On the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domains
dc.contributor.advisor | Ardila de la Peña, Víctor Manuel | spa |
dc.contributor.author | Guerra Gutiérrez, Juan Sebastián | spa |
dc.date.accessioned | 2024-08-09T13:17:25Z | |
dc.date.available | 2024-08-09T13:17:25Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | We give solvability criteria for the weak formulation of the homogeneous Neumann problem for uniformly elliptic operators of the form \begin{ceqn} \begin{align*} \mathcal{L}u = - \displaystyle \sum_{i,j = 1}^n \frac{\partial}{\partial x_j}\left( a_{ij}\dfrac{\partial u}{\partial x_i}\right)+au \end{align*} \end{ceqn} where the $a_{ij}$ and $a$ are measurable functions satisfying certain adequate hypotheses. Conditions on the domain of definition are given to ensure the solvability of the problem in which smoothing restrictions on the boundary are relaxed. | eng |
dc.description.abstract | Damos criterios de solubilidad de la formulación débil del problema homogéneo de Neumann para operadores uniformemente elípticos de la forma \begin{ceqn} \begin{align*} \mathcal{L}u = - \displaystyle \sum_{i,j = 1}^n \frac{\partial}{\partial x_j}\left( a_{ij}\dfrac{\partial u}{\partial x_i}\right)+au \end{align*} \end{ceqn} donde las $a_{ij}$ y $a$ son funciones medibles que satisfacen ciertas hipótesis. Se establecen condiciones sobre el dominio de definición que garantizan la solubilidad del problema y que relajan restricciones de suavidad en la frontera (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Matemáticas | spa |
dc.description.researcharea | Ecuaciones diferenciales parciales | spa |
dc.format.extent | viii, 106 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86714 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | spa |
dc.relation.references | Brezis, H. (2011). Functional analysis, Sobolev spaces and partial differential equations. Springer. | spa |
dc.relation.references | Courant, R., John, F., Blank, A. A., and Solomon, A. (1974). Introduction to calculus and analysis, volume 2. A Wiley-Interscience Publication. | spa |
dc.relation.references | Kesavan, S. (1989). Topics in functional analysis and applications. New Age International Ltd., Publishers. | spa |
dc.relation.references | Kesavan, S. (2009). Functional analysis. Hindustan Book Agency. | spa |
dc.relation.references | Krantz, S. G. and Parks, H. R. (2008). Geometric integration theory. Birkhäuser. | spa |
dc.relation.references | Krasnoselskii and Rutickii, Y. B. (1961). Convex functions and Orlicz spaces. P. Noordhoff LTD- Groningen. | spa |
dc.relation.references | Kreyszig, E. (1978). Introductory functional analysis with applications. John Wiley & Sons. | spa |
dc.relation.references | Leoni, G. (2009). A first course in Sobolev spaces. American Mathematical Society. | spa |
dc.relation.references | Kufner, A., Maligranda, L., and Persson, L.-E. (2006). The Prehistory of the Hardy Inequality. The American Mathematical Monthly, 113(8), 715–732. | spa |
dc.relation.references | Maz’ya, V. (1968). On neumann’s problem in domains with nonregular boundaries. Siberian Mathematical Journal, 9, 990–1012. | spa |
dc.relation.references | Maz’ya, V. G. (1973). On certain integral inequalities for functions of many variables. Journal of Soviet Mathematics, 1(2), 205–234 | spa |
dc.relation.references | Maz’ya, V. G. (2011). Sobolev Spaces: With Applications to Elliptic Partial Differential Equations. Springer. | spa |
dc.relation.references | Movahedi-Lankarani, H. (1992). On the theorem of Rademacher. Real Analysis Exchange, 17(2), 802 – 808. | spa |
dc.relation.references | Nandakumaran, A. and Datti, P. (2020). Partial differential equations: classical theory with a modern touch. Cambridge University Press. | spa |
dc.relation.references | Natanson, I. P. (1964). Theory of functions of a real variable, volume 1. Courier Dover Publications. | spa |
dc.relation.references | Rana, I. K. (2002). An introduction to measure and integration. American Mathematical Society. | spa |
dc.relation.references | Rektorys, K. (1977). Variational methods in mathematics, science and engineering. Reidel Publishing Company. | spa |
dc.relation.references | Rossmann, J., Takac, P., and Wildenhain, G. (2012). The Maz’ya Anniversary Collection: Volume 1: On Maz’ya’s work in functional analysis, partial differential equations and applications, volume 109. Birkhäuser. | spa |
dc.relation.references | Rudin, W. (1973). Functional analysis. McGraw-Hill Book Company. | spa |
dc.relation.references | Rudin, W. (1987). Real and complex analysis. McGraw-Hill International Editions. | spa |
dc.relation.references | Villani, A. (1985). Another note on the inclusion lp(μ) ⊂ lq(μ). The American Mathematical Monthly, 92(7), 485–487. | spa |
dc.relation.references | Kondrat’ev, V. A. and Oleinik, O. A. (1983). Boundary-value problems for partial differential equations in non-smooth domains. Russian Mathematical Surveys, 38(2):1–86 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::515 - Análisis | spa |
dc.subject.ddc | 510 - Matemáticas::512 - Álgebra | spa |
dc.subject.lemb | ALGEBRAS DE VON NEUMANN | spa |
dc.subject.lemb | Von Neumann algebras | eng |
dc.subject.lemb | ECUACIONES DIFERENCIALES-PROBLEMAS, EJERCICIOS, ETC. | spa |
dc.subject.lemb | Differential equations - problems, exercises, etc. | eng |
dc.subject.lemb | TEORIA DE LOS OPERADORES | spa |
dc.subject.lemb | Operator theory | eng |
dc.subject.lemb | ESPACIOS FUNCIONALES | spa |
dc.subject.lemb | Function spaces | eng |
dc.subject.lemb | ESPACIOS DE SOBOLEV | spa |
dc.subject.lemb | Sobolev spaces | eng |
dc.subject.proposal | Problema de Neumann | spa |
dc.subject.proposal | Ecuaciones Ddferenciales parciales | spa |
dc.subject.proposal | Operador uniformemente elíptico | spa |
dc.subject.proposal | Dominios no-regulares | spa |
dc.subject.proposal | Neumann problem | eng |
dc.subject.proposal | Partial differential equations | eng |
dc.subject.proposal | Uniformly elliptic operator | eng |
dc.subject.proposal | Non-smooth domains | eng |
dc.title | On the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domains | eng |
dc.title.translated | Caracterización de la solubilidad del problema de Neumann con condiciones de frontera homogéneas para ecuaciones uniformemente elípticas de segundo orden sobre dominios generales | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1015413807.2024.pdf
- Tamaño:
- 1.3 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: