Identificación del gen codificante para la Proteína Disulfuro Isomerasa 2 de Leishmania braziliensis y aproximación experimental para su deleción mediante CRISPR/Cas9

dc.contributor.advisorContreras Rodriguez, Luis Ernesto
dc.contributor.authorMurillo Villanueva, Pablo Enrique
dc.contributor.cvlacMurillo Villanueva, Pablo Enrique [rh=0001673111]
dc.contributor.orcidMurillo Villanueva, Pablo Enrique [0009000128771267]
dc.coverage.countryColombia
dc.date.accessioned2025-08-27T13:41:38Z
dc.date.available2025-08-27T13:41:38Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractLa leishmaniasis es una enfermedad parasitaria causada por protozoos flagelados del género Leishmania, existiendo 20 especies que pueden infectar al ser humano, 9 de las cuales están presentes en el territorio colombiano. La enfermedad se clasifica en las formas cutánea (LC), mucocutánea (LMC) y visceral (LV). En Colombia, en el año 2023 se presentaron 4219, 84 y 3 casos de LC, LMC y LV, respectivamente. Leishmania braziliensis es el agente etiológico más común de LC y LMC en América Latina. Actualmente, no existen vacunas avaladas para uso humano contra la leishmaniasis, cuyo tratamiento depende del uso de medicamentos que resultan ineficaces dada su toxicidad y la presencia de cepas fármaco-resistentes. Una de las proteínas que se expresa en cepas altamente virulentas es la Proteína Disulfuro Isomerasa 2 (PDI-2), enzima tiol-disulfuro oxidorreductasa que cataliza la formación, reducción e isomerización de enlaces disulfuro a nivel del retículo endoplasmático (RE), contribuyendo con la proteostasis celular. En L. major, la inhibición enzimática de PDI-2 disminuye significativamente sus tasas de crecimiento, mientras que la sobre-expresión de una versión inactiva en promastigotes de L. donovani altera la secreción de fosfatasas alcalinas provenientes del RE, necesarias para la infección. Estas observaciones sugieren que PDI-2 constituye un blanco terapéutico promisorio, cuyo estudio en L. braziliensis, la especie predominante en Colombia, aún no se ha realizado. En consecuencia, en este trabajo se abordó la identificación y caracterización bioinformática de un candidato para PDI-2 en L. braziliensis (LbPDI2), incluyendo la expresión de la proteína recombinante 6xHis-SUMO-∆ALbPDI2, truncada en uno de sus dominios tiorredoxina N-terminales. Adicionalmente, se obtuvieron parásitos mutantes LbPDI2-/- mediante el sistema de edición CRISPR/Cas9. Análisis de viabilidad celular basados en EC50, indicaron que los parásitos mutantes aumentaron su resistencia al antimonio trivalente, principio activo de los medicamentos de primera línea contra la enfermedad, así como al 5-fluorouracilo, metotrexato, sulfato de zinc y genisteína, pero haciéndose más susceptibles a la geneticina 418, estreptomicina y ketoconazol. En relación con la anfotericina B, el peróxido de hidrógeno y el nitroprusiato de sodio, no se detectaron cambios en relación con los parásitos control (Wild Type, WT). Por otra parte, se inició la exploración de ensayos de muerte celular mediante citometría de flujo, así como una aproximación metabolómica, lográndose establecer condiciones experimentales de partida para eventuales ensayos que permitan identificar cambios moleculares en los parásitos mutantes ante el tratamiento con diversas sustancias. En conjunto, los resultados derivados del presente estudio sugieren la participación del candidato LbPDI2 en la defensa del parásito contra sustancias antimicrobianas y anticancerígenas, posicionándose como una potencial diana farmacológica contra la leishmaniasis (Texto tomado de la fuente).spa
dc.description.abstractLeishmaniasis is a parasitic disease caused by flagellate protozoa of the genus Leishmania, with 20 species that can infect humans, 9 of which are present in Colombia. The disease is classified into cutaneous (CL), mucocutaneous (MCL) and visceral (VL) forms. In Colombia, 4219, 84 and 3 cases of CL, MCL and VL occurred in 2023, respectively. Leishmania braziliensis is the most common etiologic agent of CL and MCL in Latin America. Currently, there are no vaccines approved for human use against leishmaniasis, the treatment of which depends on the use of drugs that are ineffective due to their toxicity and the presence of drug-resistant strains. One of the proteins expressed in highly virulent strains is Protein Disulfide Isomerase 2 (PDI-2), a thiol-disulfide oxidoreductase enzyme that catalyzes the formation, reduction and isomerization of disulfide bonds at the endoplasmic reticulum (ER), contributing to cellular proteostasis. In L. major, enzymatic inhibition of PDI-2 significantly decreases its growth rates, while overexpression of an inactive version in L. donovani promastigotes alters the secretion of alkaline phosphatases from the ER, which are necessary for infection. These observations suggest that PDI-2 is a promising therapeutic target that has not yet been studied in L. braziliensis, the predominant species in Colombia. Accordingly, this work addressed the identification and bioinformatic characterization of a candidate for PDI-2 in L. braziliensis (LbPDI2), including the expression of the recombinant 6xHis-SUMO-∆ALbPDI2 protein, truncated in one of its N-terminal thioredoxin domains. Additionally, LbPDI2-/- mutant parasites were obtained using the CRISPR/Cas9 editing system. Cell viability analyses based on EC50 indicated that the mutant parasites increased their resistance to trivalent antimony, as well as to 5-fluorouracil, methotrexate, zinc sulfate, and genistein, but became more susceptible to geneticin 418, streptomycin, and ketoconazole. In relation to amphotericin B, hydrogen peroxide and sodium nitroprusside, no changes were detected in relation to control parasites (Wild Type, WT). On the other hand, the exploration of cell death assays by flow cytometry was initiated, as well as a metabolomic approach, establishing experimental conditions for eventual assays to identify molecular changes in the mutant parasites upon treatment with different substances. The results derived from the present study suggest the participation of the candidate LbPDI2 in the defense of the parasite against antimicrobial and anticancer substances, positioning it as a potential pharmacological target against leishmaniasis.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Bioquímica
dc.description.methodsUtilizando tres estructuras primarias de PDI-2 caracterizadas experimentalmente, pertenecientes a diferentes especies de Leishmania, se realizó alineamiento múltiple en CLC Main Workbench 25, con parámetros predeterminados. Con la secuencia consenso obtenida se realizó PSI-BLAST en el servidor NCBI, utilizando el genoma de L. braziliensis (MHOM/BR/75M2903). El péptido señal del candidato LbPDI2 identificado (XP_001569341.1 en NCBI) se predijo mediante SignalP 6.0 (Teufel et al., 2022), mientras que los dominios funcionales se determinaron con el servidor INTERPRO (Blum et al., 2025). Además, se predijeron regiones intrínsecamente desordenadas mediante Critical Assessment of Intrinsic protein Disorder (CAID) (Conte et al., 2023). Por otro lado, se obtuvo un modelo predictivo de la estructura terciaria utilizando RoseTTAFold (Baek et al., 2021), el cual se validó mediante diagrama de Ramachandran, evaluación de rotámeros y desviaciones del carbono beta (Cβ) en MOLPROBITY (Williams et al., 2018). Las estructuras se visualizaron con el software Pymol 3.1 (Schrödinger, LLC, 2016). A partir de la estructura terciaria, se determinaron los porcentajes de las estructuras secundarias con el servidor Yasara (krieger et al., 2014).
dc.description.researchareaBioquímica y Biología Molecular de Parásitos
dc.format.extent104 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88483
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.relation.referencesAchour, Y. B., Chenik, M., Louzir, H., & Dellagi, K. (2002). Identification of a disulfide isomerase protein of leishmania major as a putative virulence factor. Infection and Immunity, 70(7), 3576-3585. https://doi.org/10.1128/IAI.70.7.3576-3585.2002
dc.relation.referencesAli, D., Abbady, A. Q., Kweider, M., & Soukkarieh, C. (2016). Cloning, expression, purification and characterization of Leishmania tropica PDI-2 protein. Open Life Sciences, 11(1), 166–176. https://doi.org/10.1515/biol-2016-0022
dc.relation.referencesAlpizar-Sosa, E. A., Ithnin, N. R. B., Wei, W., Pountain, A. W., Weidt, S. K., Donachie, A. M., Ritchie, R., Dickie, E. A., Burchmore, R. J. S., Denny, P. W., & Barrettid, M. P. (2022). Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Neglected Tropical Diseases, 16(9). https://doi.org/10.1371/journal.pntd.0010779
dc.relation.referencesAlzahrani, K. J. H., Ali, J. A. M., Eze, A. A., Looi, W. L., Tagoe, D. N. A., Creek, D. J., Barrett, M. P., & de Koning, H. P. (2017). Functional and genetic evidence that nucleoside transport is highly conserved in Leishmania species: Implications for pyrimidine-based chemotherapy. International Journal for Parasitology. Drugs and Drug Resistance, 7(2), 206-226. https://doi.org/10.1016/j.ijpddr.2017.04.003
dc.relation.referencesAndersson, S., Romero, A., Rodrigues, J. I., Hua, S., Hao, X., Jacobson, T., Karl, V., Becker, N., Ashouri, A., Rauch, S., Nyström, T., Liu, B., & Tamás, M. J. (2021). Genome-wide imaging screen uncovers molecular determinants of arsenite-induced protein aggregation and toxicity. Journal of Cell Science, 134(11), jcs258338. https://doi.org/10.1242/jcs.258338
dc.relation.referencesAngrisano, F., Sala, K. A., Tapanelli, S., Christophides, G. K., & Blagborough, A. M. (2019). Male-specific protein disulphide isomerase function is essential for plasmodium transmission and a vulnerable target for intervention. Scientific Reports, 9(1), 18300. https://doi.org/10.1038/s41598-019-54613-0
dc.relation.referencesArase, S., Kasai, M., & Kanazawa, A. (2012). In planta assays involving epigenetically silenced genes reveal inhibition of cytosine methylation by genistein. Plant Methods, 8(1), 185. https://doi.org/10.1186/1746-4811-8-10
dc.relation.referencesBaek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., Millán, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, J. H., Rodrigues, A. V., Van Dijk, A. A., Ebrecht, A. C., … Baker, D. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557), 871-876. https://doi.org/10.1126/science.abj8754
dc.relation.referencesBarrera, M. C., Rojas, L. J., Weiss, A., Fernandez, O., McMahon-Pratt, D., Saravia, N. G., & Gomez, M. A. (2017). Profiling gene expression of antimony response genes in Leishmania (Viannia) panamensis and infected macrophages and its relationship with drug susceptibility. Acta Tropica, 176, 355–363. https://doi.org/10.1016/j.actatropica.2017.08.017
dc.relation.referencesBhattacharya, A., Leprohon, P., & Ouellette, M. (2021). Combined gene deletion of dihydrofolate reductase-thymidylate synthase and pteridine reductase in Leishmania infantum. PLOS Neglected Tropical Diseases, 15(4), e0009377. https://doi.org/10.1371/journal.pntd.0009377
dc.relation.referencesBeneke, T., Madden, R., Makin, L., Valli, J., Sunter, J., & Gluenz, E. (2017). A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal Society Open Science, 4(5), 1–16. https://doi.org/10.1098/rsos.170095
dc.relation.referencesBinjubair, F. A., Parker, J. E., Warrilow, A. G., Puri, K., Braidley, P. J., Tatar, E., Kelly, S. L., Kelly, D. E., & Simons, C. (2020). Small‐molecule inhibitors targeting sterol 14α‐demethylase (Cyp51): Synthesis, molecular modelling and evaluation against candida albicans. ChemMedChem, 15(14), 1294-1309. https://doi.org/10.1002/cmdc.202000250
dc.relation.referencesBlum, M., Andreeva, A., Florentino, L. C., Chuguransky, S. R., Grego, T., Hobbs, E., Pinto, B. L., Orr, A., Paysan-Lafosse, T., Ponamareva, I., Salazar, G. A., Bordin, N., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunic, I., Llinares-López, F., … Bateman, A. (2025). InterPro: The protein sequence classification resource in 2025. Nucleic Acids Research, 53(D1), D444-D456. https://doi.org/10.1093/nar/gkae1082
dc.relation.referencesBorba, M., Castro, S., Mojoli, M., & Rodriguez, A. (2020). Situación actual de la leishmaniasis en el Uruguay. SALUD MILITAR, 39(1). https://doi.org/10.35954/SM2020.39.1.3
dc.relation.referencesCarvalho, S., Barreira da Silva, R., Shawki, A., Castro, H., Lamy, M., Eide, D., Costa, V., Mackenzie, B., & Tomás, A. M. (2015). LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites. Molecular Microbiology, 96(3), 581-595. https://doi.org/10.1111/mmi.12957
dc.relation.referencesDirección de Vigilancia y Análisis del Riesgo en Salud Pública. (2024). Protocolo de vigilancia en salud pública de Leishmaniasis. Instituto Nacional de Salud. https://doi.org/10.33610/IMYH4569
dc.relation.referencesConte, A. D., Mehdiabadi, M., Bouhraoua, A., Miguel Monzon, A., Tosatto, S. C. E., & Piovesan, D. (2023). Critical assessment of protein intrinsic disorder prediction (caid) ‐ Results of round 2. Proteins: Structure, Function, and Bioinformatics, 91(12), 1925-1934. https://doi.org/10.1002/prot.26582
dc.relation.referencesCuervo, P., De Jesus, J. B., Saboia-Vahia, L., Mendonça-Lima, L., Domont, G. B., & Cupolillo, E. (2009). Proteomic characterization of the released/secreted proteins of Leishmania (Viannia) braziliensis promastigotes. Journal of Proteomics, 73(1), 79-92. https://doi.org/10.1016/j.jprot.2009.08.006
dc.relation.referencesDíaz-Magaña, A., Chávez-Moctezuma, M. P., Campos-García, J., Ramírez-Díaz, M. I., & Cervantes, C. (2017). A plasmid-encoded DsbA homologue is a growth-phase regulated thioredoxin. Plasmid, 89, 37-41. https://doi.org/10.1016/j.plasmid.2017.01.001
dc.relation.referencesDinc, R. (2022). Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future. Korean Journal of Parasitology, 60(6), 379–391. https://doi.org/10.3347/kjp.2022.60.6.379
dc.relation.referencesDoleželová, E., Kunzová, M., Dejung, M., Levin, M., Panicucci, B., Regnault, C., Janzen, C. J., Barrett, M. P., Butter, F., & Zíková, A. (2020). Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei. PLoS Biology, 18(6), e3000741. https://doi.org/10.1371/journal.pbio.3000741
dc.relation.referencesDousti, M., Hosseinpour, M., D Ghasemi, N., Mirfakhraee, H., Rajabi, S. K., Rashidi, S., & Hatam, G. (2023). The potential role of protein disulfide isomerases (Pdis) during parasitic infections: A focus on Leishmania spp. Pathogens and Disease, 81, ftad032. https://doi.org/10.1093/femspd/ftad032
dc.relation.referencesDrapal, M., Enfissi, E. M. A., Almeida, J., Rapacz, E., Nogueira, M., & Fraser, P. D. (2023). The potential of metabolomics in assessing global compositional changes resulting from the application of CRISPR/Cas9 technologies. Transgenic Research. https://doi.org/10.1007/s11248-023-00347-9
dc.relation.referencesElamin, M., Al-Olayan, E., Abdel-Gaber, R., & Yehia, R. S. (2021). Anti-proliferative and apoptosis induction activities of curcumin on Leishmania major. Revista Argentina de Microbiología, 53(3), 240-247. https://doi.org/10.1016/j.ram.2020.08.004
dc.relation.referencesEspada, C. R., Albuquerque-Wendt, A., Hornillos, V., Gluenz, E., Coelho, A. C., & Uliana, S. R. B. (2021). Ros3 (Lem3p/cdc50) gene dosage is implicated in miltefosine susceptibility in leishmania (Viannia) braziliensis clinical isolates and in leishmania (Leishmania) major. ACS Infectious Diseases, 7(4), 849-858. https://doi.org/10.1021/acsinfecdis.0c00857
dc.relation.referencesEspada, C. R., Quilles, J. C., Albuquerque-Wendt, A., Cruz, M. C., Beneke, T., Lorenzon, L. B., Gluenz, E., Cruz, A. K., & Uliana, S. R. B. (2021). Effective Genome Editing in Leishmania ( Viannia) braziliensis Stably Expressing Cas9 and T7 RNA Polymerase. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.772311
dc.relation.referencesFiebig, M., Kelly, S., & Gluenz, E. (2015). Comparative life cycle transcriptomics revises leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLOS Pathogens, 11(10), e1005186. https://doi.org/10.1371/journal.ppat.1005186
dc.relation.referencesFrézard, F., Monte-Neto, R., & Reis, P. G. (2014). Antimony transport mechanisms in resistant leishmania parasites. Biophysical Reviews, 6(1), 119-132. https://doi.org/10.1007/s12551-013-0134-y
dc.relation.referencesGöhring, N., Fedtke, I., Xia, G., Jorge, A. M., Pinho, M. G., Bertsche, U., & Peschel, A. (2011). New role of the disulfide stress effector yjbh in β-lactam susceptibility of staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 55(12), 5452-5458. https://doi.org/10.1128/AAC.00286-11
dc.relation.referencesGutierrez Guarnizo, S. A., Tikhonova, E. B., Karamyshev, A. L., Muskus, C. E., & Karamysheva, Z. N. (2023). Translational reprogramming as a driver of antimony-drug resistance in Leishmania. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-38221-1
dc.relation.referencesHabash, S. S., Sobczak, M., Siddique, S., Voigt, B., Elashry, A., & Grundler, F. M. W. (2017). Identification and characterization of a putative protein disulfide isomerase (Hspdi) as an alleged effector of Heterodera schachtii. Scientific Reports, 7(1), 13536. https://doi.org/10.1038/s41598-017-13418-9
dc.relation.referencesHajjaran, H., Azarian, B., Mohebali, M., Hadighi, R., Assareh, A., & Vaziri, B. (2012). Comparative proteomics study on meglumine antimoniate sensitive and resistant Leishmania tropica isolated from Iranian anthroponotic cutaneous leishmaniasis patients. East Mediterr Health J, 18(2), 165–171. https://doi.org/10.26719/2012.18.2.165
dc.relation.referencesHiranuma, N., Park, H., Baek, M., Anishchenko, I., Dauparas, J., & Baker, D. (2021). Improved protein structure refinement guided by deep learning based accuracy estimation. Nature Communications, 12(1), 1340. https://doi.org/10.1038/s41467-021-21511-x
dc.relation.referencesHong, B. X., & Soong, L. (2008). Identification and enzymatic activities of four protein disulfide isomerase (Pdi) isoforms of Leishmania amazonensis. Parasitology Research, 102(3), 437-446. https://doi.org/10.1007/s00436-007-0784-4
dc.relation.referencesHoppe, G., Chai, Y. C., & Sears, J. (2003). Endogenous oxidoreductase expression is induced by aminoglycosides. Archives of Biochemistry and Biophysics, 414(1), 19-23. https://doi.org/10.1016/S0003-9861(03)00144-9
dc.relation.referencesHoribe, T., Nagai, H., Matsui, H., Hagiwara, Y., & Kikuchi, M. (2002). Aminoglycoside antibiotics bind to protein disulfide isomerase and inhibit its chaperone activity. The Journal of Antibiotics, 55(5), 528-530. https://doi.org/10.7164/antibiotics.55.528
dc.relation.referencesHoribe, T., Kikuchi, M., & Kawakami, K. (2008). Interaction of human protein disulfide isomerase and human P5 with drug compounds: Analysis using biosensor technology. Process Biochemistry, 43(12), 1330-1337. https://doi.org/10.1016/j.procbio.2008.07.018
dc.relation.referencesHornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V., & Skrzypek, E. (2015). PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Research, 43(D1), D512-D520. https://doi.org/10.1093/nar/gku1267
dc.relation.referencesImaoka, S. (2011). Chemical stress on protein disulfide isomerases and inhibition of their functions. En International Review of Cell and Molecular Biology (Vol. 290, pp. 121-166). Elsevier. https://doi.org/10.1016/B978-0-12-386037-8.00003-X
dc.relation.referencesJamdhade, M. D., Pawar, H., Chavan, S., Sathe, G., Umasankar, P. K., Mahale, K. N., Dixit, T., Madugundu, A. K., Prasad, T. S. K., Gowda, H., Pandey, A., & Patole, M. S. (2015). Comprehensive Proteomics Analysis of Glycosomes from Leishmania donovani. OMICS: A Journal of Integrative Biology, 19(3), 157-170. https://doi.org/10.1089/omi.2014.0163
dc.relation.referencesKanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y., & Ishiguro-Watanabe, M. (2025). KEGG: Biological systems database as a model of the real world. Nucleic Acids Research, 53(D1), D672-D677. https://doi.org/10.1093/nar/gkae909
dc.relation.referencesKawakami, N. Y., Tomiotto-Pellissier, F., Cataneo, A. H. D., Orsini, T. M., Thomazelli, A. P. F. D. S., Panis, C., Conchon-Costa, I., & Pavanelli, W. R. (2016). Sodium nitroprusside has leishmanicidal activity independent of iNOS. Revista da Sociedade Brasileira de Medicina Tropical, 49(1), 68-73. https://doi.org/10.1590/0037-8682-0266-2015
dc.relation.referencesKramer, S., Queiroz, R., Ellis, L., Webb, H., Hoheisel, J. D., Clayton, C., & Carrington, M. (2008). Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(Alpha) phosphorylation at Thr169. Journal of Cell Science, 121(Pt 18), 3002-3014. https://doi.org/10.1242/jcs.031823
dc.relation.referencesKrieger, E., & Vriend, G. (2014). YASARA View—Molecular graphics for all devices—From smartphones to workstations. Bioinformatics, 30(20), 2981-2982. https://doi.org/10.1093/bioinformatics/btu426
dc.relation.referencesKushawaha, P. K., Gupta, R., Tripathi, C. D. P., Sundar, S., & Dube, A. (2012). Evaluation of leishmania donovani protein disulfide isomerase as a potential immunogenic protein/vaccine candidate against visceral leishmaniasis. PLOS ONE, 7(4), e35670. https://doi.org/10.1371/journal.pone.0035670
dc.relation.referencesLaurindo, F. R. M., Pescatore, L. A., & De Castro Fernandes, D. (2012). Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radical Biology and Medicine, 52(9), 1954-1969. https://doi.org/10.1016/j.freeradbiomed.2012.02.037
dc.relation.referencesLee, E.-H., Hyun, D.-H., Park, E.-H., & Lim, C.-J. (2010). A second protein disulfide isomerase plays a protective role against nitrosative and nutritional stresses in Schizosaccharomyces pombe. Molecular Biology Reports, 37(8), 3663-3671. https://doi.org/10.1007/s11033-010-0018-1
dc.relation.referencesLeón, E., Ortiz, V., Pérez, A., Téllez, J., Díaz, G. J., Ramírez H, M. H., & Contreras R, L. E. (2023). Anti-SpCas9 IgY Polyclonal Antibodies Production for CRISPR Research Use. ACS Omega, 8(37), 33809–33818. https://doi.org/10.1021/ACSOMEGA.3C04273
dc.relation.referencesLi, X., Li, J., Zhu, D., Zhang, N., Hao, X., Zhang, W., Zhang, Q., Liu, Y., Wu, X., & Tian, Y. (2022). Protein disulfide isomerase PDI-6 regulates Wnt secretion to coordinate inter-tissue UPRmt activation and lifespan extension in C. elegans. Cell Reports, 39(10), 110931. https://doi.org/10.1016/j.celrep.2022.110931
dc.relation.referencesLiao, M., Boldbaatar, D., Gong, H., Huang, P., Umemiya, R., Harnnoi, T., Zhou, J., Tanaka, T., Suzuki, H., & Xuan, X. (2008). Functional analysis of protein disulfide isomerases in blood feeding, viability and oocyte development in Haemaphysalis longicornis ticks. Insect Biochemistry and Molecular Biology, 38(3), 285-295. https://doi.org/10.1016/j.ibmb.2007.11.006
dc.relation.referencesLovell, SC, Davis, IW, Arendall, WB, de Bakker, PI, Word, JM, Prisant, MG, Richardson, JS y Richardson, DC (2003). Validación estructural mediante geometría Cα: desviación de φ, ψ y Cβ . Proteínas: Estructura, Función y Bioinformática , 50(3), 437-450. doi:10.1002/prot.10286
dc.relation.referencesLv, F., Xu, Y., Gabriel, D. W., Wang, X., Zhang, N., & Liang, W. (2022). Quantitative proteomic analysis reveals important roles of the acetylation of er-resident molecular chaperones for conidiation in fusarium oxysporum. Molecular & Cellular Proteomics, 21(5), 100231. https://doi.org/10.1016/j.mcpro.2022.100231
dc.relation.referencesMarcelino, E., Martins, T. M., Morais, J. B., Nolasco, S., Cortes, H., Hemphill, A., Leitão, A., & Novo, C. (2011). Besnoitia besnoiti protein disulfide isomerase (Bbpdi): Molecular characterization, expression and in silico modelling. Experimental Parasitology, 129(2), 164-174. https://doi.org/10.1016/j.exppara.2011.06.012
dc.relation.referencesMatsusaki, M., Kanemura, S., Kinoshita, M., Lee, Y. H., Inaba, K., & Okumura, M. (2020). The Protein Disulfide Isomerase Family: from proteostasis to pathogenesis. Biochimica et Biophysica Acta - General Subjects, 1864(2). https://doi.org/10.1016/j.bbagen.2019.04.003
dc.relation.referencesMehta, A., & Shaha, C. (2006). Mechanism of metalloid-induced death in Leishmania spp.: Role of iron, reactive oxygen species, Ca2+, and glutathione. Free Radical Biology and Medicine, 40(10), 1857-1868. https://doi.org/10.1016/j.freeradbiomed.2006.01.024
dc.relation.referencesMironov, A., Seregina, T., Shatalin, K., Nagornykh, M., Shakulov, R., & Nudler, E. (2020). CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia coli to oxidative stress and aminoglycosides. Proceedings of the National Academy of Sciences, 117(38), 23565-23570. https://doi.org/10.1073/pnas.2007817117
dc.relation.referencesMissiakas, D., Schwager, F., & Raina, S. (1995). Identification and characterization of a new disulfide isomerase-like protein (Dsbd) in Escherichia coli. The EMBO Journal, 14(14), 3415-3424. https://doi.org/10.1002/j.1460-2075.1995.tb07347.x
dc.relation.referencesMorales Herrera, D. S., Contreras Rodríguez, L. E., Rubiano Castellanos, C. C., & Ramírez Hernández, M. H. (2020). Identification and sub-cellular localization of a NAD transporter in Leishmania braziliensis (Lbndt1). Heliyon, 6(7), e04331. https://doi.org/10.1016/j.heliyon.2020.e04331
dc.relation.referencesMoretti, N. S., Cestari, I., Anupama, A., Stuart, K., & Schenkman, S. (2018). Comparative proteomic analysis of lysine acetylation in trypanosomes. Journal of Proteome Research, 17(1), 374-385. https://doi.org/10.1021/acs.jproteome.7b00603
dc.relation.referencesMule, S. N., Saad, J. S., Sauter, I. P., Fernandes, L. R., de Oliveira, G. S., Quina, D., Tano, F. T., Brandt-Almeida, D., Padrón, G., Stolf, B. S., Larsen, M. R., Cortez, M., & Palmisano, G. (2024). The protein map of the protozoan parasite Leishmania (Leishmania) amazonensis, Leishmania (viannia) braziliensis and Leishmania (Leishmania) infantum during growth phase transition and temperature stress. Journal of Proteomics, 295, 105088. https://doi.org/10.1016/j.jprot.2024.105088
dc.relation.referencesMuller, C., Bandemer, J., Vindis, C., Camaré, C., Mucher, E., Guéraud, F., Larroque-Cardoso, P., Bernis, C., Auge, N., Salvayre, R., & Negre-Salvayre, A. (2013). Protein disulfide isomerase modification and inhibition contribute to er stress and apoptosis induced by oxidized low density lipoproteins. Antioxidants & Redox Signaling, 18(7), 731-742. https://doi.org/10.1089/ars.2012.4577
dc.relation.referencesNebl, T., Prieto, J. H., Kapp, E., Smith, B. J., Williams, M. J., Yates 3rd, J. R., Cowman, A. F., & Tonkin, C. J. (2011). Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the toxoplasma invasion motor complex. PLOS Pathogens, 7(9), e1002222. https://doi.org/10.1371/journal.ppat.1002222
dc.relation.referencesNirujogi, R. S., Pawar, H., Renuse, S., Kumar, P., Chavan, S., Sathe, G., Sharma, J., Khobragade, S., Pande, J., Modak, B., Prasad, T. S. K., Harsha, H. C., Patole, M. S., & Pandey, A. (2014). Moving from unsequenced to sequenced genome: Reanalysis of the proteome of Leishmania donovani. Journal of Proteomics, 97, 48-61. https://doi.org/10.1016/j.jprot.2013.04.021
dc.relation.referencesNørgaard, P., Tachibana, C., Bruun, A. W., & Winther, J. R. (2003). Gene regulation in response to protein disulphide isomerase deficiency. Yeast, 20(7), 645-652. https://doi.org/10.1002/yea.978
dc.relation.referencesPan American Health Organization. (2022). Guideline for the Treatment of Leishmaniasis in the Americas. Second Edition. In Guideline for the Treatment of Leishmaniasis in the Americas. Second Edition. Pan American Health Organization. https://doi.org/10.37774/9789275125038
dc.relation.referencesPanizzutti, R., de Souza Leite, M., Pinheiro, C. M., & Meyer-Fernandes, J. R. (2006). The occurrence of free D-alanine and an alanine racemase activity in Leishmania amazonensis. FEMS Microbiology Letters, 256(1), 16-21. https://doi.org/10.1111/j.1574-6968.2006.00064.x
dc.relation.referencesPeixoto, Á. S., Geyer, R. R., Iqbal, A., Truzzi, D. R., Soares Moretti, A. I., Laurindo, F. R. M., & Augusto, O. (2018). Peroxynitrite preferentially oxidizes the dithiol redox motifs of protein-disulfide isomerase. Journal of Biological Chemistry, 293(4), 1450-1465. https://doi.org/10.1074/jbc.M117.807016
dc.relation.referencesPeláez, R. G., Muskus, C. E., Cuervo, P., & Marín-Villa, M. (2012). Expresión diferencial de proteínas en leishmania (Viannia) panamensis asociadas con mecanismos de resistencia a antimoniato de meglumina. Biomedica, 32(3), 418–429. https://doi.org/10.7705/biomedica.v32i3.392
dc.relation.referencesPierre, N., Barbé, C., Gilson, H., Deldicque, L., Raymackers, J.-M., & Francaux, M. (2014). Activation of ER stress by hydrogen peroxide in C2C12 myotubes. Biochemical and Biophysical Research Communications, 450(1), 459-463. https://doi.org/10.1016/j.bbrc.2014.05.143
dc.relation.referencesQuiñonez-Díaz, L., Mancilla-Ramírez, J., Avila-García, M., Ortiz-Avalos, J., Berron, A., González, S., Paredes, Y., & Galindo-Sevilla, N. (2012). Effect of ambient temperature on the clinical manifestations of experimental diffuse cutaneous leishmaniasis in a rodent model. Vector-Borne and Zoonotic Diseases, 12(10), 851-860. https://doi.org/10.1089/vbz.2011.0844
dc.relation.referencesRaj, S., Saha, G., Sasidharan, S., Dubey, V. K., & Saudagar, P. (2019). Biochemical characterization and chemical validation of Leishmania MAP Kinase-3 as a potential drug target. Scientific Reports, 9(1), 16209. https://doi.org/10.1038/s41598-019-52774-6
dc.relation.referencesRamos, M. A., Mares, R. E., Magaña, P. D., Ortega, J. E., & Cornejo-Bravo, J. M. (2008). In silico identification of the protein disulfide isomerase family from a protozoan parasite. Computational Biology and Chemistry, 32(1), 67-71. https://doi.org/10.1016/j.compbiolchem.2007.09.002
dc.relation.referencesRastrojo, A., Corvo, L., Lombraña, R., Solana, J. C., Aguado, B., & Requena, J. M. (2019). Analysis by RNA-seq of transcriptomic changes elicited by heat shock in Leishmania major. Scientific Reports, 9(1), 6919. https://doi.org/10.1038/s41598-019-43354-9
dc.relation.referencesRensing, C., Mitra, B., & Rosen, B. P. (1997). Insertional inactivation of dsbA produces sensitivity to cadmium and zinc in Escherichia coli. Journal of Bacteriology, 179(8), 2769-2771. https://doi.org/10.1128/jb.179.8.2769-2771.1997
dc.relation.referencesRibeiro, Juliana Martins, et al. “Deletion of the Lipid Droplet Protein Kinase Gene Affects Lipid Droplets Biogenesis, Parasite Infectivity, and Resistance to Trivalent Antimony in Leishmania Infantum.” PLOS Neglected Tropical Diseases, edited by Albert Descoteaux, vol. 18, no. 1, Jan. 2024, p. e0011880. DOI.org (Crossref), https://doi.org/10.1371/journal.pntd.0011880
dc.relation.referencesRugani, J. N., Quaresma, P. F., Gontijo, C. F., Soares, R. P., & Monte-Neto, R. L. (2018). Intraspecies susceptibility of Leishmania (Viannia) braziliensis to antileishmanial drugs: Antimony resistance in human isolates from atypical lesions. Biomedicine and Pharmacotherapy, 108, 1170–1180. https://doi.org/10.1016/j.biopha.2018.09.149
dc.relation.referencesSantos, C. X. C., Stolf, B. S., Takemoto, P. V. A., Amanso, A. M., Lopes, L. R., Souza, E. B., Goto, H., & Laurindo, F. R. M. (2009). Protein disulfide isomerase (Pdi) associates with NADPH oxidase and is required for phagocytosis of Leishmania chagasi promastigotes by macrophages. Journal of Leukocyte Biology, 86(4), 989-998. https://doi.org/10.1189/jlb.0608354
dc.relation.referencesSalgado-Almario, J., Hernández, C. A., & Ovalle-Bracho, C. (2019). Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomedica, 39(2). https://doi.org/10.7705/biomedica.v39i3.4312
dc.relation.referencesSchrödinger LLC. (2016) The PyMOL molecular graphics system, version 1.8.2.0.
dc.relation.referencesShalev, M., Kondo, J., Kopelyanskiy, D., Jaffe, C. L., Adir, N., & Baasov, T. (2013). Identification of the molecular attributes required for aminoglycoside activity against Leishmania. Proceedings of the National Academy of Sciences, 110(33), 13333-13338. https://doi.org/10.1073/pnas.1307365110
dc.relation.referencesSobolev, O. V., Afonine, P. V., Moriarty, N. W., Hekkelman, M. L., Joosten, R. P., Perrakis, A., & Adams, P. D. (2023). A global Ramachandran score identifies protein structures with unlikely stereochemistry. Acta Crystallographica Section A Foundations and Advances, 79(a2), C13-C13. https://doi.org/10.1107/S2053273323095955
dc.relation.referencesSolovyov, A., & Gilbert, H. F. (2004). Zinc‐dependent dimerization of the folding catalyst, protein disulfide isomerase. Protein Science, 13(7), 1902-1907. https://doi.org/10.1110/ps.04716104
dc.relation.referencesSousa, C. B. P. D., Gomes, E. M., Souza, E. P. D., Santos, W. R. D., Macedo, S. R. D., Medeiros, L. V. D., & Luz, K. (1996). The FML (Fucose mannose ligand) of Leishmania donovani: A new tool in diagnosis, prognosis, transfusional control and vaccination against human kala-azar. Revista da Sociedade Brasileira de Medicina Tropical, 29(2), 153-163. https://doi.org/10.1590/S0037-86821996000200008
dc.relation.referencesSrivastava, S., Shankar, P., Mishra, J., & Singh, S. (2016). Possibilities and challenges for developing a successful vaccine for leishmaniasis. In Parasites and Vectors (Vol. 9, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13071-016-1553-y
dc.relation.referencesSterk, M., Müller, J., Hemphill, A., & Müller, N. (2007). Characterization of a Giardia lamblia WB C6 clone resistant to the isoflavone formononetin. Microbiology (Reading, England), 153(Pt 12), 4150-4158. https://doi.org/10.1099/mic.0.2007/010041-0
dc.relation.referencest’Kindt, R., Jankevics, A., Scheltema, R. A., Zheng, L., Watson, D. G., Dujardin, J.-C., Breitling, R., Coombs, G. H., & Decuypere, S. (2010). Towards an unbiased metabolic profiling of protozoan parasites: Optimisation of a Leishmania sampling protocol for HILIC-orbitrap analysis. Analytical and Bioanalytical Chemistry, 398(5), 2059-2069. https://doi.org/10.1007/s00216-010-4139-0
dc.relation.referencesTéllez, J., Romero, I., Soares, M. J., Steindel, M., & Romanha, A. J. (2017). Knockdown of host antioxidant defense genes enhances the effect of glucantime on intracellular Leishmania braziliensis in human macrophages. Antimicrobial Agents and Chemotherapy, 61(7). https://doi.org/10.1128/AAC.02099-16
dc.relation.referencesTeufel, F., Almagro Armenteros, J. J., Johansen, A. R., Gíslason, M. H., Pihl, S. I., Tsirigos, K. D., Winther, O., Brunak, S., Von Heijne, G., & Nielsen, H. (2022). SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature Biotechnology, 40(7), 1023-1025. https://doi.org/10.1038/s41587-021-01156-3
dc.relation.referencesTiengwe, C., Marcello, L., Farr, H., Dickens, N., Kelly, S., Swiderski, M., Vaughan, D., Gull, K., Barry, J. D., Bell, S. D., & McCulloch, R. (2012). Genome-wide analysis reveals extensive functional interaction between dna replication initiation and transcription in the genome of trypanosoma brucei. Cell Reports, 2(1), 185-197. https://doi.org/10.1016/j.celrep.2012.06.007
dc.relation.referencesTownsend, D. M., Manevich, Y., He, L., Xiong, Y., Bowers, R. R., Hutchens, S., & Tew, K. D. (2009). Nitrosative stress–induced s -glutathionylation of protein disulfide isomerase leads to activation of the unfolded protein response. Cancer Research, 69(19), 7626-7634. https://doi.org/10.1158/0008-5472.CAN-09-0493
dc.relation.referencesUehara, T., Nakamura, T., Yao, D., Shi, Z.-Q., Gu, Z., Ma, Y., Masliah, E., Nomura, Y., & Lipton, S. A. (2006). S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 441(7092), 513-517. https://doi.org/10.1038/nature04782
dc.relation.referencesVannier‐Santos, M. A., Urbina, J. A., Martiny, A., Neves, A., & De Souza, W. (1995). Alterations induced by the antifungal compounds ketoconazole and terbinafine in leishmania. Journal of Eukaryotic Microbiology, 42(4), 337-346. https://doi.org/10.1111/j.1550-7408.1995.tb01591.x
dc.relation.referencesVerma, S., Mehta, A., & Shaha, C. (2011). Cyp5122a1, a novel cytochrome p450 is essential for survival of leishmania donovani. PLOS ONE, 6(9), e25273. https://doi.org/10.1371/journal.pone.0025273
dc.relation.referencesVillamil-Silva, Sharon Eliana, Ortiz-Joya, Lesly Johanna, Contreras-Rodriguez, Luis Ernesto, Díaz, Gonzalo Jair, & Ramírez-Hernández, María Helena. (2021). Identificación de una triparedoxina peroxidasa citoplasmática en Leishmania braziliensis. Revista Colombiana de Química, 50(2), 3-14. Epub September 09, 2021.https://doi.org/10.15446/rev.colomb.quim.v50n2.91721
dc.relation.referencesVolpedo, G., Pacheco-Fernandez, T., Holcomb, E. A., Zhang, W. W., Lypaczewski, P., Cox, B., Fultz, R., Mishan, C., Verma, C., Huston, R. H., Wharton, A. R., Dey, R., Karmakar, S., Oghumu, S., Hamano, S., Gannavaram, S., Nakhasi, H. L., Matlashewski, G., & Satoskar, A. R. (2022). Centrin-deficient Leishmania mexicana confers protection against New World cutaneous leishmaniasis. Npj Vaccines, 7(1). https://doi.org/10.1038/s41541-022-00449-1
dc.relation.referencesWang, H., & Ward, M. (2000). Molecular characterization of a PDI-related gene prpA in Aspergillus niger var. Awamori. Current Genetics, 37(1), 57-64. https://doi.org/10.1007/s002940050009
dc.relation.referencesWang, Z., Zhang, H., Li, X., & Le, X. C. (2007). Study of interactions between arsenicals and thioredoxins (Human and e. Coli) using mass spectrometry. Rapid Communications in Mass Spectrometry, 21(22), 3658-3666. https://doi.org/10.1002/rcm.3263
dc.relation.referencesWaterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189-1191. https://doi.org/10.1093/bioinformatics/btp033
dc.relation.referencesWinter, A. D., McCormack, G., & Page, A. P. (2007). Protein disulfide isomerase activity is essential for viability and extracellular matrix formation in the nematode Caenorhabditis elegans. Developmental Biology, 308(2), 449-461. https://doi.org/10.1016/j.ydbio.2007.05.041
dc.relation.referencesWilliams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all‐atom structure validation. Protein Science, 27(1), 293-315. https://doi.org/10.1002/pro.3330
dc.relation.referencesWorld Health Organization. (2017). Integrating neglected tropical diseases into global health and development: fourth WHO report on neglected tropical diseases. www.who.int
dc.relation.referencesWysocki, R., Rodrigues, J. I., Litwin, I., & Tamás, M. J. (2023). Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cellular and Molecular Life Sciences, 80(11), 342. https://doi.org/10.1007/s00018-023-04992-5
dc.relation.referencesXiao, C. W., Donak, K., Ly, O., Wood, C., Cooke, G., & Curran, I. (2014). Dietary soy isoflavones increased hepatic protein disulfide isomerase content and suppressed its enzymatic activity in rats. Experimental Biology and Medicine, 239(6), 707-714. https://doi.org/10.1177/1535370214527902
dc.relation.referencesXie, Q., Bai, Q., Zou, L.-Y., Zhang, Q.-Y., Zhou, Y., Chang, H., Yi, L., Zhu, J.-D., & Mi, M.-T. (2014). Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes, Chromosomes & Cancer, 53(5), 422-431. https://doi.org/10.1002/gcc.22154
dc.relation.referencesXiong, B., Jha, V., Min, J. K., & Cho, J. (2020). Protein disulfide isomerase in cardiovascular disease. In Experimental and Molecular Medicine (Vol. 52, Issue 3, pp. 390–399). Springer Nature. https://doi.org/10.1038/s12276-020-0401-5
dc.relation.referencesYasukawa, H., Kuroita, T., Tamura, K., & Yamaguchi, K. (2003). Identification of a penicillin-sensitive carboxypeptidase in the cellular slime mold dictyostelium discoideum. Biological and Pharmaceutical Bulletin, 26(7), 1018-1020. https://doi.org/10.1248/bpb.26.1018
dc.relation.referencesYu J, Li T, Liu Y, Wang X, Zhang J, Wang X, Shi G, Lou J, Wang L, Wang CC, Wang L. (2020). Phosphorylation switches protein disulfide isomerase activity to maintain proteostasis and attenuate ER stress. EMBO J. 39(10):e103841. doi: 10.15252/embj.2019103841
dc.relation.referencesZhang, M., Yu, Q., Liang, C., Zhang, B., & Li, M. (2016). Lipid homeostasis is involved in plasma membrane and endoplasmic reticulum stress in Pichia pastoris. Biochemical and Biophysical Research Communications, 478(2), 777-783. https://doi.org/10.1016/j.bbrc.2016.08.024
dc.relation.referencesZhu, Y.-Y., Zhang, Q., Jia, Y.-C., Hou, M.-J., & Zhu, B. T. (2024). Protein disulfide isomerase plays a crucial role in mediating chemically-induced, glutathione depletion-associated hepatocyte injury in vitro and in vivo. Cell Communication and Signaling, 22(1), 431. https://doi.org/10.1186/s12964-024-01798-1
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.decsLeishmaniasisspa
dc.subject.decsLeishmaniasiseng
dc.subject.decsEnfermedades Parasitariasspa
dc.subject.decsParasitic Diseaseseng
dc.subject.decsLeishmaniasis Mucocutáneaspa
dc.subject.decsLeishmaniasis, Mucocutaneouseng
dc.subject.decsLeishmaniasis Cutáneaspa
dc.subject.decsLeishmaniasis, Cutaneouseng
dc.subject.decsLeishmaniasis Visceralspa
dc.subject.decsLeishmaniasis, Visceraleng
dc.subject.decsVacunas contra la Leishmaniasisspa
dc.subject.decsLeishmaniasis Vaccineseng
dc.subject.decsProteína Disulfuro Isomerasaspa
dc.subject.decsProtein Disulfide-Isomeraseseng
dc.subject.decsIsomerasas de Vínculo Azufre-Azufrespa
dc.subject.decsSulfur-Sulfur Bond Isomeraseseng
dc.subject.decsIsomerasasspa
dc.subject.decsIsomeraseseng
dc.subject.proposalLeishmania braziliensisspa
dc.subject.proposalProteina disulfuro isomerasa 2spa
dc.subject.proposalCrispr/Cas9spa
dc.subject.proposalKnockouteng
dc.subject.proposalEC50eng
dc.subject.proposalCitometría de flujospa
dc.subject.proposalPerfiles metabólicosspa
dc.subject.proposalProtein Disulfide Isomerase 2eng
dc.subject.proposalFlow cytometryeng
dc.subject.proposalMetabolic profilingeng
dc.titleIdentificación del gen codificante para la Proteína Disulfuro Isomerasa 2 de Leishmania braziliensis y aproximación experimental para su deleción mediante CRISPR/Cas9spa
dc.title.translatedIdentification of the gene encoding Protein Disulfide Isomerase 2 of Leishmania braziliensis and experimental approach for its deletion using CRISPR/Cas9eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis MSc LbPDI2.pdf
Tamaño:
5.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: