Estimación de índice de pobreza multidimensional (IPM) en Bogotá D.C. y algunas ciudades cercanas usando imágenes satelitales

dc.contributor.advisorArrieta-Prieto, Mario
dc.contributor.authorOviedo Mozo, Juan Sebastián
dc.contributor.orcidOviedo Mozo, Juan Sebastián [0000-0002-1125-954X]spa
dc.coverage.cityBogotáspa
dc.coverage.countryColombiaspa
dc.date.accessioned2024-07-02T22:45:42Z
dc.date.available2024-07-02T22:45:42Z
dc.date.issued2024
dc.descriptionilustraciones (principalmente a color), diagramas, fotografíasspa
dc.description.abstractEn este documento se estudia una alternativa para obtener estimaciones de pobreza utilizando imágenes satelitales de Bogotá, D.C. y algunos municipios cercanos. Para lograr este fin, se comparan las dos metodologías presentadas en este trabajo: un modelo de redes neuronales convolucionales (CNN) y un modelo de regresión tensorial (GTR), los dos modelos aplicados para la clasificación de pixeles. A partir de estos modelos se definen unos criterios o métricas que nos permiten seleccionar el modelo que mejor captura la distribución del Índice de pobreza multidimensional (IPM) a nivel de píxeles. Finalmente, se lleva a cabo una aplicación de estimación de pobreza utilizando las imágenes de Planet Scope (PS) y la información a nivel de manzanas del ´ultimo Censo Nacional de Población y Vivienda (CNPV2018) donde se encuentra que el modelo de GTR presenta mejores métricas de desempeño en comparación del modelo de CNN (Texto tomado de la fuente).spa
dc.description.abstractThis document explores an alternative method to obtain poverty estimates using satellite images of Bogot´a, D.C., and some nearby municipalities. To achieve this goal, the two methodologies proposed in this study are compared: Convolutional Neural Networks (CNN) and a Tensor Regression Model (GTR). Based on these models, criteria or metrics are defined to select the model that best captures the distribution of the Multidimensional Poverty Index (MPI) at the pixel level. Finally, a poverty estimation application is conducted using Planet Scope (PS) images and block-level information from the latest National Population and Housing Census (CNPV2018). The results reveal that the GTR model demonstrates superior performance metrics compared to the CNN model (Texto tomado de la fuente).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaAprendizaje Estadísticospa
dc.format.extentxviii, 82 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86359
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAbraham, N. and Khan, N. M. (2019). A novel focal tversky loss function with improved attention u-net for lesion segmentation. In 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019), pages 683–687. IEEE.spa
dc.relation.referencesAlkire, S., Calderon, M., Evans, M., Fortacz, A., Jahic, A., Ghorai, M., Sjolander, C., Mirza, T., Nogales, R., Scharlin-Pettee, S., Soomro, M., Shrestha, S., Suppa, N., and Tapia, H. (2022). Unpacking deprivation bundles to reduce multidimensional poverty global multidimensional poverty index 2022.spa
dc.relation.referencesAlkire, S. and Foster, J. (2011). Counting and multidimensional poverty measurement. Journal of Public Economics, 95(7):476–487.spa
dc.relation.referencesAngulo, R., Cuervo, Y. D., and Pardo, R. (2011). Índice de pobreza multidimensional para Colombia. Technical report, Departamento Nacional de Planeación.spa
dc.relation.referencesBenedetti, P., Femminella, M., and Reali, G. (2022). Mixed-sized biomedical image segmentation based on u-net architectures. Applied Sciences, 13(1):329.spa
dc.relation.referencesBerisha, B., M¨eziu, E., and Shabani, I. (2022). Big data analytics in cloud computing: an overview. Journal of Cloud Computing, 11(1):24.spa
dc.relation.referencesChen, L.-C., Papandreou, G., Schroff, F., and Adam, H. (2017). Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.spa
dc.relation.referencesChen, T., Zhu, Z., Hu, S.-M., Cohen-Or, D., and Shamir, A. (2016). Extracting 3d objects from photographs using 3-sweep. Communications of the ACM, 59(12):121–129.spa
dc.relation.referencesCichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., and Phan, H. A. (2015). Tensor decompositions for signal processing applications: From two-way to multiway component analysis. IEEE signal processing magazine, 32(2):145–163.spa
dc.relation.referencesDANE (2019). Ficha metodológica censo nacional de población y vivienda 2018. https:// www.dane.gov.co/files/censo2018/informacion-tecnica/DSO-CNPV-FME-01-v2.pdf. Accessed: 2022-08-06.spa
dc.relation.referencesDANE (2020). Índice de Pobreza Multidimensional: Predicción del IPM Censal Usando Aprendizaje de Máquinas e Imágenes Satelitales. PDF document. Author: Departamento Administrativo Nacional de Estadísticas, Year: 2020. Available at: https://www.dane.gov.co/files/investigaciones/experimentales/ipm/IPM-documento-metodologico.pdf.spa
dc.relation.referencesDANE-DPS-DNP (2012). Conpes 150 - metodologías oficiales y arreglos institucionales para la medición de la pobreza en Colombia. https://www.dane.gov.co/files/acerca/ Normatividad/CONPES-150.pdf. Accessed: 2022-12-08.spa
dc.relation.referencesDigitalSreeni (2021). 225 - attention u-net. what is attention and why is it needed for u-net? https://www.youtube.com/watch?v=KOF38xAvo8I.spa
dc.relation.referencesFu, H., Meng, D., Li, W., and Wang, Y. (2021). Bridge crack semantic segmentation based on improved deeplabv3+. Journal of Marine Science and Engineering, 9(6):671.spa
dc.relation.referencesFukushima, K., Miyake, S., and Ito, T. (1983). Neocognitron: A neural network model for a mechanism of visual pattern recognition. IEEE transactions on systems, man, and cybernetics, (5):826–834.spa
dc.relation.referencesGábor, H. (2022). The tversky loss function and its modifications for medical image segmentation.spa
dc.relation.referencesGhuffar, S. (2018). Dem generation from multi satellite planetscope imagery. Remote Sensing, 10(9).spa
dc.relation.referencesGoodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.spa
dc.relation.referencesGuo, W., Kotsia, I., and Patras, I. (2011). Tensor learning for regression. IEEE Transactions on Image Processing, 21(2):816–827.spa
dc.relation.referencesHand, D. J. and Till, R. J. (2001). A simple generalisation of the area under the roc curve for multiple class classification problems. Machine learning, 45:171–186.spa
dc.relation.referencesHe, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition. CoRR, abs/1512.03385.spa
dc.relation.referencesHead, A., Manguin, M., Tran, N., and Blumenstock, J. E. (2017). Can human development be measured with satellite imagery? In Proceedings of the Ninth International Conference on Information and Communication Technologies and Development, ICTD ’17, New York, NY, USA. Association for Computing Machinery.spa
dc.relation.referencesHeitmann, S. and Buri, S. (2019). Poverty estimation with satellite imagery at neighborhood levels : Results and lessons for financial inclusion from ghana and uganda. In Washington, D.C., World Bank Group.spa
dc.relation.referencesHou, C., Nie, F., Yi, D., and Wu, Y. (2012). Efficient image classification via multiple rank regression. IEEE Transactions on Image Processing, 22(1):340–352.spa
dc.relation.referencesHuang, J., Zhou, W., Li, H., and Li, W. (2015). Sign language recognition using 3d convolutional neural networks. In 2015 IEEE International Conference on Multimedia and Expo (ICME), pages 1–6.spa
dc.relation.referencesJean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., and Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. Science, 353(6301):790–794.spa
dc.relation.referencesKolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM review, 51(3):455–500.spa
dc.relation.referencesLiu, J., Wu, Z., Xiao, L., Sun, J., and Yan, H. (2019). Generalized tensor regression for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 58(2):1244–1258.spa
dc.relation.referencesMetz, C. E. (1978). Basic principles of roc analysis. In Seminars in nuclear medicine, volume 8, pages 283–298. Elsevier.spa
dc.relation.referencesMoncada, G. and Lee, H. (2005). Mecovi : Improving the survey and measurement of living conditions in latin america and the caribbean. en breve; No. 63. License: CC BY 3.0 IGO.spa
dc.relation.referencesNiu, Z., Zhou, M., Wang, L., Gao, X., and Hua, G. (2016). Ordinal regression with multiple output cnn for age estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4920–4928.spa
dc.relation.referencesOktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., Mori, K., Mc- Donagh, S., Hammerla, N. Y., Kainz, B., et al. (2018). Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999.spa
dc.relation.referencesO’Shea, K. and Nash, R. (2015). An introduction to convolutional neural networks. CoRR, abs/1511.08458.spa
dc.relation.referencesRonneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. CoRR, abs/1505.04597.spa
dc.relation.referencesSalazar, R. C. A., Cuervo, Y. D., and Pardo, R. (2011). Índice de Pobreza Multidimensional para Colombia. Archivos de Economía 009228, Departamento Nacional de Planeación.spa
dc.relation.referencesSchlemper, J., Oktay, O., Schaap, M., Heinrich, M., Kainz, B., Glocker, B., and Rueckert, D. (2019). Attention gated networks: Learning to leverage salient regions in medical images. Medical Image Analysis, 53.spa
dc.relation.referencesSEN, A. (1979). Issues in the measurement of poverty, en scandinavian journal of economic.spa
dc.relation.referencesSteele, J., Sundsøy, P., Pezzulo, C., Alegana, V., Bird, T., Blumenstock, J., Bjelland, J., Engø-Monsen, K., Montjoye, Y.-A., Iqbal, A., Hadiuzzaman, K., Lu, X.,Wetter, E., Tatem, A., and Bengtsson, L. (2017). Mapping poverty using mobile phone and satellite data. Journal of The Royal Society Interface, 14:20160690.spa
dc.relation.referencesSudre, C. H., Li, W., Vercauteren, T., Ourselin, S., and Cardoso, M. J. (2017). Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pages 240–248. Springer International Publishing.spa
dc.relation.referencesWikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019). Spatio-temporal statistics with R. CRC Press.spa
dc.relation.referencesWu, J. (2017). Introduction to convolutional neural networks. National Key Lab for Novel Software Technology. Nanjing University. China, 5(23):495.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc330 - Economía::339 - Macroeconomía y temas relacionadosspa
dc.subject.lembPobreza -- Índicesspa
dc.subject.lembPobreza - Investigacionesspa
dc.subject.lembPoverty - researcheng
dc.subject.proposalIPMspa
dc.subject.proposalimagen satelitalspa
dc.subject.proposalRegresión tensorialspa
dc.subject.proposalRed convolucionalspa
dc.subject.proposalMétricas de desempeñospa
dc.subject.proposalPixelspa
dc.subject.proposalMPIeng
dc.subject.proposalSatellite imageeng
dc.subject.proposalTensor regressioneng
dc.subject.proposalConvolutional networkeng
dc.subject.proposalPerformance metricseng
dc.subject.proposalPixeleng
dc.subject.umlsModelos de redes neuralesspa
dc.subject.umlsNeural network simulationeng
dc.subject.umlsImágenes satelitalesspa
dc.subject.umlsSatellite imageryeng
dc.titleEstimación de índice de pobreza multidimensional (IPM) en Bogotá D.C. y algunas ciudades cercanas usando imágenes satelitalesspa
dc.title.translatedMultidimensional poverty index (MPI) estimation in Bogotá D.C. and some nearby cities using satellite imageryeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1012417487.2024.pdf
Tamaño:
6.94 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias-Estadística - Estimación de Índice de Pobreza Multidimensional (IPM)

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: