Genotipificación y mutaciones asociadas a resistencia antimicrobiana en cepas de Mycoplasma gallisepticum y M. synoviae en aves comerciales de Colombia

dc.contributor.advisorRamírez-Nieto, Gloria Consuelo
dc.contributor.advisorGómez Ramírez, Arlen Patricia
dc.contributor.authorForero Marín, Sara Judith
dc.contributor.orcidForero Marín, Sara Judith [0009000934662989]
dc.contributor.researchgroupGrupo de Investigación en Microbiología y Epidemiología
dc.coverage.temporalColombia
dc.date.accessioned2025-08-21T20:00:37Z
dc.date.available2025-08-21T20:00:37Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractLa micoplasmosis aviar, causada por Mycoplasma gallisepticum (Mg) y Mycoplasma synoviae (Ms), afecta principalmente a aves reproductoras y ponedoras comerciales, y en menor medida a pollos de engorde, ocasionando cuadros clínicos respiratorios, reproductivos y sinovitis infecciosa de curso crónico. El diagnóstico y control de esta enfermedad se han visto complicados por la variación antigénica del patógeno. A pesar de su alta prevalencia y de la existencia de estrategias de prevención y control, para que estas sean efectivas es necesario identificar y caracterizar molecularmente las especies circulantes en el país. En este contexto, el objetivo de este estudio fue caracterizar genotipos y mutaciones asociadas con resistencia a antimicrobianos de Mycoplasma gallisepticum y M. synoviae en aves comerciales de Colombia. A partir de pooles muestras de aves comerciales provenientes de diferentes departamentos recolectadas entre 2019 y 2023, por medio del servicio de diagnóstico del Laboratorio de Biología Molecular y Virología, se analizaron 90 pooles de muestras clasificadas como Mg, Ms y detecciones simultáneas de Mg-Ms. A partir de genes housekeeping previamente reportados para ambas especies, se identificaron las muestras con perfiles alélicos completos mediante PCR convencional, seguida de secuenciación y análisis bioinformático. Las secuencias obtenidas se compararon con la base de datos PubMLST para asignar los respectivos alelos y establecer el perfil alélico de cada cepa. Como resultado, se obtuvieron 10 perfiles alélicos en las detecciones Mg, 11 en Ms y 15 en Mg-Ms. En el caso de Mg, el 70 % correspondió a una ST vacunal, mientras que el 30 % restante representó nuevas ST no reportadas previamente. Para Ms, más del 90 % de los perfiles correspondieron a nuevas ST tampoco reportadas anteriormente, mientras que dos muestras se relacionaron con aislados de Europa. Adicionalmente, se identificaron 14 ST con genotipos asociados a resistencia a fluoroquinolonas, con mutaciones en las regiones QRDR de los genes gyrA y parC, lo que evidencia la circulación de genotipos resistentes en cepas de campo. Estos hallazgos resaltan la necesidad de relacionar los genotipos identificados con los cuadros clínicos, el tipo de unidad avícola y su procedencia, para comprender mejor la epidemiología de la enfermedad en Colombia bajo el enfoque de Una Salud. Este estudio constituye la primera caracterización de micoplasmas aviares en el país mediante MLST, junto con la identificación de genotipos asociados a resistencia a los antimicrobianos (RAM) (Texto tomado de la fuente).spa
dc.description.abstractAvian mycoplasmosis, caused by Mycoplasma gallisepticum (Mg) and Mycoplasma synoviae (Ms), mainly affect commercial breeding and laying birds, and to a lesser extent broiler chickens, causing respiratory and reproductive clinical symptoms and chronic infectious synovitis. The diagnosis and control of this disease have been complicated by the antigenic variation of the pathogen. Despite its high prevalence and the existence of prevention and control strategies, for these to be effective it is necessary to identify and molecularly characterize the species circulating in the country. In this context, the objective of this study was to characterize genotypes and mutations associated with antimicrobial resistance of Mycoplasma gallisepticum and M. synoviae in commercial poultry in Colombia. From pools of commercial poultry samples from different departments collected between 2019 and 2023, 90 pools of samples classified as Mg, Ms, and simultaneous detections of Mg-Ms were analyzed using the diagnostic service of the Molecular Biology and Virology Laboratory. Based on previously reported housekeeping genes for both species, samples with complete allelic profiles were identified using conventional PCR, followed by sequencing and bioinformatic analysis. The sequences obtained were compared with the PubMLST database to assign the respective alleles and establish the allelic profile of each strain. As a result, 10 allelic profiles were obtained in Mg detections, 11 in Ms, and 15 in Mg-Ms. In the case of Mg, 70% corresponded to a vaccine ST, while the remaining 30% represented new STs not previously reported. For Ms, more than 90% of the profiles corresponded to new STs that had not been previously reported, while two samples were related to isolates from Europe. In addition, 14 STs with genotypes associated with fluoroquinolone resistance were identified, with mutations in the QRDR regions of the gyrA and parC genes, which show the circulation of resistant genotypes in field strains. These findings highlight the need to link the identified genotypes with clinical pictures, the type of poultry unit, and its origin to better understand the epidemiology of the disease in Colombia under the One Health approach. This study constitutes the first characterization of avian mycoplasmas in the country using MLST, together with the identification of genotypes associated with antimicrobial resistance (AMR).eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Salud Animal
dc.description.researchareaMicrobiología e inmunología
dc.format.extentxiv, 79 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88426
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecnia
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animal
dc.relation.referencesAbdelrahman, A. A., S Shany, S. A., A Dardeer, M. A., Hassan, K. E., Ali, A., & El-Kady, M. F. (2021). Avian Mycoplasma gallisepticum and Mycoplasma synoviae: Advances in diagnosis and control. German Journal of Veterinary Research, 1(2), 46–55. https://doi.org/https://doi.org/10.51585/gjvr.2021.2. 0019
dc.relation.referencesAdékambi, T., Drancourt, M., & Raoult, D. (2009). The rpoB gene as a tool for clinical microbiologists. In Trends in Microbiology (Vol. 17, Issue 1, pp. 37–45). https://doi.org/10.1016/j.tim.2008.09.008
dc.relation.referencesBahl, M. (2009). Horizontal Gene Transfer (M. B. Gogarten, J. P. Gogarten, & L. C. Olendzenski, Eds.; Vol. 532). Humana Press. https://doi.org/10.1007/978-1-60327-853-9
dc.relation.referencesBekő, K., Kreizinger, Z., Kovács, Á. B., Sulyok, K. M., Marton, S., Bányai, K., Catania, S., Feberwee, A., Wiegel, J., Dijkman, R., ter Veen, C., Lysnyansky, I., & Gyuranecz, M. (2020). Mutations potentially associated with decreased susceptibility to fluoroquinolones, macrolides and lincomycin in Mycoplasma synoviae. Veterinary Microbiology, 248. https://doi.org/10.1016/j.vetmic.2020.108818
dc.relation.referencesBekő, K., Kreizinger, Z., Sulyok, K. M., Kovács, Á. B., Grózner, D., Catania, S., Bradbury, J., Lysnyansky, I., Olaogun, O. M., Czanik, B., Ellakany, H., & Gyuranecz, M. (2019). Genotyping Mycoplasma gallisepticum by multilocus sequence typing. Veterinary Microbiology, 231, 191–196. https://doi.org/10.1016/j.vetmic.2019.03.016
dc.relation.referencesBencina, D., DrobniÄ -ValiÄ , M., Horvat, S., Narat, M., Kleven, S. H., & DovÄ , P. (2001a). Molecular basis of the length variation in the N-terminal part of Mycoplasma synoviae hemagglutinin . FEMS Microbiology Letters, 203(1), 115–123. https://doi.org/10.1111/j.1574-6968.2001.tb10829.x
dc.relation.referencesBencina, D., DrobniÄ -ValiÄ , M., Horvat, S., Narat, M., Kleven, S. H., & DovÄ , P. (2001b). Molecular basis of the length variation in the N-terminal part of Mycoplasma synoviae hemagglutinin. FEMS Microbiology Letters, 203(1), 115–123. https://doi.org/10.1111/j.1574-6968.2001.tb10829.x
dc.relation.referencesBencina, D. (2002). Haemagglutinins of pathogenic avian mycoplasmas. In Avian Pathology (Vol. 31, Issue 6, pp. 535–547). https://doi.org/10.1080/0307945021000024526
dc.relation.referencesBerčič, R. L., Slavec, B., Lavrič, M., Narat, M., Bidovec, A., Dovč, P., & Benčina, D. (2008). Identification of major immunogenic proteins of Mycoplasma synoviae isolates. Veterinary Microbiology, 127(1–2), 147–154. https://doi.org/10.1016/j.vetmic.2007.07.020
dc.relation.referencesBhatt, S., & Chatterjee, S. (2022). Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation – A comprehensive review. Environmental Pollution, 315. https://doi.org/10.1016/j.envpol.2022.120440
dc.relation.referencesBicout, D., Bøtner, A., Butterworth, A., Calistri, P., Depner, K., Edwards, S., Garin-Bastuji, B., Good, M., Gort azar Schmidt, C., Michel, V., Angel Miranda, M., More, S., Saxmose Nielsen, S., Raj, M., Sihvonen, L., Spoolder, H., Arend Stegeman, J., Thulke, H.-H., Velarde, A., … Winckler, C. (2017). 2016/429): avian mycoplasmosis (Mycoplasma gallisepticum, M. meleagridis). Animal Health Law, 15(8), 4953. https://doi.org/10.2903/j.efsa.2017.4953
dc.relation.referencesBottinelli, M., Gastaldelli, M., Picchi, M., Dall’Ora, A., Cristovao Borges, L., Ramírez, A. S., Matucci, A., & Catania, S. (2022). The Monitoring of Mycoplasma gallisepticum Minimum Inhibitory Concentrations during the Last Decade (2010–2020) Seems to Reveal a Comeback of Susceptibility to Macrolides, Tiamulin, and Lincomycin. Antibiotics, 11(8). https://doi.org/10.3390/antibiotics11081021
dc.relation.referencesBradbury, J. M. (2005). Poultry mycoplasmas: Sophisticated pathogens in simple guise. British Poultry Science, 46(2), 125–136. https://doi.org/10.1080/00071660500066282
dc.relation.referencesBurgos, R., & Totten, P. A. (2014). Characterization of the operon encoding the holliday junction helicase RuvAB from Mycoplasma genitalium and its role in mgpB and mgpC gene variation. Journal of Bacteriology, 196(8), 1608–1618. https://doi.org/10.1128/JB.01385-13
dc.relation.referencesBustos, F., Mossos Nestor, de Navas, Y., & Peña, N. (1988). Tres condiciones contribuyentes al complejo respiratorio aviar en pollos de la región del Sumapaz (Colombia). Revista ICA, 23. http://hdl.handle.net/20.500.12324/19969
dc.relation.referencesCarrion, Luis José, Baldrich Ferrer, Rita, Ramírez Nieto, Gloria Consuelo, & Vera Alfonso, Víctor Julio. (2012). Diferenciación de cepas de Mycoplasma gallisepticum a partir de RFLP. Revista de Medicina Veterinaria, (24), 113-121. Retrieved August 15, 2025, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-93542012000200011&lng=en&tlng=es.
dc.relation.referencesChoi, B., & Zocchi, G. (2007). Guanylate kinase, induced fit, and the allosteric spring probe. Biophysical Journal, 92(5), 1651–1658. https://doi.org/10.1529/biophysj.106.092866
dc.relation.referencesCitti, C., Nouvel, L. X., & Baranowski, E. (2010). Phase and antigenic variation in mycoplasmas. In Future Microbiology (Vol. 5, Issue 7, pp. 1073–1085). Future Medicine Ltd. https://doi.org/10.2217/fmb.10.71
dc.relation.referencesCOBB, S. P. (2011). The spread of pathogens through trade in poultry hatching eggs: overview and recent developments. Revue Scientifique et Technique de l’OIE, 30(1), 165–175. https://doi.org/10.20506/rst.30.1.2025
dc.relation.referencesCorpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881–10890. https://doi.org/10.1093/nar/16.22.10881
dc.relation.referencesDijkman, R., Feberwee, A., & Landman, W. J. M. (2017). Development, validation and field evaluation of a quantitative real-time PCR able to differentiate between field Mycoplasma synoviae and the MS-H-live vaccine strain. Avian Pathology, 46(4), 403–415. https://doi.org/10.1080/03079457.2017.1296105
dc.relation.referencesDrlica, K., & Malik, M. (2003). Fluoroquinolones: Action and Resistance. In Current Topics in Medicinal Chemistry (Vol. 3). doi: 10.2174/1568026033452537.
dc.relation.referencesDybvig, K., Hollingshead, S. K., Heath, D. G., Clewell, D. B., Sun, F., & Woodard2, A. (1992). Degenerate Oligonucleotide Primers for Enzymatic Amplification of recA Sequences from Gram-Positive Bacteria and Mycoplasmas. In JOURNAL OF BACTERIOLOGY.
dc.relation.referencesEl-Gazzar, M., Ghanem, M., McDonald, K., Ferguson-Noel, N., Raviv, Z., & Slemons, R. D. (2017). Development of Multilocus Sequence Typing (MLST) for Mycoplasma synoviae. Avian Diseases, 61(1), 25–32. https://doi.org/10.1637/11417-040516-Reg
dc.relation.referencesEl-Gazzar, M. M., Wetzel, A. N., & Raviv, Z. (2012). The genotyping potential of the Mycoplasma synoviae vlhA gene. Avian Diseases, 56(4), 711–719. https://doi.org/10.1637/10200-041212-Reg.1
dc.relation.referencesFeberwee, A., De Wit, J. J., & Landman, W. J. M. (2009). Induction of eggshell apex abnormalities by Mycoplasma synoviae: Field and experimental studies. Avian Pathology, 38(1), 77–85. https://doi.org/10.1080/03079450802662772
dc.relation.referencesFeberwee, A., de Wit, S., & Dijkman, R. (2022). Clinical expression, epidemiology, and monitoring of Mycoplasma gallisepticum and Mycoplasma synoviae: an update. In Avian Pathology (Vol. 51, Issue 1, pp. 2–18). Taylor and Francis Ltd. https://doi.org/10.1080/03079457.2021.1944605
dc.relation.referencesFeberwee, A., Dijkman, R., Klinkenberg, D., & Landman, W. J. M. (2017). Quantification of the horizontal transmission of Mycoplasma synoviae in non-vaccinated and MS-H-vaccinated layers. Avian Pathology, 46(4), 346–358. https://doi.org/10.1080/03079457.2017.1282602
dc.relation.referencesFerguson-Noel, N. (2013). Mycoplasmosis. In D. Swayne (Ed.), Diseases of poultry (Vol. 13, pp. 875–876). Wiley-Blackwell.
dc.relation.referencesFerguson‐Noel, N., Armour, N. K., Noormohammadi, A. H., El‐Gazzar, M., & Bradbury, J. M. (2020). Mycoplasmosis. In Diseases of Poultry (pp. 907–965). Wiley. https://doi.org/10.1002/9781119371199.ch21
dc.relation.referencesFisunov, G. Y., Alexeev, D. G., Bazaleev, N. A., Ladygina, V. G., Galyamina, M. A., Kondratov, I. G., Zhukova, N. A., Serebryakova, M. V., Demina, I. A., & Govorun, V. M. (2011). Core proteome of the minimal cell: Comparative proteomics of three mollicute species. PLoS ONE, 6(7). https://doi.org/10.1371/journal.pone.0021964
dc.relation.referencesGalluzzo, P., Migliore, S., Galuppo, L., Condorelli, L., Hussein, H. A., Licitra, F., Coltraro, M., Sallemi, S., Antoci, F., Cascone, G., Puleio, R., & Loria, G. R. (2022). First Molecular Survey to Detect Mycoplasma gallisepticum and Mycoplasma synoviae in Poultry Farms in a Strategic Production District of Sicily (South-Italy). Animals, 12(8). https://doi.org/10.3390/ani12080962
dc.relation.referencesGarcía, M., Ikuta, N., Levisohn, S., & Kleven, S. H. (2005). Evaluation and comparison of various PCR methods for detection of Mycoplasma gallisepticum infection in chickens. Avian Diseases, 49(1), 125–132. https://doi.org/10.1637/7261-0812204R1
dc.relation.referencesGautier-Bouchardon, A. V., Reinhardt, A. K., Kobisch, M., & Kempf, I. (2002). In vitro development of resistance to enrofloxacin, erythromycin, tylosin, tiamulin and oxytetracycline in Mycoplasma gallisepticum, Mycoplasma iowae and Mycoplasma synoviae. Veterinary Microbiology, 88(1), 47–58. https://doi.org/10.1016/S0378-1135(02)00087-1
dc.relation.referencesGautier-Bouchardon, A. V. (2018). Antimicrobial Resistance in Mycoplasma spp . Microbiology Spectrum, 6(4). https://doi.org/10.1128/microbiolspec.arba-0030-2018
dc.relation.referencesGerchman, I., Levisohn, S., Mikula, I., Manso-Silván, L., & Lysnyansky, I. (2011). Characterization of in vivo-acquired resistance to macrolides of Mycoplasma gallisepticum strains isolated from poultry. Veterinary Research, 42(1), 90. https://doi.org/10.1186/1297-9716-42-90
dc.relation.referencesGharaibeh, S., Laibinis, V., Wooten, R., Stabler, L., & Ferguson-Noel, N. (2011). Molecular characterization of Mycoplasma gallisepticum isolates from Jordan. Avian Diseases, 55(2), 212–216. https://doi.org/10.1637/9526-091510-Reg.1
dc.relation.referencesGiles, C. J., & Yavari, C. A. (1994). In vitro evaluation of various antimicrobials against mycoplasma gallisepticum and mycoplasma synoviae by the micro-broth method, and comparison with a commercially-prepared test system. Avian Pathology, 23(1), 105–115. https://doi.org/10.1080/03079459408418978
dc.relation.referencesGlew, M. D., Baseggio, N., Markham, P. F., Browning, G. F., & Walker, I. D. (1998). Expression of the pMGA Genes of Mycoplasma gallisepticum Is Controlled by Variation in the GAA Trinucleotide Repeat Lengths within the 5 Noncoding Regions. In INFECTION AND IMMUNITY (Vol. 66, Issue 12).
dc.relation.referencesGorbachev, A. Y., Fisunov, G. Y., Izraelson, M., Evsyutina, D. V., Mazin, P. V., Alexeev, D. G., Pobeguts, O. V., Gorshkova, T. N., Kovalchuk, S. I., Kamashev, D. E., & Govorun, V. M. (2013). DNA repair in Mycoplasma gallisepticum. BMC Genomics, 14(1). https://doi.org/10.1186/1471-2164-14-726
dc.relation.referencesHooper, D. C. (2001). Mechanisms of Action of Antimicrobials: Focus on Fluoroquinolones INHIBITION OF CELL WALL SYNTHESIS. In Mechanisms of Fluoroquinolone Action • CID (Vol. 32, Issue 1). https://academic.oup.com/cid/article/32/Supplement_1/S9/298541
dc.relation.referencesHooper, D. C., & Jacoby, G. A. (2016). Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harbor Perspectives in Medicine, 6(9). https://doi.org/10.1101/cshperspect.a025320
dc.relation.referencesHummels, K. R., & Kearns, D. B. (2021). Translation elongation factor P (EF-P). In FEMS Microbiology Reviews (Vol. 44, Issue 2, pp. 208–218). Oxford University Press. https://doi.org/10.1093/FEMSRE/FUAA003
dc.relation.referencesIshfaq, M., Hu, W., Khan, M. Z., Ahmad, I., Guo, W., & Li, J. (2020). Current status of vaccine research, development, and challenges of vaccines for Mycoplasma gallisepticum. In Poultry Science (Vol. 99, Issue 9, pp. 4195–4202). Elsevier Inc. https://doi.org/10.1016/j.psj.2020.06.014
dc.relation.referencesJolley, K. A., Bray, J. E., & Maiden, M. C. J. (2018). Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Research, 3, 124. https://doi.org/10.12688/wellcomeopenres.14826.1
dc.relation.referencesKandavelmani, A., & Piramanayagam, S. (2019). Comparative genomics of Mycoplasma: Insights on genome reduction and identification of potential antibacterial targets. Biomedical and Biotechnology Research Journal (BBRJ), 3(1), 9. https://doi.org/10.4103/bbrj.bbrj_142_18
dc.relation.referencesKhan, A. (2018). Diagnosis of Avian Mycoplasmas: A Comparison between PCR and Culture Technique. In Archives of Razi Institute (Vol. 73, Issue 3).
dc.relation.referencesKhiari, A. B., & Mardassi, B. B. A. (2012). Characterization of the antigenic and functional domains of a Mycoplasma synoviae variant vlhA gene. Veterinary Microbiology, 156(3–4), 322–329. https://doi.org/10.1016/j.vetmic.2011.11.016
dc.relation.referencesKleven, S. H. (1998). Mycoplasmas in the etiology of multifactorial respiratory disease. Poultry Science, 77(8), 1146–1149. https://doi.org/10.1093/ps/77.8.1146
dc.relation.referencesKleven, S. H. (2008). Control of avian mycoplasma infections in commercial poultry. In Avian Diseases (Vol. 52, Issue 3, pp. 367–374). https://doi.org/10.1637/8323-041808-Review.1
dc.relation.referencesKreizinger, Z., Sulyok, K. M., Bekő, K., Kovács, Á. B., Grózner, D., Felde, O., Marton, S., Bányai, K., Catania, S., Benčina, D., & Gyuranecz, M. (2018). Genotyping Mycoplasma synoviae: Development of a multi-locus variable number of tandem-repeats analysis and comparison with current molecular typing methods. Veterinary Microbiology, 226, 41–49. https://doi.org/10.1016/j.vetmic.2018.10.012
dc.relation.referencesKristiansson, E., Fick, J., Janzon, A., Grabic, R., Rutgersson, C., Weijdegård, B., Söderström, H., & Joakim Larsson, D. G. (2011). Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE, 6(2). https://doi.org/10.1371/journal.pone.0017038
dc.relation.referencesKursa, O., Tomczyk, G., & Sawicka, A. (2019). Prevalence and phylogenetic analysis of Mycoplasma synoviae strains isolated from Polish chicken layer flocks. Journal of Veterinary Research (Poland), 63(1), 41–49. https://doi.org/10.2478/jvetres-2019-0010
dc.relation.referencesLevisohn, S., & Kleven, S. H. (2000). Avian mycoplasmosis (Mycoplasma gallisepticum). In Rev. sci. tech. Off. int. Epiz (Vol. 19, Issue 2), 425–442.
dc.relation.referencesLimsatanun, A., Pakpinyo, S., Limpavithayakul, K., & Prasertsee, T. (2022a). Targeted sequencing analysis of Mycoplasma gallisepticum isolates in chicken layer and breeder flocks in Thailand. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-14066-4
dc.relation.referencesLimsatanun, A., Pakpinyo, S., Limpavithayakul, K., & Prasertsee, T. (2022b). Targeted sequencing analysis of Mycoplasma gallisepticum isolates in chicken layer and breeder flocks in Thailand. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-14066-4
dc.relation.referencesLiu, J., Cheng, Z., Zhou, D., Zhang, L., Yan, Z., Wang, Z., Yang, D., Liu, Y., & Chai, T. (2011). Synthesis, cloning, and expression of Mycoplasma suis inorganic pyrophosphatase gene using PCR-based accurate synthesis and overlap-extension PCR, and its immunogenicity analysis. Research in Veterinary Science, 91(3). https://doi.org/10.1016/j.rvsc.2011.02.009
dc.relation.referencesLysnyansky, I., Gerchman, I., Levisohn, S., Mikula, I., Feberwee, A., Ferguson, N. M., Noormohammadi, A. H., Spergser, J., & Windsor, H. M. (2012). Discrepancy between minimal inhibitory concentration to enrofloxacin and mutations present in the quinolone-resistance determining regions of Mycoplasma gallisepticum field strains. Veterinary Microbiology, 160(1–2), 222–226. https://doi.org/10.1016/j.vetmic.2012.05.002
dc.relation.referencesLysnyansky, I., Gerchman, I., Mikula, I., Gobbo, F., Catania, S., & Levisohn, S. (2013). Molecular characterization of acquired enrofloxacin resistance in Mycoplasma synoviae field isolates. Antimicrobial Agents and Chemotherapy, 57(7), 3072–3077. https://doi.org/10.1128/AAC.00203-13
dc.relation.referencesLysnyansky, I., Gerchman, I., Perk, S., & Levisohn, S. (2008). Molecular characterization and typing of enrofloxacin-resistant clinical isolates of Mycoplasma gallisepticum. Avian Diseases, 52(4), 685–689. https://doi.org/10.1637/8386-063008-RESNOTE.1
dc.relation.referencesMarkham, J. F., Morrow, C. J., & Whithear, K. G. (1998). Efficacy of a Temperature-Sensitive Mycoplasma synoviae Live Vaccine. Avian Diseases, 42(4), 671. https://doi.org/10.2307/1592701
dc.relation.referencesMatucci, A., Stefani, E., Gastaldelli, M., Rossi, I., De Grandi, G., Gyuranecz, M., & Catania, S. (2020). Molecular differentiation of mycoplasma gallisepticum outbreaks: A last decade study on italian farms using gts and mlst. Vaccines, 8(4), 1–15. https://doi.org/10.3390/vaccines8040665
dc.relation.referencesMay, M., & Brown, D. R. (2008). Genetic variation in sialidase and linkage to N-acetylneuraminate catabolism in Mycoplasma synoviae. Microbial Pathogenesis, 45(1), 38–44. https://doi.org/10.1016/j.micpath.2008.02.002
dc.relation.referencesMichiels, T., Welby, S., Vanrobaeys, M., Quinet, C., Rouffaer, L., Lens, L., Martel, A., & Butaye, P. (2016). Prevalence of Mycoplasma gallisepticum and Mycoplasma synoviae in commercial poultry, racing pigeons and wild birds in Belgium. Avian Pathology, 45(2), 244–252. https://doi.org/10.1080/03079457.2016.1145354
dc.relation.referencesMorrow CJ, Kreizinger Z, Achari RR, Beko K, Yvon C, Gyuranecz M, Antimicrobial susceptibility of pathogenic mycoplasmas in chickens in Asia, Veterinary Microbiology (2020), doi: https://doi.org/10.1016/j. vetmic.2020.108840
dc.relation.referencesMorrow, C. J. (2024). Antimicrobial resistance (AMR): an important one health issue for layer and meat poultry industries worldwide. In Poultry Science (Vol. 103, Issue 7). Elsevier Inc. https://doi.org/10.1016/j.psj.2024.103690
dc.relation.referencesMugunthan, S. P., Kannan, G., Chandra, H. M., & Paital, B. (2023a). Infection, Transmission, Pathogenesis and Vaccine Development against Mycoplasma gallisepticum. In Vaccines (Vol. 11, Issue 2). MDPI. https://doi.org/10.3390/vaccines11020469
dc.relation.referencesMugunthan, S. P., Kannan, G., Chandra, H. M., & Paital, B. (2023b). Infection, Transmission, Pathogenesis and Vaccine Development against Mycoplasma gallisepticum. In Vaccines (Vol. 11, Issue 2). MDPI. https://doi.org/10.3390/vaccines11020469
dc.relation.referencesMuhammad, Javid Hussain, Syed Khurram Fareed, T. A. Khan, S. A. Khan, & Aqeel Ahmad. (2018). Diagnosis of Avian Mycoplasmas: A Comparison between PCR and Culture Technique. In Archives of Razi Institute (Vol. 73, Issue 3). https://doi.org/10.22092/ari.2017.108217.1085
dc.relation.referencesNakanishi-Matsui, M., Sekiya, M., & Futai, M. (2016). ATP synthase from Escherichia coli: Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols. In Biochimica et Biophysica Acta - Bioenergetics (Vol. 1857, Issue 2, pp. 129–140). Elsevier. https://doi.org/10.1016/j.bbabio.2015.11.005
dc.relation.referencesNascimento, E., Pereira, V., Nascimento, M., & Barreto, M. (2005). Avian mycoplasmosis update. Revista Brasileira de Ciência Avícola, 7(1), 1–9. https://doi.org/10.1590/S1516-635X2005000100001
dc.relation.referencesNhung, N. T., Chansiripornchai, N., & Carrique-Mas, J. J. (2017). Antimicrobial resistance in bacterial poultry pathogens: A review. In Frontiers in Veterinary Science (Vol. 4, Issue AUG). Frontiers Media S.A. https://doi.org/10.3389/fvets.2017.00126
dc.relation.referencesO’brien, S. J., Simonson, J. M., Grabowski, M. W., & Barile2, M. F. (1981). Analysis of Multiple Isoenzyme Expression Among Twenty-Two Species of Mycoplasma and Acholeplasma. In JOURNAL OF BACTERIOLOGY (Vol. 146, Issue 1).
dc.relation.referencesOkonechnikov, K., Golosova, O., & Fursov, M. (2012). Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 28(8), 1166–1167. https://doi.org/10.1093/bioinformatics/bts091
dc.relation.referencesOmotainse, O. S., Wawegama, N. K., Kulappu Arachchige, S. N., Mauricio, M. J., Vaz, P. K., Woodward, A. P., Kordafshari, S., Bogeski, M., Stevenson, M., Noormohammadi, A. H., & Stent, A. W. (2022). Tracheal cellular immune response in chickens inoculated with Mycoplasma synoviae vaccine, MS-H or its parent strain 86079/7NS. Veterinary Immunology and Immunopathology, 251. https://doi.org/10.1016/j.vetimm.2022.110472
dc.relation.referencesOMSA. (2021). OIE. Terrestrial Manual 2021.Chapter 3-03-05-avian-myco. https://www.woah.org/es/enfermedad/micoplasmosis-aviar-mycoplasma-gallisepticum/
dc.relation.referencesOMSA. (2022). Estrategia sobre la resistencia a los agentes antimicrobianos y su uso prudente Preservando la eficacia de los antimicrobianos. https://www.woah.org/app/uploads/2021/12/es-amr-strategy-2022-final-pages-1.pdf
dc.relation.referencesOtero, J. L., Mestorino, N., & Errecalde, J. O. (2001a). ENROFLOXACINA: UNA FLUORQUINOLONA DE USO EXCLUSIVO EN VETERINARIA PARTE I: QUÍMICA, MECANISMO DE ACCIÓN, ACTIVIDAD ANTIMICROBIANA Y RESISTENCIA BACTERIANA ENROFLOXACIN: A FLUORQUINOLONE OF EXCLUSIVE USE IN VETERINARY. PART I: CHEMICAL CHARACTERISTICS, MECHANISM OF ACTION, ANTIMICROBIAL ACTIVITY AND BACTERIAL RESISTANCE. ANALECTA VETERINARIA, 21, 31–41.
dc.relation.referencesOtero, J. L., Mestorino, N., & Errecalde, J. O. (2001b). ENROFLOXACINA UNA FLUORQUINOLONA DE USO EXCLUSIVO EN VETERINARIA PARTE II: FARMACOCINÉTICA Y TOXICIDAD ENROFLOXACIN: A FLUORQUINOLONE OF EXCLUSIVE USO IN VETERINARY. PART II: PHARMACOKINETIC AND TOXICITY. 42 ANALECTA VETERINARIA, 21, 42–49.
dc.relation.referencesPapazisi, L., Gorton, T. S., Kutish, G., Markham, P. F., Browning, G. F., Nguyen, D. K., Swartzell, S., Madan, A., Mahairas, G., & Geary, S. J. (2003). The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain Rlow. Microbiology, 149(9), 2307–2316. https://doi.org/10.1099/mic.0.26427-0
dc.relation.referencesRasmussen, O. F., Shirvan, M. H., Margalit, H., Christiansen, C., & Rottemt, S. (1992). Nucleotide sequence, organization and characterization of the atp genes and the encoded subunits of Mycoplasma gallisepticum ATPase. In Biochem. J (Vol. 285).
dc.relation.referencesRaviv, Z., Callison, S. A., Ferguson-Noel, N., & Kleven, S. H. (2008). Strain differentiating real-time PCR for Mycoplasma gallisepticum live vaccine evaluation studies. Veterinary Microbiology, 129(1–2), 179–187. https://doi.org/10.1016/j.vetmic.2007.11.017
dc.relation.referencesRazin, S. (1992). Peculiar properties of mycoplasmas: The smallest self-replicating prokaryotes. In FEMS Microbiology Letters (Vol. 100). https://academic.oup.com/femsle/article/100/1-3/423/568053
dc.relation.referencesRazin, S., Yogev, D., & Naot, Y. (1998). Molecular Biology and Pathogenicity of Mycoplasmas. In MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS (Vol. 62, Issue 4).
dc.relation.referencesRedgrave, L. S., Sutton, S. B., Webber, M. A., & Piddock, L. J. V. (2014). Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. In Trends in Microbiology (Vol. 22, Issue 8, pp. 438–445). Elsevier Ltd. https://doi.org/10.1016/j.tim.2014.04.007
dc.relation.referencesReinhardt, A. K., Kempf, I., Kobisch, M., & Gautier-Bouchardon, A. V. (2002). Fluoroquinolone resistance in Mycoplasma gallisepticum: DNA gyrase as primary target of enrofloxacin and impact of mutations in topoisomerases on resistance level. Journal of Antimicrobial Chemotherapy, 50(4), 589–592. https://doi.org/10.1093/jac/dkf158
dc.relation.referencesRoberts, D. H., & McDaniel, J. W. (1967). Mechanism of egg transmission of Mycoplasma gallisepticum. Journal of Comparative Pathology, 77(4), 439–442. https://doi.org/10.1016/0021-9975(67)90030-8
dc.relation.referencesRoth, N., Käsbohrer, A., Mayrhofer, S., Zitz, U., Hofacre, C., & Domig, K. J. (2019). The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. In Poultry Science (Vol. 98, Issue 4, pp. 1791–1804). Oxford University Press. https://doi.org/10.3382/ps/pey539
dc.relation.referencesRottem, S. (2003). Interaction of Mycoplasmas With Host Cells. https://doi.org/10.1152/phys
dc.relation.referencesSalih, S. M., Jafar, N. A., & Noomi, B. S. (2020). Prevalence of mycoplasma infection in poultry (gallus gallus domesticus) and evaluation of some diagnostic techniques. www.japer.in
dc.relation.referencesSingh, P., Patil, K. N., Khanduja, J. S., Kumar, P. S., Williams, A., Rossi, F., Rizzi, M., Davis, E. O., & Muniyappa, K. (2010). Mycobacterium tuberculosis UvrD1 and UvrA proteins suppress DNA strand exchange promoted by cognate and noncognate RecA proteins. Biochemistry, 49(23), 4872–4883. https://doi.org/10.1021/bi902021d
dc.relation.referencesSpratt, B. G. (1999). Multilocus sequence typing: molecular typing of bacterial pathogens in an era of rapid DNA sequencing and the Internet. Current Opinion in Microbiology, 2(3), 312–316. https://doi.org/10.1016/S1369-5274(99)80054-X
dc.relation.referencesStipkovits, L., & Kempf, I. (1996). Mycoplasmoses in poultry. In Rev. sci. tech. Off. int. Epiz (Vol. 15, Issue 4).
dc.relation.referencesTechnelysium Pty Ltd. (2019). Chromas (2.6.6).
dc.relation.referencester Veen, C., Dijkman, R., de Wit, J. J., Gyuranecz, M., & Feberwee, A. (2021). Decrease of Mycoplasma gallisepticum seroprevalence and introduction of new genotypes in Dutch commercial poultry during the years 2001–2018. Avian Pathology, 50(1), 52–60. https://doi.org/10.1080/03079457.2020.1832958
dc.relation.referencesTrinh, V., Langelier, M.-F., Archambault, J., & Coulombe, B. (2006). Structural Perspective on Mutations Affecting the Function of Multisubunit RNA Polymerases. Microbiology and Molecular Biology Reviews, 70(1), 12–36. https://doi.org/10.1128/mmbr.70.1.12-36.2006
dc.relation.referencesTsaneva, I. R., Muller, B., & West, S. C. (1993). RuvA and RuvB proteins of Escherichia coli exhibit DNA helicase activity in vitro (recombination/DNA repair/Holfiday junctions/branch migration/strand exchange). In Proc. Nati. Acad. Sci. USA (Vol. 90).
dc.relation.referencesVasconcelos, A. T. R., Ferreira, H. B., Bizarro, C. V., Bonatto, S. L., Carvalho, M. O., Pinto, P. M., Almeida, D. F., Almeida, L. G. P., Almeida, R., Alves-Filho, L., Assunção, E. N., Azevedo, V. A. C., Bogo, M. R., Brigido, M. M., Brocchi, M., Burity, H. A., Camargo, A. A., Camargo, S. S., Carepo, M. S., … Zaha, A. (2005). Swine and poultry pathogens: The complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae. Journal of Bacteriology, 187(16), 5568–5577. https://doi.org/10.1128/JB.187.16.5568-5577.2005
dc.relation.referencesVentura, C. E., Gloria Ramírez, M. V. ;, & Víctor Vera, ; (2012). DETECCIÓN Y DIFERENCIACIÓN DE Mycoplasma gallisepticum Y Mycoplasma synoviae MEDIANTE LA TÉCNICA DE PCR A PARTIR DE HISOPOS TRAQUEALES DE AVES CON SÍNTOMAS RESPIRATORIOS Detection and Differentiation of Mycoplasma gallisepticum and Mycoplasma synoviae by PCR from Tracheal Swabs from Birds with Respiratory Symptoms. In Acta biol. Colomb (Vol. 17, Issue 3).
dc.relation.referencesWetzel, A. N., Lefevre, K. M., & Raviv, Z. (2010). Revised Mycoplasma synoviae vlhA PCRs. Avian Diseases, 54(4), 1292–1297. https://doi.org/10.1637/9349-033010-ResNote.1
dc.relation.referencesWren, B. W. (2000). MICROBIAL GENOME ANALYSIS: INSIGHTS INTO VIRULENCE, HOST ADAPTATION AND EVOLUTION. www.nature.com/reviews/genetics
dc.relation.referencesYadav, J. P., Tomar, P., Singh, Y., & Khurana, S. K. (2022). Insights on Mycoplasma gallisepticum and Mycoplasma synoviae infection in poultry: a systematic review. In Animal Biotechnology (Vol. 33, Issue 7, pp. 1711–1720). Taylor and Francis Ltd. https://doi.org/10.1080/10495398.2021.1908316
dc.relation.referencesZhang, N., Wu, Y., Huang, Z., Zhang, C., Zhang, L., Cai, Q., Shen, X., Jiang, H., & Ding, H. (2018). Relationship between danofloxacin PK/PD parameters and emergence and mechanism of resistance of Mycoplasma gallisepticum in In Vitro model. PLoS ONE, 13(8). https://doi.org/10.1371/journal.pone.0202070
dc.relation.referencesZhu, L., Shahid, M. A., Markham, J., Browning, G. F., Noormohammadi, A. H., & Marenda, M. S. (2018). Genome analysis of Mycoplasma synoviae strain MS-H, the most common M. synoviae strain with a worldwide distribution. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-4501-8
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.lembAVES DE CORRAL
dc.subject.lembPoultryal
dc.subject.lembGALLINAS PONEDORAS
dc.subject.lembChicken types (egg)
dc.subject.lembAVES DE CORRAL-ENFERMEDADES
dc.subject.lembPoultry - diseases
dc.subject.lembMEDICINA AVIARIA
dc.subject.lembAvian medicine
dc.subject.lembVIROSIS EN LAS AVES DE CORRAL
dc.subject.lembPoultry virus diseases
dc.subject.proposalMycoplasma gallisepticumspa
dc.subject.proposalMycoplasma synoviaespa
dc.subject.proposalMLSTeng
dc.subject.proposalRAMspa
dc.subject.proposalGenotipificaciónspa
dc.subject.proposalGenotypingeng
dc.subject.proposalMycoplasma synoviaeeng
dc.subject.proposalAMReng
dc.titleGenotipificación y mutaciones asociadas a resistencia antimicrobiana en cepas de Mycoplasma gallisepticum y M. synoviae en aves comerciales de Colombiaspa
dc.title.translatedGenotyping and antimicrobial resistance-associated mutations in Mycoplasma gallisepticum and M. synoviae strains from commercial ooultry in Colombiaeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentDataPaper
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032470465.2025.pdf
Tamaño:
2.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Salud y Producción Animal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: