santos, C. X. C., Stolf, B. S., Takemoto, P. V. A., Amanso, A. M., Lopes, L. R., Souza, E. B., Goto, H., & Laurindo, F. R. M. (2009). Protein disulfide isomerase (Pdi) associates with NADPH oxidase and is required for phagocytosis of Leishmania chagasi promastigotes by macrophages. Journal of Leukocyte Biology, 86(4), 989-998. https://doi.org/10.1189/jlb.0608354 | |
dc.relation.references | Salgado-Almario, J., Hernández, C. A., & Ovalle-Bracho, C. (2019). Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomedica, 39(2). https://doi.org/10.7705/biomedica.v39i3.4312 | |
dc.relation.references | Schrödinger LLC. (2016) The PyMOL molecular graphics system, version 1.8.2.0. | |
dc.relation.references | Shalev, M., Kondo, J., Kopelyanskiy, D., Jaffe, C. L., Adir, N., & Baasov, T. (2013). Identification of the molecular attributes required for aminoglycoside activity against Leishmania. Proceedings of the National Academy of Sciences, 110(33), 13333-13338. https://doi.org/10.1073/pnas.1307365110 | |
dc.relation.references | Sobolev, O. V., Afonine, P. V., Moriarty, N. W., Hekkelman, M. L., Joosten, R. P., Perrakis, A., & Adams, P. D. (2023). A global Ramachandran score identifies protein structures with unlikely stereochemistry. Acta Crystallographica Section A Foundations and Advances, 79(a2), C13-C13. https://doi.org/10.1107/S2053273323095955 | |
dc.relation.references | Solovyov, A., & Gilbert, H. F. (2004). Zinc‐dependent dimerization of the folding catalyst, protein disulfide isomerase. Protein Science, 13(7), 1902-1907. https://doi.org/10.1110/ps.04716104 | |
dc.relation.references | Sousa, C. B. P. D., Gomes, E. M., Souza, E. P. D., Santos, W. R. D., Macedo, S. R. D., Medeiros, L. V. D., & Luz, K. (1996). The FML (Fucose mannose ligand) of Leishmania donovani: A new tool in diagnosis, prognosis, transfusional control and vaccination against human kala-azar. Revista da Sociedade Brasileira de Medicina Tropical, 29(2), 153-163. https://doi.org/10.1590/S0037-86821996000200008 | |
dc.relation.references | Srivastava, S., Shankar, P., Mishra, J., & Singh, S. (2016). Possibilities and challenges for developing a successful vaccine for leishmaniasis. In Parasites and Vectors (Vol. 9, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13071-016-1553-y | |
dc.relation.references | Sterk, M., Müller, J., Hemphill, A., & Müller, N. (2007). Characterization of a Giardia lamblia WB C6 clone resistant to the isoflavone formononetin. Microbiology (Reading, England), 153(Pt 12), 4150-4158. https://doi.org/10.1099/mic.0.2007/010041-0 | |
dc.relation.references | t’Kindt, R., Jankevics, A., Scheltema, R. A., Zheng, L., Watson, D. G., Dujardin, J.-C., Breitling, R., Coombs, G. H., & Decuypere, S. (2010). Towards an unbiased metabolic profiling of protozoan parasites: Optimisation of a Leishmania sampling protocol for HILIC-orbitrap analysis. Analytical and Bioanalytical Chemistry, 398(5), 2059-2069. https://doi.org/10.1007/s00216-010-4139-0 | |
dc.relation.references | Téllez, J., Romero, I., Soares, M. J., Steindel, M., & Romanha, A. J. (2017). Knockdown of host antioxidant defense genes enhances the effect of glucantime on intracellular Leishmania braziliensis in human macrophages. Antimicrobial Agents and Chemotherapy, 61(7). https://doi.org/10.1128/AAC.02099-16 | |
dc.relation.references | Teufel, F., Almagro Armenteros, J. J., Johansen, A. R., Gíslason, M. H., Pihl, S. I., Tsirigos, K. D., Winther, O., Brunak, S., Von Heijne, G., & Nielsen, H. (2022). SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature Biotechnology, 40(7), 1023-1025. https://doi.org/10.1038/s41587-021-01156-3 | |
dc.relation.references | Tiengwe, C., Marcello, L., Farr, H., Dickens, N., Kelly, S., Swiderski, M., Vaughan, D., Gull, K., Barry, J. D., Bell, S. D., & McCulloch, R. (2012). Genome-wide analysis reveals extensive functional interaction between dna replication initiation and transcription in the genome of trypanosoma brucei. Cell Reports, 2(1), 185-197. https://doi.org/10.1016/j.celrep.2012.06.007 | |
dc.relation.references | Townsend, D. M., Manevich, Y., He, L., Xiong, Y., Bowers, R. R., Hutchens, S., & Tew, K. D. (2009). Nitrosative stress–induced s -glutathionylation of protein disulfide isomerase leads to activation of the unfolded protein response. Cancer Research, 69(19), 7626-7634. https://doi.org/10.1158/0008-5472.CAN-09-0493 | |
dc.relation.references | Uehara, T., Nakamura, T., Yao, D., Shi, Z.-Q., Gu, Z., Ma, Y., Masliah, E., Nomura, Y., & Lipton, S. A. (2006). S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 441(7092), 513-517. https://doi.org/10.1038/nature04782 | |
dc.relation.references | Vannier‐Santos, M. A., Urbina, J. A., Martiny, A., Neves, A., & De Souza, W. (1995). Alterations induced by the antifungal compounds ketoconazole and terbinafine in leishmania. Journal of Eukaryotic Microbiology, 42(4), 337-346. https://doi.org/10.1111/j.1550-7408.1995.tb01591.x | |
dc.relation.references | Verma, S., Mehta, A., & Shaha, C. (2011). Cyp5122a1, a novel cytochrome p450 is essential for survival of leishmania donovani. PLOS ONE, 6(9), e25273. https://doi.org/10.1371/journal.pone.0025273 | |
dc.relation.references | Villamil-Silva, Sharon Eliana, Ortiz-Joya, Lesly Johanna, Contreras-Rodriguez, Luis Ernesto, Díaz, Gonzalo Jair, & Ramírez-Hernández, María Helena. (2021). Identificación de una triparedoxina peroxidasa citoplasmática en Leishmania braziliensis. Revista Colombiana de Química, 50(2), 3-14. Epub September 09, 2021.https://doi.org/10.15446/rev.colomb.quim.v50n2.91721 | |
dc.relation.references | Volpedo, G., Pacheco-Fernandez, T., Holcomb, E. A., Zhang, W. W., Lypaczewski, P., Cox, B., Fultz, R., Mishan, C., Verma, C., Huston, R. H., Wharton, A. R., Dey, R., Karmakar, S., Oghumu, S., Hamano, S., Gannavaram, S., Nakhasi, H. L., Matlashewski, G., & Satoskar, A. R. (2022). Centrin-deficient Leishmania mexicana confers protection against New World cutaneous leishmaniasis. Npj Vaccines, 7(1). https://doi.org/10.1038/s41541-022-00449-1 | |
dc.relation.references | Wang, H., & Ward, M. (2000). Molecular characterization of a PDI-related gene prpA in Aspergillus niger var. Awamori. Current Genetics, 37(1), 57-64. https://doi.org/10.1007/s002940050009 | |
dc.relation.references | Wang, Z., Zhang, H., Li, X., & Le, X. C. (2007). Study of interactions between arsenicals and thioredoxins (Human and e. Coli) using mass spectrometry. Rapid Communications in Mass Spectrometry, 21(22), 3658-3666. https://doi.org/10.1002/rcm.3263 | |
dc.relation.references | Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189-1191. https://doi.org/10.1093/bioinformatics/btp033 | |
dc.relation.references | Winter, A. D., McCormack, G., & Page, A. P. (2007). Protein disulfide isomerase activity is essential for viability and extracellular matrix formation in the nematode Caenorhabditis elegans. Developmental Biology, 308(2), 449-461. https://doi.org/10.1016/j.ydbio.2007.05.041 | |
dc.relation.references | Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all‐atom structure validation. Protein Science, 27(1), 293-315. https://doi.org/10.1002/pro.3330 | |
dc.relation.references | World Health Organization. (2017). Integrating neglected tropical diseases into global health and development: fourth WHO report on neglected tropical diseases. www.who.int | |
dc.relation.references | Wysocki, R., Rodrigues, J. I., Litwin, I., & Tamás, M. J. (2023). Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cellular and Molecular Life Sciences, 80(11), 342. https://doi.org/10.1007/s00018-023-04992-5 | |
dc.relation.references | Xiao, C. W., Donak, K., Ly, O., Wood, C., Cooke, G., & Curran, I. (2014). Dietary soy isoflavones increased hepatic protein disulfide isomerase content and suppressed its enzymatic activity in rats. Experimental Biology and Medicine, 239(6), 707-714. https://doi.org/10.1177/1535370214527902 | |
dc.relation.references | Xie, Q., Bai, Q., Zou, L.-Y., Zhang, Q.-Y., Zhou, Y., Chang, H., Yi, L., Zhu, J.-D., & Mi, M.-T. (2014). Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes, Chromosomes & Cancer, 53(5), 422-431. https://doi.org/10.1002/gcc.22154 | |
dc.relation.references | Xiong, B., Jha, V., Min, J. K., & Cho, J. (2020). Protein disulfide isomerase in cardiovascular disease. In Experimental and Molecular Medicine (Vol. 52, Issue 3, pp. 390–399). Springer Nature. https://doi.org/10.1038/s12276-020-0401-5 | |
dc.relation.references | Yasukawa, H., Kuroita, T., Tamura, K., & Yamaguchi, K. (2003). Identification of a penicillin-sensitive carboxypeptidase in the cellular slime mold dictyostelium discoideum. Biological and Pharmaceutical Bulletin, 26(7), 1018-1020. https://doi.org/10.1248/bpb.26.1018 | |
dc.relation.references | Yu J, Li T, Liu Y, Wang X, Zhang J, Wang X, Shi G, Lou J, Wang L, Wang CC, Wang L. (2020). Phosphorylation switches protein disulfide isomerase activity to maintain proteostasis and attenuate ER stress. EMBO J. 39(10):e103841. doi: 10.15252/embj.2019103841 | |
dc.relation.references | Zhang, M., Yu, Q., Liang, C., Zhang, B., & Li, M. (2016). Lipid homeostasis is involved in plasma membrane and endoplasmic reticulum stress in Pichia pastoris. Biochemical and Biophysical Research Communications, 478(2), 777-783. https://doi.org/10.1016/j.bbrc.2016.08.024 | |
dc.relation.references | Zhu, Y.-Y., Zhang, Q., Jia, Y.-C., Hou, M.-J., & Zhu, B. T. (2024). Protein disulfide isomerase plays a crucial role in mediating chemically-induced, glutathione depletion-associated hepatocyte injury in vitro and in vivo. Cell Communication and Signaling, 22(1), 431. https://doi.org/10.1186/s12964-024-01798-1 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-CompartirIgual 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | |
dc.subject.decs | Leishmaniasis | spa |
dc.subject.decs | Leishmaniasis | eng |
dc.subject.decs | Enfermedades Parasitarias | spa |
dc.subject.decs | Parasitic Diseases | eng |
dc.subject.decs | Leishmaniasis Mucocutánea | spa |
dc.subject.decs | Leishmaniasis, Mucocutaneous | eng |
dc.subject.decs | Leishmaniasis Cutánea | spa |
dc.subject.decs | Leishmaniasis, Cutaneous | eng |
dc.subject.decs | Leishmaniasis Visceral | spa |
dc.subject.decs | Leishmaniasis, Visceral | eng |
dc.subject.decs | Vacunas contra la Leishmaniasis | spa |
dc.subject.decs | Leishmaniasis Vaccines | eng |
dc.subject.decs | Proteína Disulfuro Isomerasa | spa |
dc.subject.decs | Protein Disulfide-Isomerases | eng |
dc.subject.decs | Isomerasas de Vínculo Azufre-Azufre | spa |
dc.subject.decs | Sulfur-Sulfur Bond Isomerases | eng |
dc.subject.decs | Isomerasas | spa |
dc.subject.decs | Isomerases | eng |
dc.subject.proposal | Leishmania braziliensis | spa |
dc.subject.proposal | Proteina disulfuro isomerasa 2 | spa |
dc.subject.proposal | Crispr/Cas9 | spa |
dc.subject.proposal | Knockout | eng |
dc.subject.proposal | EC50 | eng |
dc.subject.proposal | Citometría de flujo | spa |
dc.subject.proposal | Perfiles metabólicos | spa |
dc.subject.proposal | Protein Disulfide Isomerase 2 | eng |
dc.subject.proposal | Flow cytometry | eng |
dc.subject.proposal | Metabolic profiling | eng |
dc.title | Identificación del gen codificante para la Proteína Disulfuro Isomerasa 2 de Leishmania braziliensis y aproximación experimental para su deleción mediante CRISPR/Cas9 | spa |
dc.title.translated | Identification of the gene encoding Protein Disulfide Isomerase 2 of Leishmania braziliensis and experimental approach for its deletion using CRISPR/Cas9 | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis MSc LbPDI2.pdf
- Tamaño:
- 5.39 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Bioquímica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: