Nanobioconjugados con base en nanopartículas de sílice y/o fullerenol, Buforina II y la proteína OmpA, con potencial uso como vehículos de penetración celular

dc.contributor.advisorCruz Jiménez, Juan Carlos
dc.contributor.advisorDuarte Ruiz, Alvaro
dc.contributor.authorRavelo Nieto, Eduardo
dc.contributor.educationalvalidatorJavier Cifuentes
dc.contributor.financerUniversidad de los Andes
dc.contributor.researchgroupNuevos Materiales Nano y Supramolecularesspa
dc.contributor.researchgroupDepartamento de Ingeniería Biomédica - Universidad de los Andesspa
dc.date.accessioned2022-08-24T14:35:33Z
dc.date.available2022-08-24T14:35:33Z
dc.date.issued2022-05-05
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractDiferentes barreras biológicas son generalmente responsables de la limitada liberación de cargos a nivel celular, como estrategia terapéutica. Previamente, se desarrolló una nueva familia de nanobioconjugados con capacidad de penetración celular y de escape a la ruta endosomal, inmovilizando el péptido Buforina II (BUF-II) y la proteína OmpA en nanopartículas (NPs) de magnetita. Aquí, proponemos ampliar este enfoque a nanopartículas de sílice (SNPs) y fullerenol (F) como soportes nanoestructurados para la conjugación de estos potentes agentes de penetración celular, ya que la misma molécula conjugada a diferentes nanotransportadores puede exhibir diferentes interacciones con compartimentos subcelulares. Los nanobioconjugados obtenidos (OmpA-SNPs, BUF-II-PEG12-SNPs, OmpA-F y BUF-II-PEG12-F) se caracterizaron mediante técnicas como espectroscopia infrarroja (FT-IR), UV-vis, Dispersión Dinámica de Luz (DLS), Movilidad Electroforética, Microscopía Electrónica de Barrido (SEM), Microscopía Electrónica de Transmisión (TEM), Análisis termogravimétrico (TGA), Difracción de Rayos X (DRX), y Microscopía confocal para evaluar composición, tamaño, carga, morfología, y confirmar la conjugación de dichos agentes translocantes. Los nanobioconjugados mostraron alta capacidad de internalización en células Vero (ATCC® CCL-81) y THP-1 (ATCC® TIB-202), sin afectar la viabilidad celular, no mostraron efecto hemolítico significativo, así como baja tendencia a inducir agregación plaquetaria. Adicionalmente, mostraron diferente comportamiento en el tráfico intracelular y escape endosomal en estas dos líneas celulares, lo que una vez más demostró el potencial de estos materiales para abordar los desafíos de liberación citoplasmática de fármacos o el desarrollo de terapias para el tratamiento de enfermedades de depósito lisosomal. (Texto tomado de la fuente)spa
dc.description.abstractSeveral biological barriers are generally responsible for the limited delivery of cargoes at the cellular level, as a therapeutic strategy. Previously, a new family of nanobioconjugates capable of cell penetration and endosomal escape was developed by immobilizing the Buforin II (BUF-II) peptide and the OmpA protein on magnetite nanoparticles (NPs). Here, we propose to extend this approach to silica NPs (SNPs) and fullerenol (F) as nanostructured supports for the conjugation of these potent cell-penetrating agents, as the same molecule conjugated to different nanocarriers may exhibit different interactions with subcellular compartments. The obtained nanobioconjugates(OmpA-SNPs, BUF-II-PEG12-SNPs, OmpA-F, and BUF-II-PEG12-F) were characterized via Fourier transform infrared spectroscopy (FT-IR), UV-vis, Dynamic Light Scattering (DLS), Electrophoretic Mobility, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric analysis (TGA), X-ray diffraction (XRD) techniques, and confocal microscopy was conducted to evaluate size, charge, composition, morphology, and to confirm the conjugation of these translocating agents on the NPs. Nanobioconjugates showed high internalization capacity in Vero cells (ATCC® CCL-81) and THP-1 cells (ATCC® TIB-202), without affecting cell viability, showed no significant hemolytic effect, as well as low propensity to induce platelet aggregation. Additionally, nanobioconjugates showed different intracellular trafficking and endosomal escape behavior in these two cell lines, showing once again the potential of these materials to address the challenges of cytoplasmic drugs delivery or the development of therapeutics for the treatment of lysosomal storage diseases.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ciencias-Químicaspa
dc.description.researchareaBionanotecnología y Biomaterialesspa
dc.format.extent101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82059
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesHossen, S., Hossain, K., Basher, M. K., Mia, M. N. H. & Rahman, M. T. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies : A review. J. Adv. Res. 1, 1–74 (2018).spa
dc.relation.referencesGonçalves, M. C. Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules 23, 2021 (2018).spa
dc.relation.referencesMcNeil, S. E. Unique Benefits of Nanotechnology to Drug Delivery and Diagnostics. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 3–8 (2011). doi:10.1007/978-1-60327-198-1.spa
dc.relation.referencesYokoyama, T. Basic Properties and Measuring Methods of Nanoparticles. in Nanoparticle Technology Handbook (eds. Naito, M., Yokoyama, T., Hosokawa, K. & Nogi, K.) 3–48 (2018).spa
dc.relation.referencesMcNeil, S. E. Evaluating Nanomedicines: Obstacles and Advancements. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 3–16 (2018). doi:10.1007/978-1-4939-7352-1.spa
dc.relation.referencesBarua, S. & Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nanotoday 9, 223–243 (2014).spa
dc.relation.referencesDegors, I. M. S., Wang, C., Rehman, Z. U. & Zuhorn, I. S. Carriers Break Barriers in Drug Delivery : Endocytosis and Endosomal Escape of Gene Delivery Vectors Published as part of the Accounts of Chemical Research special issue “ Nanomedicine and Beyond ” . Acc. Chem. Res. 52, 1750–1760 (2019).spa
dc.relation.referencesKe, P. C., Lin, S., Parak, W. J., Davis, T. P. & Caruso, F. A Decade of the Protein Corona. ACS Nano 11, 11773–11776 (2017).spa
dc.relation.referencesMonopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).spa
dc.relation.referencesZhang, R., Qin, X., Kong, F., Chen, P. & Pan, G. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv. 26, 328–342 (2019).spa
dc.relation.referencesMosquera, J., García, I. & Liz-Marzán, L. M. Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Acc. Chem. Res. 51, 2305–2313 (2018).spa
dc.relation.referencesSelby, L. I., Cortez-Jugo, C. M., Such, G. K. & Johnston, A. P. R. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 9, (2017).spa
dc.relation.referencesParenti, G., Pignata, C., Vajro, P. & Salerno, M. New strategies for the treatment of lysosomal storage diseases. Int. J. Mol. Med. 31, 11–20 (2013).spa
dc.relation.referencesSun, A. Lysosomal storage disease overview. Ann. Transl. Med. 6, 476.-476. (2018).spa
dc.relation.referencesHillaireau, H. & Couvreur, P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66, 2873–2896 (2009).spa
dc.relation.referencesBehzadi, S. et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).spa
dc.relation.referencesStober, W. & Fink, A. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. collod interface Sci. 26, 62–69 (1968).spa
dc.relation.referencesShi, S., Chen, F. & Cai, W. Biomedical applications of functionalized hollow mesoporous silica nanoparticles: Focusing on molecular imaging. Nanomedicine 8, 2027–2039 (2013).spa
dc.relation.referencesSingh, P., Srivastava, S. & Singh, S. K. Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomater. Sci. Eng. 5, 4882–4898 (2019).spa
dc.relation.referencesHermanson, G. T. Microparticles and Nanoparticles. in Bioconjugate Techniques 549–587 (2013).spa
dc.relation.referencesKazemzadeh, H. & Mozafari, M. Fullerene-based delivery systems. Drug Discov. Today 24, 898–905 (2019).spa
dc.relation.referencesMi, P., Cabral, H. & Kataoka, K. Ligand-Installed Nanocarriers toward Precision Therapy. Adv. Mater. 32, 1–29 (2020).spa
dc.relation.referencesSmith, S. A., Selby, L. I., Johnston, A. P. R. & Such, G. K. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjugate Chemistry vol. 30 263–272 (2019).spa
dc.relation.referencesAhmad, A., Khan, J. M. & Haque, S. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 160, 61–75 (2019).spa
dc.relation.referencesChakraborty, S., Dhakshinamurthy, G. S. & Misra, S. K. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J. Biomed. Mater. Res. - Part A 105, 2906–2928 (2017).spa
dc.relation.referencesBiffi, S., Voltan, R., Bortot, B., Zauli, G. & Secchiero, P. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin. Drug Deliv. 16, 481–496 (2019).spa
dc.relation.referencesKanwal, U. et al. Advances in nano-delivery systems for doxorubicin: an updated insight. J. Drug Target. 26, 296–310 (2018).spa
dc.relation.referencesCuellar, M. et al. Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities. Int. J. Nanomedicine 13, 8087–8094 (2018).spa
dc.relation.referencesPerez, J. et al. Cell-Penetrating And Antibacterial BUF-II Nanobioconjugates: Enhanced Potency Via Immobilization On Polyetheramine-Modified Magnetite Nanoparticles. Int. J. Nanomedicine 14, 8483–8497 (2019).spa
dc.relation.referencesLópez-Barbosa, N. et al. Magnetite-OmpA nanobioconjugates as cell- penetrating vehicles with endosomal escape abilities. ACS Biomater. Sci. Eng. 6, 415–424 (2019).spa
dc.relation.referencesDuarte-Ruiz, Á., Echegoyen, L., Aya, A. & Gómez-Baquero, F. A new method to prepare an e,e,e trisadduct of C60 using a protection-deprotection sequence. J. Mex. Chem. Soc. 53, 169–173 (2009).spa
dc.relation.referencesDuarte-Ruiz, A., Wurst, K. & Kräutler, B. The orthogonal (e,e,e)-tris-adduct of 9,10-dimethylanthracene with C 60-fullerene: A hidden cornerstone of fullerene chemistry. Preliminary communication. Helv. Chim. Acta 91, 1401–1408 (2008).spa
dc.relation.referencesTorres Palacio, P., Cano Beníte, C. A. & Duarte Ruiz, Á. Self-assembly of a supramolecular square between [ni(Dppe)(tof)2] and 4,4′-bipyridine. Rev. Colomb. Quim. 42, 48–55 (2013).spa
dc.relation.referencesCano-Benítez, C. A., Metta-Magaña, A. J. & Duarte-Ruiz, Á. Crystal structure at 100 K of bis[1,2-bis(diphenylphosphanyl)ethane]nickel(II) bis(trifluoromethanesulfonate): A possible negative thermal expansion molecular material. Acta Crystallogr. Sect. E Crystallogr. Commun. 74, 1678–1681 (2018).spa
dc.relation.referencesDuarte-Ruiz, A., Iuele, H., Torres-Cortés, S., Meléndez, A. & Chaur, M. N. Physical and Inorganic Chemistry Synthesis and characterization of C60 and C70 acetylacetone monoadducts and study of their photochemical properties for potential application in solar cells Síntesis y caracterización de monoaductos de C60 y C70. Revista 50, 86–97 (2021).spa
dc.relation.referencesNeti, V. S. P. K. et al. High-yield, regiospecific bis-functionalization of C70 using a diels–alder reaction in molten anthracene. Chem. Commun. 50, 10584–10587 (2014).spa
dc.relation.referencesDuarte-Ruiz, Á. et al. Synthesis and structure of [Na4(DMSO)15][(I 3)3(I)]. Self-assembly of hexacoordinated sodium. Chem. Commun. 47, 7110–7112 (2011).spa
dc.relation.referencesYokoyama, T. Basic Properties and Measuring Methods of Nanoparticles. in Nanoparticle Technology Handbook 3–8 (2018).spa
dc.relation.referencesKamyshny, A. & Magdassi, S. Aqueous Dispersions of Metallic Nanoparticles. in Nanoscience 747–778 (2010).spa
dc.relation.referencesHosokawa, M., Nogi, K., Naito, M. & Yokoyama, T. Basic Properties And Measuring Methods Of Nanoparticles. in Nanoparticle Technology Handbook 5–9 (2007).spa
dc.relation.referencesHermanson, G. T. Silane Coupling Agents. in Bioconjugate Techniques 535–548 (2013).spa
dc.relation.referencesDeetz, J. D. et al. Reactive Molecular Dynamics Simulations of the Silanization of Silica Substrates by Methoxy- and Hydroxysilanes. Langmuir 1, 1–24 (2016).spa
dc.relation.referencesHermanson, G. T. Homobifunctional Crosslinkers. in Bioconjugate Techniques 275–298 (2013).spa
dc.relation.referencesHermanson, G. T. Zero-Length Crosslinkers. in Bioconjugate Techniques 259–274 (2013).spa
dc.relation.referencesVoet, D. & Voet, I. Lipids and Membranes. in Biochemistry 386–466 (2011).spa
dc.relation.referencesMayor, S., Parton, R. G. & Donaldson, J. G. Clathrin-independent pathways of endocytosis. Cold Spring Harb. Perspect. Biol. 6, (2014).spa
dc.relation.referencesPodinovskaia, M. & Spang, A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. in Endocytosis and Signaling 1–38 (2018). doi:https://doi.org/10.1007/978-3-319-96704-2.spa
dc.relation.referencesCupic, K. I., Rennick, J. J., Johnston, A. P. R. & Such, G. K. Controlling endosomal escape using nanoparticle composition : current progress and future perspectives. Nanomedicine 14, 215–223 (2019).spa
dc.relation.referencesHermanson, G. T. Introduction to Bioconjugation. in Bioconjugate Techniques 1–125 (2013).spa
dc.relation.referencesCamargo, M. & Groot, H. El secreto antimicrobiano de las histonas. Hipótesis, Apunt. científicos uniandinos 16, 14–16 (2014).spa
dc.relation.referencesPark, C. B., Kim, M. S. & Kim, S. C. A Novel Antimicrobial Peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun. 218, 408–413 (1996).spa
dc.relation.referencesPark, C. B., Yi, K., Matsuzaki, K., Kim, M. S. & Kim, S. C. Structure – activity analysis of buforin II , a histone H2A-derived antimicrobial peptide : The proline hinge is responsible for the cell-penetrating ability of buforin II. PNAS 97, 8245–8250 (2000).spa
dc.relation.referencesSmith, S. G. J., Mahon, V., Lambert, M. A. & Fagan, R. P. A molecular Swiss army knife : OmpA structure , function and expression. FEMS Microbiol Lett 273, 1–11 (2007).spa
dc.relation.referencesPautsch, A. & Schulz, G. E. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Biol. 5, 1013–1017 (1998).spa
dc.relation.referencesShukla, T., Upmanyu, N., Pandey, S. P. & Sudheesh, M. S. Site-specific drug delivery, targeting, and gene therapy. in Nanoarchitectonics in Biomedicine 473–505 (2019).spa
dc.relation.referencesKim, W. et al. A reliable approach for assessing size-dependent effects of silica nanoparticles on cellular internalization behavior and cytotoxic mechanisms. Int. J. Nanomedicine 14, 7375–7387 (2019).spa
dc.relation.referencesGoodarzi, S., Da Ros, T., Conde, J., Sefat, F. & Mozafari, M. Fullerene: biomedical engineers get to revisit an old friend. Mater. Today 20, 460–480 (2017).spa
dc.relation.referencesSemenov, K. N. et al. Fullerenols: Physicochemical properties and applications. Prog. Solid State Chem. 44, 59–74 (2016).spa
dc.relation.referencesChiang, L. Y., Wang, L. Y., Swirczewski, J. W., Soled, S. & Cameron, S. Efficient Synthesis of Polyhydroxylated Fullerene Derivatives via Hydrolysis of Polycyclosulfated Precursors. J. Org. Chem. 59, 3960–3968 (1994).spa
dc.relation.referencesLi, J. et al. C60 fullerol formation catalysed by quaternary ammonium hydroxides. J. Chem. Soc. Chem. Commun. 1784–1785 (1993) doi:10.1039/C39930001784.spa
dc.relation.referencesWang, S., He, P., Zhang, J. M., Jiang, H. & Zhu, S. Z. Novel and efficient synthesis of water-soluble [60]fullerenol by solvent-free reaction. Synth. Commun. 35, 1803–1808 (2005).spa
dc.relation.referencesGomez, S. & Duarte, A. Síntesis de fulleroles a partir de un derivado bromado de C60. Revista Colombiana de Quimica vol. 38 83–95 (2009).spa
dc.relation.referencesAfreen, S., Kokubo, K., Muthoosamy, K. & Manickam, S. Hydration or hydroxylation: Direct synthesis of fullerenol from pristine fullerene [C60] via acoustic cavitation in the presence of hydrogen peroxide. RSC Adv. 7, 31930–31939 (2017).spa
dc.relation.referencesKokubo, K., Shirakawa, S., Kobayashi, N., Aoshima, H. & Oshima, T. Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Res. 4, 204–215 (2011).spa
dc.relation.referencesKokubo, K., Matsubayashi, K., Tategaki, H., Takada, H. & Oshima, T. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2, 327–333 (2008).spa
dc.relation.referencesPlanque, M. R. R. De, Aghdaei, S., Roose, T. & Morgan, H. Electrophysiological Characterization of Membrane Disruption by Nanoparticles. ACS Nano 5, 3599–3606 (2011).spa
dc.relation.referencesChithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 6, 662–668 (2006).spa
dc.relation.referencesJiang, W. E. N., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).spa
dc.relation.referencesChaudhuri, A., Battaglia, G. & Golestanian, R. The effect of interactions on the cellular uptake of nanoparticles. Phys. Biol. 8, 1–9 (2011).spa
dc.relation.referencesSoenen, S. et al. Cytotoxic Effects of Gold Nanoparticles: A Multiparametric Study. ACS Nano 6, 5767–5783 (2012).spa
dc.relation.referencesEdrissi, M., Soleymani, M. & Adinehnia, M. Synthesis of Silica Nanoparticles by Ultrasound-Assisted Sol-Gel Method : Optimized by Taguchi Robust Design. Chem. Eng. Technol. 34, 1813–1819 (2011).spa
dc.relation.referencesKovač, T., Borišev, I., Crevar, B., Kenjerić, F. Č. & Ko, M. Fullerol C60(OH)24 nanoparticles modulate aflatoxin B 1 biosynthesis in Aspergillus flavus. Sci. Rep. 60, 1–8 (2018).spa
dc.relation.referencesKinnear, C., Moore, T. L., Rodriguez-lorenzo, L., Rothen-rutishauser, B. & Petri-fink, A. Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem. Rev. 117, 11476–11521 (2017).spa
dc.relation.referencesLi, Y. & Gu, N. Thermodynamics of Charged Nanoparticle Adsorption on Charge-Neutral Membranes : A Simulation Study. J. Phys. Chem. 114, 2749–2754 (2010).spa
dc.relation.referencesCho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the Role of Surface Charges in Cellular Adsorption versus Internalization by Selectively Removing Gold Nanoparticles on the Cell Surface with a I 2 / KI Etchant 2009. Nano Lett. 9, 1080–1084 (2009).spa
dc.relation.referencesMahmoudi, M. et al. Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol. Adv. 1, 1–14 (2014).spa
dc.relation.referencesBlanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–51 (2015).spa
dc.relation.referencesAdijanto, J. & Naash, M. I. Nanoparticle-based technologies for retinal gene therapy. Eur. J. Pharm. Biopharm. 1, 1–15 (2015).spa
dc.relation.referencesRüter, C., Buss, C., Scharnert, J., Heusipp, G. & Schmidt, M. A. A newly identified bacterial cell-penetrating peptide that reduces the transcription of pro-inflammatory cytokines. J. Cell Sci. 123, 2190–2198 (2010).spa
dc.relation.referencesAkishiba, M. et al. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat. Chem. 9, 751–761 (2017).spa
dc.relation.referencesSun, T. et al. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Rev. 53, 2–47 (2014).spa
dc.relation.referencesLin, G. et al. Non-viral gene therapy using multifunctional nanoparticles : Status, challenges, and opportunities. Coord. Chem. Rev. J. 374, 133–152 (2018).spa
dc.relation.referencesKim, I., Joachim, E., Choi, H. & Kevin, K. K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine Nanotechnology, Biol. Med. 1–10 (2015) doi:10.1016/j.nano.2015.03.004.spa
dc.relation.referencesSchuh, R. S., Baldo, G. & Teixeira, H. F. Nanotechnology applied to treatment of mucopolysaccharidoses. Expert Opin. Drug Deliv. 13, 1709–1718 (2016).spa
dc.relation.referencesAguilera-Segura, S. M. et al. Advances in Computational Biology Proceedings of the 2nd Colombian Congress on Computational Biology and Bioinformatics (CCBCOL). in Escherichia coli´s OmpA as Biosurfactant for Cosmetic Industry: Stability Analysis and Experimental Validation Based on Molecular Simulations 265–272 (2014). doi:10.1007/978-3-319-01568-2.spa
dc.relation.referencesShafqat, S. S. et al. Development of amino-functionalized silica nanoparticles for efficient and rapid removal of COD from pre-treated palm oil effluent. J. Mater. Res. Technol. 8, 385–395 (2019).spa
dc.relation.referencesHermanson, G. T. Immobilization of Ligands on Chromatography Supports. in Bioconjugate Techniques 734 (2013).spa
dc.relation.referencesHermanson, G. T. PEGylation and Synthetic Polymer Modification. in Bioconjugate Techniques 786–838 (2013).spa
dc.relation.referencesLevi-Polyachenko, N. H., Carroll, D. L. & Stewart, J. H. Applications of Carbon-Based Nanomaterials for Drug Delivery in Oncology. in Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes (eds. Cataldo, F. & Milani, P.) 225 (2008).spa
dc.relation.referencesPautsch, A. & Schulz, G. E. High-resolution structure of the OmpA membrane domain. J. Mol. Biol. 298, 273–282 (2000).spa
dc.relation.referencesRavelo-Nieto, E., Duarte-Ruiz, A., Reyes, L. H. & Cruz, J. C. Synthesis and Characterization of a Fullerenol Derivative for Potential Biological Applications. Mater. Proc. 4, 15 (2020).spa
dc.relation.referencesDe Santiago, H. A., Gupta, S. K. & Mao, Y. On high purity fullerenol obtained by combined dialysis and freeze-drying method with its morphostructural transition and photoluminescence. Sep. Purif. Technol. 210, 927–934 (2019).spa
dc.relation.referencesPotter, T. M., Neun, B. W., Ilinskaya, A. N. & Obrovolskaia, M. A. Detection of Bacterial Contamination in Nanoparticle Formulations by Agar Plate Test. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 19–22 (2018). doi:10.1007/978-1-4939-7352-1.spa
dc.relation.referencesMuñoz-Camargo, C. et al. Unveiling the multifaceted mechanisms of antibacterial activity of buforin II and frenatin 2.3S peptides from skin micro-organs of the orinoco lime treefrog (Sphaenorhynchus lacteus). Int. J. Mol. Sci. 19, (2018).spa
dc.relation.referencesPotter, T. M. et al. In Vitro Assessment of Nanoparticle Effects on Blood Coagulation. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 103–124 (2018). doi:10.1007/978-1-4939-7352-1.spa
dc.relation.referencesLopez-barbosa, N. et al. Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer ’ s. Drug Deliv. 27, 864–875 (2020).spa
dc.relation.referencesMeerloo, J. van., Kaspers, G. J. L. & Jacqueline, C. Cell Sensitivity Assays: The MTT Assay. in Cancer Cell Culture: Methods and Protocols (ed. Cree, I. A.) 237–245 (Humana Press, 2011). doi:10.1007/978-1-61779-080-5.spa
dc.relation.referencesBalakrishnan, V., Ab Wab, H. A., Abdul Razak, K. & Shamsuddin, S. In vitro evaluation of cytotoxicity of colloidal amorphous silica nanoparticles designed for drug delivery on human cell lines. J. Nanomater. 2013, (2013).spa
dc.relation.referencesRahman, I. A., Vejayakumaran, P., Sipaut, C. S., Ismail, J. & Chee, C. K. Size-dependent physicochemical and optical properties of silica nanoparticles. Mater. Chem. Phys. 114, 328–332 (2009).spa
dc.relation.referencesAzarshin, S., Moghadasi, J. & A Aboosadi, Z. Surface functionalization of silica nanoparticles to improve the performance of water flooding in oil wet reservoirs. Energy Explor. Exploit. 35, 685–697 (2017).spa
dc.relation.referencesHolder, C. F. & Schaak, R. E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 13, 7359–7365 (2019).spa
dc.relation.referencesCullity, B. . & Stock, S. . Diffraction III: Real Samples. in Elements of X-ray diffraction 171–189 (2014).spa
dc.relation.referencesPretsch, E., Bühlmann, P. & Badertscher, M. Structure determination of organic compounds: Tables of spectral data. Structure Determination of Organic Compounds: Tables of Spectral Data (2009). doi:10.1007/978-3-540-93810-1.spa
dc.relation.referencesTatulian, S. A. Structural Characterization of Membrane Proteins and Peptides by FTIR and ATR-FTIR Spectroscopy. in Lipid-Protein Interactions: Methods and Protocols, Methods in Molecular Biology 177–2018 (2013). doi:10.1007/978-1-62703-275-9_9.spa
dc.relation.referencesGuleria, A. et al. PEGylated Silicon oxide nanocomposites with blue photoluminescence prepared by a rapid electron-beam irradiation approach: applications in IFE-based Cr (VI) sensing and cell-imaging. Colloids Surfaces A Physicochem. Eng. Asp. 640, 128483 (2022).spa
dc.relation.referencesAlizadeh, L. et al. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J. Nanoparticle Res. 22, (2020).spa
dc.relation.referencesRangel-Muñoz, N., González-Barrios, A. F., Pradilla, D., Osma, J. F. & Cruz, J. C. Novel bionanocompounds: Outer membrane protein a and lacasse co-immobilized on magnetite nanoparticles for produced water treatment. Nanomaterials 10, 1–22 (2020).spa
dc.relation.referencesLin, Z., Wu, Y. & Bi, Y. Rapid synthesis of SiO2 by ultrasonic-assisted Stober method as controlled and pH-sensitive drug delivery. J Nanopart Res 20, 304 (2018).spa
dc.relation.referencesRen, G., Su, H. & Wang, S. The combined method to synthesis silica nanoparticle by Stöber process. J. Sol-Gel Sci. Technol. (2020) doi:10.1007/s10971-020-05322-y.spa
dc.relation.referencesLi, L. et al. Unexpected Size Effect: The Interplay between Different- Sized Nanoparticles in Their Cellular Uptake. Small 15, 1–8 (2019).spa
dc.relation.referencesChenthamara, D. et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23, 1–29 (2019).spa
dc.relation.referencesPrice, G. & Patel., D. A. Drug Bioavailability. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK557852/ (2020).spa
dc.relation.referencesShnoudeh, A. J. et al. Synthesis, Characterization, and Applications of Metal Nanoparticles. in Biomaterials and Bionanotechnology (ed. Inc, E.) 527–611 (2019). doi:https://doi.org/10.1016/B978-0-12-814427-5.00015-9.spa
dc.relation.referencesKunc, F. et al. Quantification of surface functional groups on silica nanoparticles: Comparison of thermogravimetric analysis and quantitative NMR. Analyst 144, 5589–5599 (2019).spa
dc.relation.referencesAlan, B. O., Barisik, M. & Ozcelik, H. G. Roughness Effects on the Surface Charge Properties of Silica Nanoparticles. J. Phys. Chem. C 124, 7274–7286 (2020).spa
dc.relation.referencesNiu, Y. et al. Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. J. Mater. Chem. B 3, (2015).spa
dc.relation.referencesMartínez Bonilla, C. A., Torres Flóres, M.-H., Molina Velasco, D. R. & Kouznetsov, V. V. Surface characterization of thiol ligands on CdTe quantum dots analysis by 1H NMR and DOSY. New J. Chem. 43, 8452 (2019).spa
dc.relation.referencesPotter, T. M., Neun, B. W., Ilinskaya, A. N. & Marina A, D. Detection of Bacterial Contamination in Nanoparticle Formulations by Agar Plate Test. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 19–22 (2018). doi:10.1007/978-1-4939-7352-1.spa
dc.relation.referencesSoares, S., Sousa, J., Pais, A. & Vitorino, C. Nanomedicine: Principles, properties, and regulatory issues. Front. Chem. 6, 1–15 (2018).spa
dc.relation.referencesInternational Organization for Standardization. ISO10993-5:2009(E) Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. 1–34 (2009).spa
dc.relation.referencesNeun, B. W., Ilinskaya, A. N. & Dobrovolskaia, M. A. Updated Method for In Vitro Analysis of Nanoparticle Hemolytic Properties. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 91–102 (2018). doi:10.1007/978-1-4939-7352.spa
dc.relation.referencesDunn, K. W., Kamocka, M. M. & McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. - Cell Physiol. 300, 723–742 (2011).spa
dc.relation.referencesAdler, J. & Parmryd, I. Quantifying colocalization by correlation: The pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytom. Part A 77, 733–742 (2010).spa
dc.relation.referencesAjie, H. et al. Characterization of the soluble all-carbon molecules C60 and C70. J. Phys. Chem. 94, 8630–8633 (1990).spa
dc.relation.referencesW. Krätschmer, Lowell D. Lamb, K. F. & D. R. H. Solid C60: A new form of carbon. Nature 347, 354–358 (1990).spa
dc.relation.referencesBrant, J. A., Labille, J., Robichaud, C. O. & Wiesner, M. Fullerol cluster formation in aqueous solutions: Implications for environmental release. J. Colloid Interface Sci. 314, 281–288 (2007).spa
dc.relation.referencesGoswami, T. H., Singh, R., Alam, S. & Mathur, G. N. Thermal analysis: A unique method to estimate the number of substituents in fullerene derivatives. Thermochim. Acta 419, 97–104 (2004).spa
dc.relation.referencesHermanson, G. T. Antibody Modification and Conjugation. in Bioconjugate Techniques 879 (2013).spa
dc.relation.referencesPodolsky, N. E. et al. Physico-chemical properties of C 60 (OH) 22–24 water solutions: Density, viscosity, refraction index, isobaric heat capacity and antioxidant activity. J. Mol. Liq. 278, 342–355 (2019).spa
dc.relation.referencesZhuravlev, L. . Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 3, 316–318 (1987).spa
dc.relation.referencesBabij, N. R. et al. NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry. Org. Process Res. Dev. 20, 661–667 (2016).spa
dc.relation.referencesKunc, F. et al. Quantification and Stability Determination of Surface Amine Groups on Silica Nanoparticles Using Solution NMR. Anal. Chem. 90, 13322–13330 (2018).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.proposalNanobioconjugadospa
dc.subject.proposalBuforina IIspa
dc.subject.proposalProteína OmpAspa
dc.subject.proposalNanopartículas de sílicespa
dc.subject.proposalFullerenolspa
dc.subject.proposalInternalización celularspa
dc.subject.proposalEscape endosomalspa
dc.subject.proposalnanobioconjugateseng
dc.subject.proposalSilica nanoparticleseng
dc.subject.proposalCellular uptakeeng
dc.subject.proposalEndosomal escapeeng
dc.titleNanobioconjugados con base en nanopartículas de sílice y/o fullerenol, Buforina II y la proteína OmpA, con potencial uso como vehículos de penetración celularspa
dc.title.translatedNanobioconjugates based on silica nanoparticles and/or fullerenol, Buforin II and the OmpA protein, with potential use as cell penetration vehicleseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameUniversidad de los Andesspa
oaire.fundernameMinciencias grant 689-2018spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
91506147.2022.pdf
Tamaño:
5.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: