Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológica
dc.contributor.advisor | Luengas Caicedo, Pilar Ester | |
dc.contributor.advisor | Garavito Cárdenas, Giovanny | |
dc.contributor.author | Hernández Carvajal, Jorge Enrique | |
dc.contributor.cvlac | Hernández Carvajal Jorge Enrique [93397208] | spa |
dc.contributor.googlescholar | Hernandez Carvajal, Jorge enrique | spa |
dc.contributor.orcid | Hernández Carvajal, Jorge Enrique [0000-0002-5454-8069] | spa |
dc.contributor.researchgate | Hernandez Carvajal, Jorge enrique | spa |
dc.contributor.researchgroup | Tecnología de productos naturales (TECPRONA) | spa |
dc.contributor.researchgroup | Farmacología de la Medicina Tradicional y Popular (FaMeTra) | spa |
dc.contributor.scopus | Hernández Carvajal Jorge Enrique [55941002800] | spa |
dc.date.accessioned | 2023-08-28T14:38:50Z | |
dc.date.available | 2023-08-28T14:38:50Z | |
dc.date.issued | 2022-10-10 | |
dc.description | ilustraciones, diagramas, fotografías a color | spa |
dc.description.abstract | Utilizando el criterio etnofarmacológico se preseleccionaron cinco plantas con reportes de actividad antimalárica: Cecropia metensis Cuatrec, Cecropia membranacea Trécul, Verbena littoralis Kunth, Ambelania duckey Mark y Curarea toxicofera Wedd Barneby & Krukoff. El material vegetal fue colectado en diferentes departamentos de Colombia, acondicionado y sometidos a extracción etanólica por percolación exhaustiva. En una primera etapa los extractos etanólicos de las cinco plantas preseleccionadas se evaluaron in vitro, frente a Plasmodium falciparum cepa FCR-3 (cloroquina resistente). El extracto etanólico de C. toxicofera presentó la mejor actividad antiplasmodial (CI50=7.6 ± 3.9 µg/mL) y se detectaron alcaloides. El resultado de actividad antiplasmodial para los extractos etanólicos de las otras especies evaluadas fue de inactivo. Posteriormente para el extracto etanólico de C. toxicofera se realizó un fraccionamiento ácido-base. Los resultados de la actividad antimalárica in vivo frente Plasmodium berghei, a una dosis de 400 mg/Kg, mostraron para EtOHCt un porcentaje de parasitemia de 38.0 ± 3, del mismo orden que las fracciones alcaloides: FrDCM1 (31 ± 8), FrDCM2 (34 ± 5) y (FrAcB) (39 ± 3). Los porcentajes de parasitemia para cloroquina y el vehículo fueron de 20 ± 7 y 42 ± 3 respectivamente. La similitud en la actividad antimalárica in vivo de los tratamientos puede estar asociada con la semejanza química observada en los perfiles cromatográficos de los alcaloides. A partir del ensayo de toxicidad aguda se establecieron las siguientes dosis letales 50: EtOHCt (DL50=1000 mg/Kg), FrDCM1 (DL50=5000 mg/Kg) y FrDCM2 (DL50=400 mg/Kg). La fracción alcaloidal (FrDCM2) se sometió a cromatografía en columna empleando silica gel hasta obtener un compuesto puro, para el cual se realizó el estudio estructural mediante cromatografía líquida ultraeficiente con detector de arreglo diodos (CLUE-DAD), cromatografía líquida ultraeficiente con detector de arreglo diodos acoplada a espectrometría de masas (CLUE-DAD-EM), 1H-RMN y los experimentos bidimensionales COSY y HSQC. A partir de estos resultados se estableció que el compuesto aislado era isochondodendrina. Las CI50 de las muestras evaluadas por el método LDH frente a P. falciparum cepa W2 (resistente a cloroquina) fueron: EtOHCt (5.25 ± 1.53 µg/mL), FrDCM1 (4.04 ± 0.83 µg/mL) y FrDCM2 (6.28 ± 0.66 µg/mL). Todas las muestras presentaron actividad antiplasmodial, clasificada en rango activo (CI50 = 1 a 15 µg/mL). Las fracciones y el compuesto identificado como isochondodendrina (A1) se clasificaron como moderadamente citotóxicos ya que sus valores de CC50 fueron menores que 50 µg/mL. Estos resultados mostrarón que las fracciones de alcaloides de C. toxicofera presentaron actividad antimalárica que puede estar asociada con los alcaloides bisbenzilisoquinolínicos (BBIQS) como el alcaloide isochondodendrina, una sustancia aislada en esta investigación. Las fracciones obtenidas de C. toxicofera pueden convertirse en una alternativa para el tratamiento de la malaria. (Texto tomado de la fuente) | |
dc.description.abstract | Using ethnopharmacological criteria, five plants with reports of antimalarial activity were preselected: Cecropia metensis Cuatrec., Cecropia membranacea Trécul., Verbena littoralis Kunth., Ambelania duckey Mark, and Curarea toxicofera Wedd Barneby & Krukoff. The plant material was collected in different departments of Colombia, conditioned and subjected to ethanolic extraction by exhaustive percolation. In a first stage, the ethanolic extracts of the five preselected plants were evaluated in vitro, against Plasmodium falciparum strain FCR-3 (resistant chloroquine), the ethanolic extract of C. toxicofera presented the best antiplasmodial activity (IC50=7.6 ± 3.9 µg/mL) and alkaloids are detected. The result of antiplasmodial activity for the ethanolic extracts of the other evaluated species was inactive. Subsequently, acid-base fractionation was performed. The results of the in vivo antimalarial activity against Plasmodium berghei showed a percentage of parasitemia of 38.0 ± 3 for EtOHCt, in the same order as the alkaloid fractions: FrDCM1 (31 ± 8), FrDCM2 (34 ± 5) and (FrAcB) (39 ±3). The percentages of parasitemia for chloroquine and the vehicle were 20 ± 7 and 42 ± 3, respectively. The similarity in the in vivo antimalarial activity of the treatments may be associated with the chemical similarity observed in the chromatographic profiles of the alkaloids. From the acute toxicity test, the following lethal doses 50 were established: EtOHCt (LD50=1000 mg/Kg), FrDCM1 (LD50=5000 mg/Kg) and FrDCM2 (LD50=400 mg/Kg). The alkaloidal fraction (FrDCM2) was subjected to column chromatography using silica gel until a pure compound was obtained, for which the structural study was carried out using ultra-efficient liquid chromatography with diode array detector (CLUE-DAD), ultra-efficient liquid chromatography with diode array-mass spectrometry. (CLUE-DAD-MS), 1H-NMR and the bidimensional COSY and HSQC experiments. From these results it was established that the isolated compound was isochondodendrine. The IC50 of the samples evaluated by the LDH method against P. falciparum strain W2 (chloroquine resistant) were: EtOHCt (5.25 ± 1.53 µg/mL), FrDCM1 (4.04 ± 0.83 µg/mL) and FrDCM2 (6.28 ± 0.66 µg /mL). All samples presented antiplasmodial activity, classified in active range (IC50 = 1 to 15 µg/mL). The fractions and the compound identified as isochondodendrin (A1) were classified as moderately cytotoxic since their CC50 values were less than 50 µg/mL. These results showed that the alkaloid fractions of C. toxicofera presented antimalarial activity that may be associated with bisbenzylisoquinoline alkaloids (BBIQS) such as the isochondodendrine alkaloid, a substance isolated in this investigation. The fractions obtained from C. toxicofera can become an alternative for the treatment of malaria. | |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias Farmacéuticas | spa |
dc.description.researcharea | Farmacognosia y Fitoquímica | spa |
dc.format.extent | 214 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84602 | |
dc.publisher | Universidad Nacional de Colombia Sede Bogotá D.C | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias Farmacéuticas | spa |
dc.relation.references | Adams, M., Alther, W., Kessler, M., Kluge, M., & Hamburger, M. (2011). Malaria in the renaissance: Remedies from European herbals from the 16th and 17th century. Journal of Ethnopharmacology, 133(2), 278-288. https://doi.org/10.1016/j.jep.2010.10.060 | spa |
dc.relation.references | Affum, A. O., Shiloh, D. O., & Adomako, D. (2013). Monitoring of arsenic levels in some ready-to-use anti-malaria herbal products from drug sales outlets in the Madina area of Accra, Ghana. Food and Chemical Toxicology, 56, 131-135. https://doi.org/10.1016/j.fct.2013.01.049 | spa |
dc.relation.references | Agência Nacional de Vigilância Sanitária (Brazil) & Fundação Oswaldo Cruz. (2010). Farmacopeia brasileira. Agência Nacional de Vigilância Sanitária : Fundação Oswaldo Cruz. https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira/arquivos/8031json-file-1 | spa |
dc.relation.references | Aguiar, A. C. C., Rocha, E. M. M. da, Souza, N. B. de, França, T. C. C., & Krettli, A. U. (2012). New approaches in antimalarial drug discovery and development: A review. Memorias Do Instituto Oswaldo Cruz, 107(7), 831-845. https://doi.org/10.1590/s0074-02762012000700001 | spa |
dc.relation.references | Ahmad, S. S., Rahi, M., Ranjan, V., & Sharma, A. (2021). Mefloquine as a prophylaxis for malaria needs to be revisited. International Journal for Parasitology: Drugs and Drug Resistance, 17, 23-26. https://doi.org/10.1016/j.ijpddr.2021.06.003 | spa |
dc.relation.references | Andrade-Cetto, A., & Heinrich, M. (2005). Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology, 99(3), 325-348. https://doi.org/10.1016/j.jep.2005.04.019 | spa |
dc.relation.references | Andrade-Cetto, A., & Vázquez, R. C. (2010). Gluconeogenesis inhibition and phytochemical composition of two Cecropia species. Journal of Ethnopharmacology, 130(1), 93-97. https://doi.org/10.1016/j.jep.2010.04.016 | spa |
dc.relation.references | Arboles ornamentales. (2021). Arboles ornamentales. https://www.arbolesornamentales.es/Cecropiaceae.htm | spa |
dc.relation.references | Arias Marciales, M. H., Rodríguez Novoa, Y. V., & Garavito Cárdenas, G. (2016). Adaptación y optimización de un método de lectura por fluorometría en el modelo farmacológico in vitro de cultivo de Plasmodium falciparum. Revista Colombiana de Ciencias Químico - Farmacéuticas, 45(1), 127-146. https://doi.org/10.15446/rcciquifa.v45n1.58024 | spa |
dc.relation.references | Ayyad, S.-E. N., Basaif, S. A., Al-Saggaf, A. T., & Alarif, W. M. (2012). Vincamine and 14-epi-vincamine indole alkaloids from Ambelania occidentalis. Journal of Saudi Chemical Society, 16(4), 419-422. https://doi.org/10.1016/j.jscs.2011.02.008 | spa |
dc.relation.references | Baldas, J., Bick, I. R., Ibuka, T., Kapil, R. S., & Porter, Q. N. (1972). Mass spectrometry of bisbenzylisoquinoline alkaloids. 3. Alkaloids derived from coclaurine units joined head-to-tail. Journal of the Chemical Society. Perkin Transactions 1, 4, 599-601. https://doi.org/10.1039/p19720000599 | spa |
dc.relation.references | Bannister, L., & Mitchell, G. (2003). The ins, outs and roundabouts of malaria. Trends in Parasitology, 19(5), 209-213. https://doi.org/10.1016/S1471-4922(03)00086-2 | spa |
dc.relation.references | Berregi, I., Santos, J. I., Campo, G. del, Miranda, J. I., & Aizpurua, J. M. (2003). Quantitation determination of chlorogenic acid in cider apple juices by 1H NMR spectrometry. Analytica Chimica Acta, 486(2), 269-274. https://doi.org/10.1016/S0003-2670(03)00496-3 | spa |
dc.relation.references | Bijauliya, R. K., & Alok, S. (2017). A comprehensive review on standardization of herbal drugs. International journal of pharmaceutical sciences and research. https://ijpsr.com/bft-article/a-comprehensive-review-on-standardization-of-herbal-drugs/ | spa |
dc.relation.references | Botsaris, A. S. (2007). Plants used traditionally to treat malaria in Brazil: The archives of Flora Medicinal. Journal of Ethnobiology and Ethnomedicine, 3, 18. https://doi.org/10.1186/1746-4269-3-18 | spa |
dc.relation.references | Brandão, M. G. L., Zanetti, N. N. S., Oliveira, P., Grael, C. F. F., Santos, A. C. P., & Monte-Mór, R. L. M. (2008). Brazilian medicinal plants described by 19th century European naturalists and in the Official Pharmacopoeia. Journal of Ethnopharmacology, 120(2), 141-148. https://doi.org/10.1016/j.jep.2008.08.004 | spa |
dc.relation.references | Busse, W. (2000). The significance of quality for efficacy and safety of herbal medicinal products. Drug Information Journal, 34(1), 15-23. Scopus. https://doi.org/10.1177/009286150003400102 | spa |
dc.relation.references | Cadena-González, A. L., Sørensen, M., & Theilade, I. (2013). Use and evaluation of native and introduced medicinal plant species in Campo Hermoso and Zetaquira, Boyacá, Colombia. Journal of Ethnobiology and Ethnomedicine, 9, 23. https://doi.org/10.1186/1746-4269-9-23 | spa |
dc.relation.references | Calvo, M. I. (2006). Anti-inflammatory and analgesic activity of the topical preparation of Verbena officinalis L. Journal of Ethnopharmacology, 107(3), 380-382. https://doi.org/10.1016/j.jep.2006.03.037 | spa |
dc.relation.references | Cañigueral, S. (2002). La Fitoterapia: ¿una terapéutica para el tercer milenio? https://www.researchgate.net/publication/228863288_La_Fitoterapia_una_terapeutica_para_el_tercer_milenio | spa |
dc.relation.references | Cárdenas Cuadros, P. A. (2011). Evaluación de la actividad antimalárica de preparaciones tradicionales obtenidas de dos especies promisorias usadas por una comunidad en zona endémica y profundización en el estudio de su actividad farmacológica. https://repositorio.unal.edu.co/handle/unal/7721 | spa |
dc.relation.references | Casanova, E., García-Mina, J. M., & Calvo, M. I. (2008). Antioxidant and Antifungal Activity of Verbena officinalis L. Leaves. Plant Foods for Human Nutrition, 63(3), 93-97. https://doi.org/10.1007/s11130-008-0073-0 | spa |
dc.relation.references | Castro, L. S., Perazzo, F. F., & Maistro, E. L. (2009). Genotoxicity testing of Ambelania occidentalis (Apocynaceae) leaf extract in vivo. Genetics and Molecular Research: GMR, 8(2), 440-447. https://doi.org/10.4238/vol8-2gmr588 | spa |
dc.relation.references | Castro-Gamboa, I., & Castro, O. (2004). Iridoids from the aerial parts of Verbena littoralis (Verbenaceae). Phytochemistry, 65(16), 2369-2372. https://doi.org/10.1016/j.phytochem.2004.07.008 | spa |
dc.relation.references | Cava, M. P., Kunitomo, J., & DaRocha, A. I. (1969). The alkaloids of Chondodendron toxicoferum. Phytochemistry, 8(12), 2341-2343. https://doi.org/10.1016/S0031-9422(00)88152-2 | spa |
dc.relation.references | Céline, V., Adriana, P., Eric, D., Joaquina, A., Yannick, E., Augusto, L. F., Rosario, R., Dionicia, G., Michel, S., Denis, C., & Geneviève, B. (2009). Medicinal plants from the Yanesha (Peru): Evaluation of the leishmanicidal and antimalarial activity of selected extracts. Journal of Ethnopharmacology, 123(3), 413-422. https://doi.org/10.1016/j.jep.2009.03.041 | spa |
dc.relation.references | Chan, E. W. C., Wong, S. K., & Chan, H. T. (2016). Apocynaceae species with antiproliferative and/or antiplasmodial properties: A review of ten genera. Journal of Integrative Medicine, 14(4), 269-284. https://doi.org/10.1016/S2095-4964(16)60261-3 | spa |
dc.relation.references | Chassaigne, J. A. (2001). Malaria y fármacos antimaláricos. Revista de la Sociedad Venezolana de Microbiología, 21(2), 85-88. | spa |
dc.relation.references | Consolini, A. E., & Migliori, G. N. (2005). Cardiovascular effects of the South American medicinal plant Cecropia pachystachya (ambay) on rats. Journal of Ethnopharmacology, 96(3), 417-422. https://doi.org/10.1016/j.jep.2004.09.030 | spa |
dc.relation.references | Consolini, A. E., Ragone, M. I., Migliori, G. N., Conforti, P., & Volonté, M. G. (2006). Cardiotonic and sedative effects of Cecropia pachystachya Mart. (Ambay) on isolated rat hearts and conscious mice. Journal of Ethnopharmacology, 106(1), 90-96. https://doi.org/10.1016/j.jep.2005.12.006 | spa |
dc.relation.references | CorpoAmazonia. (2022, junio 10). Clima. https://www.corpoamazonia.gov.co/region/Jur_Clima.htm | spa |
dc.relation.references | Costa, G. M., Schenkel, E. P., & Reginatto, F. H. (2011). Chemical and Pharmacological Aspects of the Genus Cecropia. Natural Product Communications, 6(6), 1934578X1100600637. https://doi.org/10.1177/1934578X1100600637 | spa |
dc.relation.references | Daga, M. A., Ayala, T. S., & Menolli, R. A. (2020). A review of the anti-inflammatory and antimicrobial activities of the components of the Cecropia genus. Asian Journal of Pharmaceutical and Clinical Research, 13-20. https://doi.org/10.22159/ajpcr.2020.v13i8.38031 | spa |
dc.relation.references | Dantas, B. B., Faheina-Martins, G. V., Coulidiati, T. H., Bomfim, C. C. B., da Silva Dias, C., Barbosa-Filho, J. M., & Araújo, D. A. M. (2015). Effects of curine in HL-60 leukemic cells: Cell cycle arrest and apoptosis induction. Journal of Natural Medicines, 69(2), 218-223. https://doi.org/10.1007/s11418-014-0881-5 | spa |
dc.relation.references | De Lima, R., Guex, C. G., da Silva, A. R. H., Lhamas, C. L., Dos Santos Moreira, K. L., Casoti, R., Dornelles, R. C., da Rocha, M. I. U. M., da Veiga, M. L., de Freitas Bauermann, L., & Manfron, M. P. (2018). Acute and subacute toxicity and chemical constituents of the hydroethanolic extract of Verbena litoralis Kunth. Journal of Ethnopharmacology, 224, 76-84. https://doi.org/10.1016/j.jep.2018.05.012 | spa |
dc.relation.references | De Maria, C. A. B., & Moreira, R. F. A. (2004). Métodos para análisis de ácido clorogênico. Química Nova, 27(4), 586-592. https://doi.org/10.1590/S0100-40422004000400013 | spa |
dc.relation.references | De Paula, R. C. (2014). Atividade antimalárica de aspidosperma subincanum mart. biomonitorada por testes in vitro contra Plasmodium falciparum, in vivo contra P. berghei e efeito da uleína no retículo endoplasmático de P. falciparum. Universidade Federal de Minas Gerais. https://www.researchgate.net/profile/Alaide_De_Oliveira3/publication/279911567_Aspidosperma_species_Apocynaceae_as_sources_of_antimalarials_from_the_in_vitro_antiplasmodial_activity_of_extracts_to_preclinical_toxicologica. | spa |
dc.relation.references | De Pilla Varotti, F., Botelho, A. C. C., Andrade, A. A., de Paula, R. C., Fagundes, E. M. S., Valverde, A., Mayer, L. M. U., Mendonça, J. S., de Souza, M. V. N., Boechat, N., & Krettli, A. U. (2008). Synthesis, antimalarial activity, and intracellular targets of MEFAS, a new hybrid compound derived from mefloquine and artesunate. Antimicrobial Agents and Chemotherapy, 52(11), 3868-3874. https://doi.org/10.1128/AAC.00510-08 | spa |
dc.relation.references | Deepak, M., & Handa, S. S. (1998). 3α,24-dihydroxy-urs-12-en-28-oic acid from Verbena officinalis fn1fn1RRL communication No. 2251. Phytochemistry, 49(1), 269-271. https://doi.org/10.1016/S0031-9422(97)01004-2 | spa |
dc.relation.references | Deharo, E., Gautret, P., Muñoz, V., & Sauvain, M. (2000). Técnicas de laboratorio para la selección de sustancias antimalaricas. En CYTED – IRD (p. 24-80). La Paz, Bolivia | spa |
dc.relation.references | De-La-Cruz Chacón, I., González-Esquinca, A. R., & Riley-Saldaña, C. A. (2012). Biosíntesis de alcaloides bencilisoquinolínicos. Universitas Scientiarum, 17(2), 189-202. | spa |
dc.relation.references | Dolabela, M. F., Póvoa, M. M., Brandão, G. C., Rocha, F. D., Soares, L. F., de Paula, R. C., & de Oliveira, A. B. (2015). Aspidosperma species as sources of anti-malarials: Uleine is the major anti-malarial indole alkaloid from Aspidosperma parvifolium (Apocynaceae). Malaria Journal, 13 Suppl 1, 498. https://doi.org/10.1186/s12936-015-0997-4 | spa |
dc.relation.references | Douglas, J. A., Follett, J. M., Parmenter, G. A., Sansom, C. E., Perry, N. B., & Littler, R. A. (2010). Seasonal variation of biomass and bioactive alkaloid content of goldenseal, Hydrastis canadensis. Fitoterapia, 81(7), 925-928. https://doi.org/10.1016/j.fitote.2010.06.006 | spa |
dc.relation.references | Dutra, R. C., Campos, M. M., Santos, A. R. S., & Calixto, J. B. (2016). Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacological Research, 112, 4-29. https://doi.org/10.1016/j.phrs.2016.01.021 | spa |
dc.relation.references | EMA. (2018, septiembre 17). Markers used for quantitative and qualitative analysis of herbal medicinal products traditional [Text]. European Medicines Agency. https://www.ema.europa.eu/en/markers-used-quantitative-qualitative-analysis-herbal-medicinal-products-traditional-herbal | spa |
dc.relation.references | Ezenyi, I. C., & Salawu, O. A. (2016). Approaches, Challenges and Prospects of Antimalarial Drug Discovery from Plant Sources. Current Topics in Malaria. https://doi.org/10.5772/65658 | spa |
dc.relation.references | Fuloria, N. K., & Fuloria, S. (2013). Structural Elucidation of Small Organic Molecules by 1D, 2D and Multi Dimensional-Solution NMR Spectroscopy. Journal of Analytical & Bioanalytical Techniques, s11. https://doi.org/10.4172/2155-9872.S11-001 | spa |
dc.relation.references | Galindo, A. S. (1983). Análisis fitoquímico preliminar: Metodología y su aplicación en la evaluación de 40 plantas de la familia compositae. Universidad Nacional de Colombia, Bogotá. https://agris.fao.org/agris-search/search.do?recordID=CO20000009717 | spa |
dc.relation.references | Garavito, G., Rincón, J., Arteaga, L., Hata, Y., Bourdy, G., Gimenez, A., Pinzón, R., & Deharo, E. (2006). Antimalarial activity of some Colombian medicinal plants. Journal of Ethnopharmacology, 107(3), 460-462. https://doi.org/10.1016/j.jep.2006.03.033 | spa |
dc.relation.references | García, C. L. G. de, A, E. C., & C, N. R. (1995). Estudio fitoquímico preliminar y evaluación de la actividad antimicrobiana de algunas plantas superiores colombianas. Revista Colombiana de Ciencias Químico-Farmacéuticas, 23(1), Article 1. https://revistas.unal.edu.co/index.php/rccquifa/article/view/56492 | spa |
dc.relation.references | Garcia, G. R. M., Hennig, L., Shelukhina, I. V., Kudryavtsev, D. S., Bussmann, R. W., Tsetlin, V. I., & Giannis, A. (2015, octubre 23). Curare Alkaloids: Constituents of a Matis Dart Poison (world) [Review-article]. American Chemical Society and American Society of Pharmacognosy. https://doi.org/10.1021/acs.jnatprod.5b00457 | spa |
dc.relation.references | Garrido-Cardenas, J. A., González-Cerón, L., Manzano-Agugliaro, F., & Mesa-Valle, C. (2019). Plasmodium genomics: An approach for learning about and ending human malaria. Parasitology Research, 118(1), 1-27. https://doi.org/10.1007/s00436-018-6127-9 | spa |
dc.relation.references | Gong, S., Xu, D., Zou, F., & Peng, R. (2017). (-)-Curine induces cell cycle arrest and cell death in hepatocellular carcinoma cells in a p53-independent way. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 89, 894-901. https://doi.org/10.1016/j.biopha.2017.01.148 | spa |
dc.relation.references | González-Coloma, A., Reina, M., Sáenz, C., Lacret, R., Ruiz-Mesia, L., Arán, V. J., Sanz, J., & Martínez-Díaz, R. A. (2012). Antileishmanial, antitrypanosomal, and cytotoxic screening of ethnopharmacologically selected Peruvian plants. Parasitology Research, 110(4), 1381-1392. https://doi.org/10.1007/s00436-011-2638-3 | spa |
dc.relation.references | Google Maps. (2021). Google Maps. https://www.google.com/maps/place/4%C2%B008'17.5%22S+69%C2%B055'10.0%22W/@-4.0615861,-69.8977975,95200m/data=!3m1!1e3!4m5!3m4!1s0x0:0x0!8m2!3d-4.1381944!4d-69.9194444?hl=es | spa |
dc.relation.references | Greenwood, B. (2010). Anti-malarial drugs and the prevention of malaria in the population of malaria endemic areas. Malaria Journal, 9 Suppl 3, S2. https://doi.org/10.1186/1475-2875-9-S3-S2 | spa |
dc.relation.references | Guha, K. P., Mukherjee, B., & Mukherjee, R. (1979). Bisbenzylisoquinoline Alkaloids—A Review. Journal of Natural Products, 42(1), 1-84. https://doi.org/10.1021/np50001a001 | spa |
dc.relation.references | Guidelines for the Treatment of Malaria (2nd ed.). (2010). World Health Organization. http://www.ncbi.nlm.nih.gov/books/NBK254223/ | spa |
dc.relation.references | Gutiérrez, G. P. A., & Villegas, M. C. V. (2008). Efecto tóxico de Verbena officinallis (familia verbenaceae) en Sitophilus granarius (coleoptera: Curculionidae). Revista Lasallista de Investigación, 5(2), 74-82. | spa |
dc.relation.references | Hao, D.-C., Xiao, P.-G., Ma, H.-Y., Peng, Y., & He, C.-N. (2015). Mining chemodiversity from biodiversity: Pharmacophylogeny of medicinal plants of Ranunculaceae. Chinese Journal of Natural Medicines, 13(7), 507-520. https://doi.org/10.1016/S1875-5364(15)30045-5 | spa |
dc.relation.references | Hata, Yoshie. (2005). Contribución a la estandarización de un extracto con base en Abuta grandifolia [Tesis]. Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.relation.references | Hernández Carvajal. (2012). Análisis fitoquímico y de actividad antimalárica de dos especies del género Cecropia / Phytochemical analysis and antimalarial activity of two species of Cecropia genus. https://repositorio.unal.edu.co/handle/unal/10796 | spa |
dc.relation.references | Hernández Carvajal, J. E., Luengas Caicedo, P. E., Otero Jiménez, V., & Garavito Cárdenas, G. (2014). Actividad antiplasmódica y hemolítica de extractos etanólicos y fracciones obtenidas de Cecropia membranacea Trécul. Y Cecropia metensis Cuatrec. (Sin. Cecropia peltata var. Candida Velásquez). Revista Cubana de Medicina Tropical, 66(1), 58-70. | spa |
dc.relation.references | Hernández, J. E. H., & Luengas, P. E. L. (2013). Estudio fitoquímico preliminar de Cecropia membranacea Trécul. y Cecropia metensis Cuatrec. Revista Cubana de Plantas Medicinales, 18(4), 586-595. | spa |
dc.relation.references | Hernández-Carvajal, J. E., Arias-Marciales, M. H., García, J. O., Hata-Uribe, Y. A., Garavito-Cárdenas, G., & Caicedo, P. E. L. (2022). Phytochemical and antiplasmodial evaluation of five Colombian plants with ethnopharmacological background of antimalarial use. Pharmaceutical Sciences. https://doi.org/10.34172/PS.2022.16 | spa |
dc.relation.references | IDEAM. (2022, junio 10). Amazonia Temperatura—REGIÓN AMAZONIA TEMPERATURA - IDEAM. Tiempo y Clima. http://www.ideam.gov.co/web/tiempo-y-clima/region-amazonia-temperatura | spa |
dc.relation.references | Inbaneson, S. J., Sundaram, R., & Suganthi, P. (2012). In vitro antiplasmodial effect of ethanolic extracts of traditional medicinal plant Ocimum species against Plasmodium falciparum. Asian Pacific Journal of Tropical Medicine, 5(2), 103-106. https://doi.org/10.1016/S1995-7645(12)60004-2 | spa |
dc.relation.references | Instituto Nacional de Salud. (2018). Boletín Epidemiológico. https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx | spa |
dc.relation.references | Instituto Nacional de Salud. (2022, septiembre 18). Boletín Epidemiológico. Boletín Epidemiologíco. https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx | spa |
dc.relation.references | Kanyinda, B., Vanhaelen-Fastré, R., Vanhaelen, M., & Ottinger, R. (1997). Two New Isochondodendrine-Type Alkaloids from the Roots of Anisocycla jollyana. Journal of Natural Products, 60(11), 1121-1124. https://doi.org/10.1021/np970257j | spa |
dc.relation.references | Karunamoorthi, K., Sabesan, S., Jegajeevanram, K., & Vijayalakshmi, J. (2013). Role of Traditional Antimalarial Plants in the Battle Against the Global Malaria Burden. Vector-Borne and Zoonotic Diseases, 13(8), 521-544. https://doi.org/10.1089/vbz.2011.0946 | spa |
dc.relation.references | Katzung. (2004). Farmacología: Medicamentos antiprotozoales. (13.a ed.). Mcgraw Hill (ED), (p.1239-1243) New York, USA | spa |
dc.relation.references | Kaur, K., Jain, M., Kaur, T., & Jain, R. (2009). Antimalarials from nature. Bioorganic & Medicinal Chemistry, 17(9), 3229-3256. https://doi.org/10.1016/j.bmc.2009.02.050. | spa |
dc.relation.references | Khan, I. A. (2006). Issues related to botanicals. Life Sciences, 78(18), 2033-2038. https://doi.org/10.1016/j.lfs.2005.12.019. | spa |
dc.relation.references | Knudson-Ospina, A., Barreto-Zorza, Y. M., Castillo, C. F., Y. Mosquera, L., Apráez-Ippolito, G., Olaya-Másmela, L. A., Piamba, A. H., & Sanchez, R. (2020). Estrategias para la eliminación de malaria: Una perspectiva afro-colombiana. Revista de Salud Pública, 21, 9-16. https://doi.org/10.15446/rsap.v21n1.76210 | spa |
dc.relation.references | Komlaga, G., Agyare, C., Dickson, R. A., Mensah, M. L. K., Annan, K., Loiseau, P. M., & Champy, P. (2015). Medicinal plants and finished marketed herbal products used in the treatment of malaria in the Ashanti region, Ghana. Journal of Ethnopharmacology, 172, 333-346. https://doi.org/10.1016/j.jep.2015.06.041 | spa |
dc.relation.references | Kumatia, E. K., Ayertey, F., Appiah-Opong, R., Bagyour, G. K., Asare, K. O., Mbatcho, V. C., & Dabo, J. (2021). Intervention of standardized ethanol leaf extract of Annickia polycarpa, (DC.) Setten and Maas ex I.M. Turner. (Annonaceae), in Plasmodium berghei infested mice produced anti-malaria action and normalized gross hematological indices. Journal of Ethnopharmacology, 267, 113449. https://doi.org/10.1016/j.jep.2020.113449 | spa |
dc.relation.references | Kushwaha, S., Kushwaha, N., Maurya, N., & Rai, A. (2010). Role of Markers in the Standardization of Herbal Drugs: A Review. Archives of Applied Science Research, 2. https://www.researchgate.net/profile/Swa | spa |
dc.relation.references | Kvist, L. P., Christensen, S. B., Rasmussen, H. B., Mejia, K., & Gonzalez, A. (2006). Identification and evaluation of Peruvian plants used to treat malaria and leishmaniasis. Journal of Ethnopharmacology, 106(3), 390-402. https://doi.org/10.1016/j.jep.2006.01.020 | spa |
dc.relation.references | Li, S., Han, Q., Qiao, C., Song, J., Lung Cheng, C., & Xu, H. (2008). Chemical markers for the quality control of herbal medicines: An overview. Chinese Medicine, 3, 7. https://doi.org/10.1186/1749-8546-3-7 | spa |
dc.relation.references | Li, Y., Ishibashi, M., Chen, X., & Ohizumi, Y. (2003). Littorachalcone, a new enhancer of NGF-mediated neurite outgrowth, from Verbena littoralis. Chemical & Pharmaceutical Bulletin, 51(7), 872-874. https://doi.org/10.1248/cpb.51.872 | spa |
dc.relation.references | Li, Y., Ishibashi, M., Satake, M., Oshima, Y., & Ohizumi, Y. (2003). A new iridoid glycoside with nerve growth factor-potentiating activity, gelsemiol 6’-trans-caffeoyl-1-glucoside, from Verbena littoralis. Chemical & Pharmaceutical Bulletin, 51(9), 1103-1105. https://doi.org/10.1248/cpb.51.1103 | spa |
dc.relation.references | Liu, Y., & Wang, M.-W. (2008). Botanical drugs: Challenges and opportunities: Contribution to Linnaeus Memorial Symposium 2007. Life Sciences, 82(9), 445-449. https://doi.org/10.1016/j.lfs.2007.11.007 | spa |
dc.relation.references | Lohombo-Ekomba, M.-L., Okusa, P. N., Penge, O., Kabongo, C., Choudhary, M. I., & Kasende, O. E. (2004). Antibacterial, antifungal, antiplasmodial, and cytotoxic activities of Albertisia villosa. Journal of Ethnopharmacology, 93(2-3), 331-335. https://doi.org/10.1016/j.jep.2004.04.006 | spa |
dc.relation.references | Luenga-Caicedo, P. E., Braga, F. C., Brandão, G. C., & Braga de Oliveira, A. (2007). Seasonal and intraspecific varation of flavonoids and proanthocyanidins in Cecropia glaziovi sneth. Leaves from native and cultivated specimens. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 62(9-10), 701-709. https://doi.org/10.1515/znc-2007-9-1013 | spa |
dc.relation.references | Lv, J.-J., Xu, M., Wang, D., Zhu, H.-T., Yang, C.-R., Wang, Y.-F., Li, Y., & Zhang, Y.-J. (2013). Cytotoxic bisbenzylisoquinoline alkaloids from Stephania epigaea. Journal of Natural Products, 76(5), 926-932. https://doi.org/10.1021/np400084t | spa |
dc.relation.references | Lv, Y.-N., Yang, C.-Y., Shi, L.-C., Zhang, Z.-L., Xu, A.-S., Zhang, L.-X., Li, X.-L., & Li, H.-T. (2020). Identification of medicinal plants within the Apocynaceae family using ITS2 and psbA-trnH barcodes. Chinese Journal of Natural Medicines, 18(8), 594-605. https://doi.org/10.1016/S1875-5364(20)30071-6 | spa |
dc.relation.references | MacWilliam, I. C., & Wenn, R. V. (1972). Interpretation of colour tests for polyphenols and melanoidins. Journal of the Institute of Brewing, 78(4), 309-309. https://doi.org/10.1002/j.2050-0416.1972.tb03452.x | spa |
dc.relation.references | Makler, M. T., Ries, J. M., Williams, J. A., Bancroft, J. E., Piper, R. C., Gibbins, B. L., & Hinrichs, D. J. (1993). Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. The American Journal of Tropical Medicine and Hygiene, 48(6), 739-741. https://doi.org/10.4269/ajtmh.1993.48.739 | spa |
dc.relation.references | Malca Garcia, G. R., Hennig, L., Shelukhina, I. V., Kudryavtsev, D. S., Bussmann, R. W., Tsetlin, V. I., & Giannis, A. (2015). Curare Alkaloids: Constituents of a Matis Dart Poison. Journal of Natural Products, 78(11), 2537-2544. https://doi.org/10.1021/acs.jnatprod.5b00457 | spa |
dc.relation.references | Mall, M., Verma, R. K., Gupta, M. M., Shasany, A. K., Khanuja, S. P. S., & Shukla, A. K. (2019). Influence of seasonal and ontogenic parameters on the pattern of key terpenoid indole alkaloids biosynthesized in the leaves of Catharanthus roseus. South African Journal of Botany, 123, 98-104. https://doi.org/10.1016/j.sajb.2019.01.032 | spa |
dc.relation.references | Mambu, L., Martin, M. T., Razafimahefa, D., Ramanitrahasimbola, D., Rasoanaivo, P., & Frappier, F. (2000). Spectral characterisation and antiplasmodial activity of bisbenzylisoquinolines from Isolona ghesquiereina. Planta Medica, 66(6), 537-540. https://doi.org/10.1055/s-2000-8610 | spa |
dc.relation.references | Manzali de Sá, I., & Elisabetsky, E. (2012). Medical knowledge exchanges between Brazil and Portugal: An ethnopharmacological perspective. Journal of Ethnopharmacology, 142(3), 762-768. https://doi.org/10.1016/j.jep.2012.05.058 | spa |
dc.relation.references | Marsaioli, A. J., Rúveda, E. A., & Reis, F. de A. M. (1978). 13C NMR spectral analysis of some isoquinoline alkaloids. Phytochemistry, 17(9), 1655-1658. https://doi.org/10.1016/S0031-9422(00)94662-4 | spa |
dc.relation.references | Menachery, M. D. (1996). Chapter Three The alkaloids of south american menispermaceae. En S. W. Pelletier (Ed.), Alkaloids: Chemical and Biological Perspectives (Vol. 11, pp. 269-302). Pergamon. https://doi.org/10.1016/S0735-8210(96)80007-0 | spa |
dc.relation.references | Miller, L. H., Ackerman, H. C., Su, X., & Wellems, T. E. (2013). Malaria biology and disease pathogenesis: Insights for new treatments. Nature Medicine, 19(2), 156-167. https://doi.org/10.1038/nm.3073 | spa |
dc.relation.references | Ministerio de la protección Social, C. M. de la P. (2008). Vademécum Colombiano de Plantas Medicinales. Vademécum Colombiano de Plantas Medicinales, 241-241. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SA/vademecum-colombiano-plantas-medicinales.pdf | spa |
dc.relation.references | Ministerio de la salud y protección social. (2018, junio 6). Decreto 1156 de 2018. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=87281 | spa |
dc.relation.references | Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4 | spa |
dc.relation.references | Murambiwa, P., Masola, B., Govender, T., Mukaratirwa, S., & Musabayane, C. T. (2011). Anti-malarial drug formulations and novel delivery systems: A review. Acta Tropica, 118(2), 71-79. https://doi.org/10.1016/j.actatropica.2011.03.005 | spa |
dc.relation.references | Murebwayire, S., Frédérich, M., Hannaert, V., Jonville, M.-C., & Duez, P. (2008). Antiplasmodial and antitrypanosomal activity of Triclisia sacleuxii (Pierre) Diels. Phytomedicine, 15(9), 728-733. https://doi.org/10.1016/j.phymed.2007.10.005 | spa |
dc.relation.references | Ncube, B., Nair, J. J., Rárová, L., Strnad, M., Finnie, J. F., & Van Staden, J. (2015). Seasonal pharmacological properties and alkaloid content in Cyrtanthus contractus N.E. Br. South African Journal of Botany, 97, 69-76. https://doi.org/10.1016/j.sajb.2014.12.005 | spa |
dc.relation.references | Newman, D. J., & Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70(3), 461-477. https://doi.org/10.1021/np068054v | spa |
dc.relation.references | Nguta, J. M., & Mbaria, J. M. (2013). Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya. Journal of Ethnopharmacology, 148(3), 988-992. https://doi.org/10.1016/j.jep.2013.05.053 | spa |
dc.relation.references | Nkhoma, S., Molyneux, M., & Ward, S. (2007). In vitro antimalarial susceptibility profile and prcrt/pfmdr-1 genotypes of Plasmodium falciparum field isolates from Malawi. The American Journal of Tropical Medicine and Hygiene, 76(6), 1107-1112. | spa |
dc.relation.references | Nogueira, F., & Rosário, V. E. do. (2010). Methods for assessment of antimalarial activity in the different phases of the Plasmodium life cycle. Revista Pan-Amazônica de Saúde, 1(3), 109-124. https://doi.org/10.5123/S2176-62232010000300015 | spa |
dc.relation.references | Ocampo, D. M., Valverde, C. L., Colmenares, A. J., & Isaza, J. H. (2014). Fenoles totales y actividad antioxidante en hojas de dos especies colombianas del género Meriania (melastomataceae). Revista Colombiana de Química, 43(2), 41-46. https://doi.org/10.15446/rev.colomb.quim.v43n2.53124 | spa |
dc.relation.references | OECD. (2002). OECD (2002), Test No. 423: Acute Oral toxicity—Acute Toxic Class Method, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris [Text]. https://www.oecd-ilibrary.org/environment/test-no-423-acute-oral-toxicity-acute-toxic-class-method_9789264071001 | spa |
dc.relation.references | O’Leary, N., Múlgura, M. E., & Morrone, O. (2007). Revisión taxonómica de las especies del género verbena (verbenaceae): serie pachystachyae1. Annals of the Missouri Botanical Garden, 94(3), 571-621. https://doi.org/10.3417/0026-6493(2007)94[571:RTDLED]2.0.CO;2 | spa |
dc.relation.references | Omole, R. A., Gathirwa, J., Akala, H., Malebo, H. M., Machocho, A. K., Hassanali, A., & Ndiege, I. O. (2014). Bisbenzylisoquinoline and hasubanane alkaloids from Stephania abyssinica (Dillon & A. Rich) (Menispermeceae). Phytochemistry, 103, 123-128. https://doi.org/10.1016/j.phytochem.2014.03.026 | spa |
dc.relation.references | OMS. (2021, octubre 6). World malaria report 2021. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 | spa |
dc.relation.references | OMS. (2022, diciembre 22). Expert committee on specifications for pharmaceutical preparations. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/norms-and-standards-for-pharmaceuticals/expert-committee-on specifications-for-pharmaceutical-preparations | spa |
dc.relation.references | Ōmura, S. (2015). From bacteria and plants to novel anti-parasite therapies. 5. http://www.nobelprizemedicine.org/wp-content/uploads/2013/10/press.pdf | spa |
dc.relation.references | OPS. (2010). OPS/OMS Organización Panamericana de la Salud. https://www.paho.org/es/search/r?keys=tratamiento+para+malaria#gsc.tab=0&gsc.q=tratamiento%20para%20malaria | spa |
dc.relation.references | Ortiz, R. del C. (2018). A taxonomic revision of Curarea Barneby & Krukoff (Menispermaceae). PhytoKeys, 100, 9-89. https://doi.org/10.3897/phytokeys.100.21828 | spa |
dc.relation.references | Osorio, E., Arango, G. J., García, E., Muñoz, K., Ruiz, G., Gutiérrez, D., Paco, M. A., & Giménez, A. (2005). Actividad antiplasmódica in vitro e inhibición de la formación de la β-Hematina de plantas colombianas de la familia Annonaceae. Acta Farmacéutica Bonaerense, 24, n.o 4. http://sedici.unlp.edu.ar/handle/10915/6773 | spa |
dc.relation.references | Osorio, E., Arango, G. J., Jiménez, N., Alzate, F., Ruiz, G., Gutiérrez, D., Paco, M. A., Giménez, A., & Robledo, S. (2007). Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae. Journal of Ethnopharmacology, 111(3), 630-635. https://doi.org/10.1016/j.jep.2007.01.015 | spa |
dc.relation.references | Otshudi, A. L., Apers, S., Pieters, L., Claeys, M., Pannecouque, C., De Clercq, E., Van Zeebroeck, A., Lauwers, S., Frédérich, M., & Foriers, A. (2005). Biologically active bisbenzylisoquinoline alkaloids from the root bark of Epinetrum villosum. Journal of Ethnopharmacology, 102(1), 89-94. https://doi.org/10.1016/j.jep.2005.05.021 | spa |
dc.relation.references | Padilla, J. C., Lizarazo, F. E., Murillo, O. L., Mendigaña, F. A., Pachón, E., & Vera, M. J. (2017). Epidemiología de las principales enfermedades transmitidas por vectores en Colombia, 1990-2016. Biomédica, 37, 27. https://doi.org/10.7705/biomedica.v37i0.3769 | spa |
dc.relation.references | Paganga, G., & Rice-Evans, C. A. (1997). The identification of flavonoids as glycosides in human plasma. FEBS Letters, 401(1), 78-82. https://doi.org/10.1016/s0014-5793(96)01442-1 | spa |
dc.relation.references | Paixao, A., Mancebo, B., Regalado, A. I., Chong, D., & Sánchez, L. M. (2017). Evaluación de la Toxicidad Aguda Oral del extracto etanólico de Tephrosia vogelii Hook (kalembe). Revista de Salud Animal, 39(2), 00-00. | spa |
dc.relation.references | Pathak, A. (2017). Q-Markers or Chemical Markers: A New Insight towards Quality Control of Herbal Medicines. Organic & Medicinal Chemistry International Journal, 3(2), 62-63 | spa |
dc.relation.references | Pérez-Guerrero, C., Herrera, M. D., Ortiz, R., Alvarez de Sotomayor, M., & Fernández, M. A. (2001). A pharmacological study of Cecropia obtusifolia Bertol aqueous extract. Journal of Ethnopharmacology, 76(3), 279-284. https://doi.org/10.1016/s0378-8741(01)00253-7 | spa |
dc.relation.references | Peters, W., Bafort, J., & Ramkaran, A. E. (1970). The chemotherapy of rodent malaria. XI. Cyclically transmitted, chloroquine-resistant variants of the Keyberg 173 strain of Plasmodium berghei. Annals of Tropical Medicine and Parasitology, 64(1), 41-51. | spa |
dc.relation.references | Phillips, M. A., Burrows, J. N., Manyando, C., van Huijsduijnen, R. H., Van Voorhis, W. C., & Wells, T. N. C. (2017). Malaria. Nature Reviews. Disease Primers, 3, 17050. https://doi.org/10.1038/nrdp.2017.50 | spa |
dc.relation.references | Rocha, T. D., de Brum Vieira, P., Gnoatto, S. C. B., Tasca, T., & Gosmann, G. (2012). Anti-Trichomonas vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species. Parasitology Research, 110(6), 2551-2556. https://doi.org/10.1007/s00436-011-2798-1 | spa |
dc.relation.references | Rodríguez Novoa, Y. V. (2016). Actividad antimalárica de una preparación tradicional indígena en combinación con fármacos de uso común en la enfermedad. https://repositorio.unal.edu.co/handle/unal/57962 | spa |
dc.relation.references | Rodriguez Parra, Z. (2015). Evaluación comparativa de la actividad antimalárica de un remedio tradicional frente a un extracto primario; profundización del estudio de su actividad farmacológica. https://repositorio.unal.edu.co/handle/unal/56695 | spa |
dc.relation.references | Rodríguez, Y. V., Arias, M. H., García, J. O., Deharo, E., & Garavito, G. (2018). Pharmacological activity of Curarea toxicofera in combination with classical antimalarial treatments. Journal of Ethnopharmacology, 222, 288-294. https://doi.org/10.1016/j.jep.2018.04.008 | spa |
dc.relation.references | Rodriguez, Z. J., Rodríguez, Y. V., García, J. O., Arias, M. H., Deharo, E., & Garavito, G. (2020). Comparison of the antimalarial activity of a Colombian traditional Uitoto remedy with laboratory preparations. Journal of Vector Borne Diseases, 57(2), 170-175. https://doi.org/10.4103/0972-9062.310868 | spa |
dc.relation.references | Rojas, L. C., Uribe, Y. H., Martínez, N. S., & Niño, D. R. (2009). Análisis Fitoquímico Preliminar De Hojas, Tallos Y Semillas De Cupatá (strych Nos Schultesiana Krukoff). Colombia Forestal, 12, 161-170. ISSN 0120-0739 | spa |
dc.relation.references | Roux, S., Sablé, E., & Porsolt, R. D. (2005). Primary observation (Irwin) test in rodents for assessing acute toxicity of a test agent and its effects on behavior and physiological function. Current Protocols in Pharmacology, Chapter 10, Unit 10.10. https://doi.org/10.1002/0471141755.ph1010s27 | spa |
dc.relation.references | Ruiz, L., Ruiz, L., Maco, M., Cobos, M., Gutierrez-Choquevilca, A.-L., & Roumy, V. (2011). Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria. Journal of Ethnopharmacology, 133(2), 917-921. https://doi.org/10.1016/j.jep.2010.10.039 | spa |
dc.relation.references | Sanz-Biset, J., Campos-de-la-Cruz, J., Epiquién-Rivera, M. A., & Cañigueral, S. (2009). A first survey on the medicinal plants of the Chazuta valley (Peruvian Amazon). Journal of Ethnopharmacology, 122(2), 333-362. https://doi.org/10.1016/j.jep.2008.12.009 | spa |
dc.relation.references | Schiff, P. L. (1985). Bisbenzylisoquinoline Alkaloids. En J. D. Phillipson, M. F. Roberts, & M. H. Zenk (Eds.), The Chemistry and Biology of Isoquinoline Alkaloids (pp. 126-141). Springer. https://doi.org/10.1007/978-3-642-70128-3_8 | spa |
dc.relation.references | Schiff, P. L. (1999). Chapter One—The Bisbenzylisoquinoline Alkaloids – A Tabular Review. En S. W. Pelletier (Ed.), Alkaloids: Chemical and Biological Perspectives (Vol. 14, pp. 1-284). Pergamon. https://doi.org/10.1016/S0735-8210(99)80004-1 | spa |
dc.relation.references | Sharapin N, Pinzón RS, et al. (2000). Fundamentos de Tecnología de Productos Fitoterapéuticos, Santafé de Bogotá: Convenio Andrés Bello (CAB)—Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED). | spa |
dc.relation.references | Shu, J.-C., Liu, J.-Q., & Chou, G.-X. (2013). A new triterpenoid from Verbena officinalis L. Natural Product Research, 27(14), 1293-1297. https://doi.org/10.1080/14786419.2012.733391 | spa |
dc.relation.references | Souza, J. E. de, Nascimento, M. F. A. do, Borsodi, M. P. G., Almeida, A. P. de, Rossi-Bergmann, B., Oliveira, A. B. de, & Costa, S. S. (2018). Leaves from the Tree Poincianella pluviosa as a Renewable Source of Antiplasmodial Compounds against Chloroquine-Resistant Plasmodium falciparum. Journal of the Brazilian Chemical Society, 29, 1318-1327. https://doi.org/10.21577/0103-5053.20170228 | spa |
dc.relation.references | Srinivasan, V. S. (2006). Challenges and scientific issues in the standardization of botanicals and their preparations. United States Pharmacopeia’s dietary supplement verification program—A public health program. Life Sciences, 78(18), 2039-2043. https://doi.org/10.1016/j.lfs.2005.12.014 | spa |
dc.relation.references | Sun, S.-W., Lee, S.-S., Wu, A.-C., & Chen, C.-K. (1998). Determination of bisbenzylisoquinoline alkaloids by high-performance liquid chromatography. Journal of Chromatography A, 799(1), 337-342. https://doi.org/10.1016/S0021-9673(97)01065-0 | spa |
dc.relation.references | Tanae, M. M., Lima-Landman, M. T. R., De Lima, T. C. M., Souccar, C., & Lapa, A. J. (2007). Chemical standardization of the aqueous extract of Cecropia glaziovii Sneth endowed with antihypertensive, bronchodilator, antiacid secretion and antidepressant-like activities. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 14(5), 309-313. https://doi.org/10.1016/j.phymed.2007.03.002 | spa |
dc.relation.references | Tasso de Souza, T. J., Manfron, M. P., Zanetti, G. D., Hoelzel, S. C. da S. M., & Pagliarin, V. P. (2005). Análise morfo-histológica y fitoquímica de Verbena litoralis Kunth. Acta Farmacéutica Bonaerense, 24, n.o 2. http://sedici.unlp.edu.ar/handle/10915/6733 | spa |
dc.relation.references | Tavares, L. A., & Ferreira, A. G. (2006). Análises quali- e quantitativa de cafés comerciais via ressonância magnética nuclear. Química Nova, 29(5), 911-915. https://doi.org/10.1590/S0100-40422006000500005 | spa |
dc.relation.references | Thornber, C. W. (1970). Alkaloids of the menispermaceae. Phytochemistry, 9(1), 157-187. https://doi.org/10.1016/S0031-9422(00)86628-5 | spa |
dc.relation.references | Torres-Rodríguez, M. L., García-Chávez, E., Soto-Peña, G. A., Aradillas-García, C., Cubillas-Tejeda, A. C., Torres-Rodríguez, M. L., García-Chávez, E., Soto-Peña, G. A., Aradillas-García, C., & Cubillas-Tejeda, A. C. (2016). Evaluación de la toxicidad aguda in vivo del extracto etanólico y acuoso de Calea urticifolia. Botanical Sciences, 94(1), 133-140. https://doi.org/10.17129/botsci.191 | spa |
dc.relation.references | Tshibangu, J. N., Wright, A. D., & König, G. M. (2003). HPLC isolation of the anti-plasmodially active bisbenzylisoquinone alkaloids present in roots of Cissampelos mucronata. Phytochemical Analysis: PCA, 14(1), 13-22. https://doi.org/10.1002/pca.673 | spa |
dc.relation.references | Uche, F. I., Abed, M. N., Abdullah, M. I., Drijfhout, F. P., McCullagh, J., Claridge, T. W. D., Richardson, A., & Li, W.-W. (2017). Isochondodendrine and 2′-norcocsuline: Additional alkaloids from Triclisia subcordata induce cytotoxicity and apoptosis in ovarian cancer cell lines. RSC Advances, 7(70), 44154-44161. https://doi.org/10.1039/C7RA08032H | spa |
dc.relation.references | Uchôa, V. T., Paula, R. C. de, Krettli, L. G., Santana, A. E. G., & Krettli, A. U. (2010). Antimalarial activity of compounds and mixed fractions of Cecropia pachystachya. Drug Development Research, 71(1), 82-91. https://doi.org/10.1002/ddr.20351 | spa |
dc.relation.references | Uzor, P. F. (2020). Alkaloids from Plants with Antimalarial Activity: A Review of Recent Studies. Evidence-Based Complementary and Alternative Medicine: ECAM, 2020, 8749083. https://doi.org/10.1155/2020/8749083 | spa |
dc.relation.references | Valadeau, C., Castillo, J. A., Sauvain, M., Lores, A. F., & Bourdy, G. (2010). The rainbow hurts my skin: Medicinal concepts and plants uses among the Yanesha (Amuesha), an Amazonian Peruvian ethnic group. Journal of Ethnopharmacology, 127(1), 175-192. https://doi.org/10.1016/j.jep.2009.09.024 | spa |
dc.relation.references | Van Breemen, R. B., Fong, H. H. S., & Farnsworth, N. R. (2007). The role of quality assurance and standardization in the safety of botanical dietary supplements. Chemical Research in Toxicology, 20(4), 577-582. https://doi.org/10.1021/tx7000493 | spa |
dc.relation.references | Vestena, A., Piton, Y., de Loretto Bordignon, S. A., Garcia, S., Arbo, M. D., Zuanazzi, J. A., & von Poser, G. (2019). Hepatoprotective activity of Verbena litoralis, Verbena montevidensis and their main iridoid, brasoside. Journal of Ethnopharmacology, 239, 111906. https://doi.org/10.1016/j.jep.2019.111906 | spa |
dc.relation.references | Vispo, N. (2016, abril 30). Mecanismos de invasion del esporozoíto y merozoíto de Plasmodium. Bionatura. http://revistabionatura.com/plasmodium.html | spa |
dc.relation.references | Wagner, H., & Bladt, S. (1996). Plant Drug Analysis: A Thin Layer Chromatography Atlas. Springer Science & Business Media. New York, USA | spa |
dc.relation.references | Weathers, P. J., Jordan, N., Lasin, P., & Towler, M. J. (2014). Simulated Digestion of Dried Leaves of Artemisia annua Consumed as a Treatment (pACT) for Malaria. Journal of ethnopharmacology, 151(2), 858-863. https://doi.org/10.1016/j.jep.2013.11.043 | spa |
dc.relation.references | Weber, C., & Opatz, T. (2019). Chapter One—Bisbenzylisoquinoline Alkaloids. En H.-J. Knölker (Ed.), The Alkaloids: Chemistry and Biology (Vol. 81, pp. 1-114). Academic Press. https://doi.org/10.1016/bs.alkal.2018.07.001 | spa |
dc.relation.references | Weniger, B., Robledo, S., Arango, G. J., Deharo, E., Aragón, R., Muñoz, V., Callapa, J., Lobstein, A., & Anton, R. (2001). Antiprotozoal activities of Colombian plants. Journal of Ethnopharmacology, 78(2-3), 193-200. https://doi.org/10.1016/s0378-8741(01)00346-4 | spa |
dc.relation.references | White, N. J., Pukrittayakamee, S., Hien, T. T., Faiz, M. A., Mokuolu, O. A., & Dondorp, A. M. (2014). Malaria. The Lancet, 383(9918), 723-735. https://doi.org/10.1016/S0140-6736(13)60024-0 | spa |
dc.relation.references | WHO (Ed.). (2011). Quality control methods for herbal materials (Updated edition of Quality control methods for medicinal plant materials, 1998). World Health Organization. | spa |
dc.relation.references | Willcox, M., Bodeker, G., Rasoanaivo, P., & Addae-Kyereme, J. (2004). Traditional Medicinal Plants and Malaria. CRC Press. | spa |
dc.relation.references | Winstanley, P. A. (2000). Chemotherapy for falciparum malaria: The armoury, the problems and the prospects. Parasitology Today (Personal Ed.), 16(4), 146-153. https://doi.org/10.1016/s0169-4758(99)01622-1 | spa |
dc.relation.references | Wright, C. W. (2005). Traditional antimalarials and the development of novel antimalarial drugs. Journal of Ethnopharmacology, 100(1), 67-71. https://doi.org/10.1016/j.jep.2005.05.012 | spa |
dc.relation.references | Xian-Kai, W., Tong-Fang, Z., Sheng, L., Shizuri, Y., & Yamamura, S. (1993). Head-to-tail bisbenzylisoquinoline alkaloids from Cyclea sutchuenensis. Phytochemistry, 33(5), 1253-1256. https://doi.org/10.1016/0031-9422(93)85060-5 | spa |
dc.relation.references | Zhang, H., Wang, X., Guo, Y., Liu, X., Zhao, X., Teka, T., Lv, C., Han, L., Huang, Y., & Pan, G. (2021). Thirteen bisbenzylisoquinoline alkaloids in five Chinese medicinal plants: Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity studies. Journal of Ethnopharmacology, 268, 113566. https://doi.org/10.1016/j.jep.2020.113566 | spa |
dc.relation.references | Zuiderveen, G. H., Burkhart, E. P., & Lambert, J. D. (2021). Benzylisoquinoline alkaloid content in goldenseal (Hydrastis canadensis L.) is influenced by phenological stage, reproductive status, and time-of-day. Phytochemistry Letters, 42, 61-67. https://doi.org/10.1016/j.phytol.2021.02.006 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | spa |
dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | spa |
dc.subject.decs | Extractos vegetales | spa |
dc.subject.decs | Plant Extracts | eng |
dc.subject.decs | Antimaláricos | spa |
dc.subject.decs | Antimalarials | eng |
dc.subject.proposal | Curarea toxicofera | spa |
dc.subject.proposal | Antimalárico | spa |
dc.subject.proposal | Pruebas de toxicidad aguda | spa |
dc.subject.proposal | Alcaloides vegetales. | spa |
dc.title | Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológica | spa |
dc.title.translated | Contribution to the standardization of a plant extract with ethnopharmacological antecedents of antimalarial activity, through phytochemical evaluation and biological activity | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | DataPaper | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológica | spa |
oaire.fundername | Universidad Nacional de Colombia Sede Bogotá | spa |
oaire.fundername | Colciencias convocatoria 711 de 2015 | spa |
oaire.fundername | Colciencias beca apoyo a Doctorados Nacionales 727 de 2015 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 93397208.2023.pdf
- Tamaño:
- 11.88 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias Farmacéuticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: