On the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domains

dc.contributor.advisorArdila de la Peña, Víctor Manuelspa
dc.contributor.authorGuerra Gutiérrez, Juan Sebastiánspa
dc.date.accessioned2024-08-09T13:17:25Z
dc.date.available2024-08-09T13:17:25Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractWe give solvability criteria for the weak formulation of the homogeneous Neumann problem for uniformly elliptic operators of the form \begin{ceqn} \begin{align*} \mathcal{L}u = - \displaystyle \sum_{i,j = 1}^n \frac{\partial}{\partial x_j}\left( a_{ij}\dfrac{\partial u}{\partial x_i}\right)+au \end{align*} \end{ceqn} where the $a_{ij}$ and $a$ are measurable functions satisfying certain adequate hypotheses. Conditions on the domain of definition are given to ensure the solvability of the problem in which smoothing restrictions on the boundary are relaxed.eng
dc.description.abstractDamos criterios de solubilidad de la formulación débil del problema homogéneo de Neumann para operadores uniformemente elípticos de la forma \begin{ceqn} \begin{align*} \mathcal{L}u = - \displaystyle \sum_{i,j = 1}^n \frac{\partial}{\partial x_j}\left( a_{ij}\dfrac{\partial u}{\partial x_i}\right)+au \end{align*} \end{ceqn} donde las $a_{ij}$ y $a$ son funciones medibles que satisfacen ciertas hipótesis. Se establecen condiciones sobre el dominio de definición que garantizan la solubilidad del problema y que relajan restricciones de suavidad en la frontera (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.description.researchareaEcuaciones diferenciales parcialesspa
dc.format.extentviii, 106 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86714
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesBrezis, H. (2011). Functional analysis, Sobolev spaces and partial differential equations. Springer.spa
dc.relation.referencesCourant, R., John, F., Blank, A. A., and Solomon, A. (1974). Introduction to calculus and analysis, volume 2. A Wiley-Interscience Publication.spa
dc.relation.referencesKesavan, S. (1989). Topics in functional analysis and applications. New Age International Ltd., Publishers.spa
dc.relation.referencesKesavan, S. (2009). Functional analysis. Hindustan Book Agency.spa
dc.relation.referencesKrantz, S. G. and Parks, H. R. (2008). Geometric integration theory. Birkhäuser.spa
dc.relation.referencesKrasnoselskii and Rutickii, Y. B. (1961). Convex functions and Orlicz spaces. P. Noordhoff LTD- Groningen.spa
dc.relation.referencesKreyszig, E. (1978). Introductory functional analysis with applications. John Wiley & Sons.spa
dc.relation.referencesLeoni, G. (2009). A first course in Sobolev spaces. American Mathematical Society.spa
dc.relation.referencesKufner, A., Maligranda, L., and Persson, L.-E. (2006). The Prehistory of the Hardy Inequality. The American Mathematical Monthly, 113(8), 715–732.spa
dc.relation.referencesMaz’ya, V. (1968). On neumann’s problem in domains with nonregular boundaries. Siberian Mathematical Journal, 9, 990–1012.spa
dc.relation.referencesMaz’ya, V. G. (1973). On certain integral inequalities for functions of many variables. Journal of Soviet Mathematics, 1(2), 205–234spa
dc.relation.referencesMaz’ya, V. G. (2011). Sobolev Spaces: With Applications to Elliptic Partial Differential Equations. Springer.spa
dc.relation.referencesMovahedi-Lankarani, H. (1992). On the theorem of Rademacher. Real Analysis Exchange, 17(2), 802 – 808.spa
dc.relation.referencesNandakumaran, A. and Datti, P. (2020). Partial differential equations: classical theory with a modern touch. Cambridge University Press.spa
dc.relation.referencesNatanson, I. P. (1964). Theory of functions of a real variable, volume 1. Courier Dover Publications.spa
dc.relation.referencesRana, I. K. (2002). An introduction to measure and integration. American Mathematical Society.spa
dc.relation.referencesRektorys, K. (1977). Variational methods in mathematics, science and engineering. Reidel Publishing Company.spa
dc.relation.referencesRossmann, J., Takac, P., and Wildenhain, G. (2012). The Maz’ya Anniversary Collection: Volume 1: On Maz’ya’s work in functional analysis, partial differential equations and applications, volume 109. Birkhäuser.spa
dc.relation.referencesRudin, W. (1973). Functional analysis. McGraw-Hill Book Company.spa
dc.relation.referencesRudin, W. (1987). Real and complex analysis. McGraw-Hill International Editions.spa
dc.relation.referencesVillani, A. (1985). Another note on the inclusion lp(μ) ⊂ lq(μ). The American Mathematical Monthly, 92(7), 485–487.spa
dc.relation.referencesKondrat’ev, V. A. and Oleinik, O. A. (1983). Boundary-value problems for partial differential equations in non-smooth domains. Russian Mathematical Surveys, 38(2):1–86spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.lembALGEBRAS DE VON NEUMANNspa
dc.subject.lembVon Neumann algebraseng
dc.subject.lembECUACIONES DIFERENCIALES-PROBLEMAS, EJERCICIOS, ETC.spa
dc.subject.lembDifferential equations - problems, exercises, etc.eng
dc.subject.lembTEORIA DE LOS OPERADORESspa
dc.subject.lembOperator theoryeng
dc.subject.lembESPACIOS FUNCIONALESspa
dc.subject.lembFunction spaceseng
dc.subject.lembESPACIOS DE SOBOLEVspa
dc.subject.lembSobolev spaceseng
dc.subject.proposalProblema de Neumannspa
dc.subject.proposalEcuaciones Ddferenciales parcialesspa
dc.subject.proposalOperador uniformemente elípticospa
dc.subject.proposalDominios no-regularesspa
dc.subject.proposalNeumann problemeng
dc.subject.proposalPartial differential equationseng
dc.subject.proposalUniformly elliptic operatoreng
dc.subject.proposalNon-smooth domainseng
dc.titleOn the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domainseng
dc.title.translatedCaracterización de la solubilidad del problema de Neumann con condiciones de frontera homogéneas para ecuaciones uniformemente elípticas de segundo orden sobre dominios generalesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015413807.2024.pdf
Tamaño:
1.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: