Contribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológica

dc.contributor.advisorLuengas Caicedo, Pilar Ester
dc.contributor.advisorGaravito Cárdenas, Giovanny
dc.contributor.authorHernández Carvajal, Jorge Enrique
dc.contributor.cvlacHernández Carvajal Jorge Enrique [93397208]spa
dc.contributor.googlescholarHernandez Carvajal, Jorge enriquespa
dc.contributor.orcidHernández Carvajal, Jorge Enrique [0000-0002-5454-8069]spa
dc.contributor.researchgateHernandez Carvajal, Jorge enriquespa
dc.contributor.researchgroupTecnología de productos naturales (TECPRONA)spa
dc.contributor.researchgroupFarmacología de la Medicina Tradicional y Popular (FaMeTra)spa
dc.contributor.scopusHernández Carvajal Jorge Enrique [55941002800]spa
dc.date.accessioned2023-08-28T14:38:50Z
dc.date.available2023-08-28T14:38:50Z
dc.date.issued2022-10-10
dc.descriptionilustraciones, diagramas, fotografías a colorspa
dc.description.abstractUtilizando el criterio etnofarmacológico se preseleccionaron cinco plantas con reportes de actividad antimalárica: Cecropia metensis Cuatrec, Cecropia membranacea Trécul, Verbena littoralis Kunth, Ambelania duckey Mark y Curarea toxicofera Wedd Barneby & Krukoff. El material vegetal fue colectado en diferentes departamentos de Colombia, acondicionado y sometidos a extracción etanólica por percolación exhaustiva. En una primera etapa los extractos etanólicos de las cinco plantas preseleccionadas se evaluaron in vitro, frente a Plasmodium falciparum cepa FCR-3 (cloroquina resistente). El extracto etanólico de C. toxicofera presentó la mejor actividad antiplasmodial (CI50=7.6 ± 3.9 µg/mL) y se detectaron alcaloides. El resultado de actividad antiplasmodial para los extractos etanólicos de las otras especies evaluadas fue de inactivo. Posteriormente para el extracto etanólico de C. toxicofera se realizó un fraccionamiento ácido-base. Los resultados de la actividad antimalárica in vivo frente Plasmodium berghei, a una dosis de 400 mg/Kg, mostraron para EtOHCt un porcentaje de parasitemia de 38.0 ± 3, del mismo orden que las fracciones alcaloides: FrDCM1 (31 ± 8), FrDCM2 (34 ± 5) y (FrAcB) (39 ± 3). Los porcentajes de parasitemia para cloroquina y el vehículo fueron de 20 ± 7 y 42 ± 3 respectivamente. La similitud en la actividad antimalárica in vivo de los tratamientos puede estar asociada con la semejanza química observada en los perfiles cromatográficos de los alcaloides. A partir del ensayo de toxicidad aguda se establecieron las siguientes dosis letales 50: EtOHCt (DL50=1000 mg/Kg), FrDCM1 (DL50=5000 mg/Kg) y FrDCM2 (DL50=400 mg/Kg). La fracción alcaloidal (FrDCM2) se sometió a cromatografía en columna empleando silica gel hasta obtener un compuesto puro, para el cual se realizó el estudio estructural mediante cromatografía líquida ultraeficiente con detector de arreglo diodos (CLUE-DAD), cromatografía líquida ultraeficiente con detector de arreglo diodos acoplada a espectrometría de masas (CLUE-DAD-EM), 1H-RMN y los experimentos bidimensionales COSY y HSQC. A partir de estos resultados se estableció que el compuesto aislado era isochondodendrina. Las CI50 de las muestras evaluadas por el método LDH frente a P. falciparum cepa W2 (resistente a cloroquina) fueron: EtOHCt (5.25 ± 1.53 µg/mL), FrDCM1 (4.04 ± 0.83 µg/mL) y FrDCM2 (6.28 ± 0.66 µg/mL). Todas las muestras presentaron actividad antiplasmodial, clasificada en rango activo (CI50 = 1 a 15 µg/mL). Las fracciones y el compuesto identificado como isochondodendrina (A1) se clasificaron como moderadamente citotóxicos ya que sus valores de CC50 fueron menores que 50 µg/mL. Estos resultados mostrarón que las fracciones de alcaloides de C. toxicofera presentaron actividad antimalárica que puede estar asociada con los alcaloides bisbenzilisoquinolínicos (BBIQS) como el alcaloide isochondodendrina, una sustancia aislada en esta investigación. Las fracciones obtenidas de C. toxicofera pueden convertirse en una alternativa para el tratamiento de la malaria. (Texto tomado de la fuente)
dc.description.abstractUsing ethnopharmacological criteria, five plants with reports of antimalarial activity were preselected: Cecropia metensis Cuatrec., Cecropia membranacea Trécul., Verbena littoralis Kunth., Ambelania duckey Mark, and Curarea toxicofera Wedd Barneby & Krukoff. The plant material was collected in different departments of Colombia, conditioned and subjected to ethanolic extraction by exhaustive percolation. In a first stage, the ethanolic extracts of the five preselected plants were evaluated in vitro, against Plasmodium falciparum strain FCR-3 (resistant chloroquine), the ethanolic extract of C. toxicofera presented the best antiplasmodial activity (IC50=7.6 ± 3.9 µg/mL) and alkaloids are detected. The result of antiplasmodial activity for the ethanolic extracts of the other evaluated species was inactive. Subsequently, acid-base fractionation was performed. The results of the in vivo antimalarial activity against Plasmodium berghei showed a percentage of parasitemia of 38.0 ± 3 for EtOHCt, in the same order as the alkaloid fractions: FrDCM1 (31 ± 8), FrDCM2 (34 ± 5) and (FrAcB) (39 ±3). The percentages of parasitemia for chloroquine and the vehicle were 20 ± 7 and 42 ± 3, respectively. The similarity in the in vivo antimalarial activity of the treatments may be associated with the chemical similarity observed in the chromatographic profiles of the alkaloids. From the acute toxicity test, the following lethal doses 50 were established: EtOHCt (LD50=1000 mg/Kg), FrDCM1 (LD50=5000 mg/Kg) and FrDCM2 (LD50=400 mg/Kg). The alkaloidal fraction (FrDCM2) was subjected to column chromatography using silica gel until a pure compound was obtained, for which the structural study was carried out using ultra-efficient liquid chromatography with diode array detector (CLUE-DAD), ultra-efficient liquid chromatography with diode array-mass spectrometry. (CLUE-DAD-MS), 1H-NMR and the bidimensional COSY and HSQC experiments. From these results it was established that the isolated compound was isochondodendrine. The IC50 of the samples evaluated by the LDH method against P. falciparum strain W2 (chloroquine resistant) were: EtOHCt (5.25 ± 1.53 µg/mL), FrDCM1 (4.04 ± 0.83 µg/mL) and FrDCM2 (6.28 ± 0.66 µg /mL). All samples presented antiplasmodial activity, classified in active range (IC50 = 1 to 15 µg/mL). The fractions and the compound identified as isochondodendrin (A1) were classified as moderately cytotoxic since their CC50 values were less than 50 µg/mL. These results showed that the alkaloid fractions of C. toxicofera presented antimalarial activity that may be associated with bisbenzylisoquinoline alkaloids (BBIQS) such as the isochondodendrine alkaloid, a substance isolated in this investigation. The fractions obtained from C. toxicofera can become an alternative for the treatment of malaria.
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Farmacéuticasspa
dc.description.researchareaFarmacognosia y Fitoquímicaspa
dc.format.extent214 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84602
dc.publisherUniversidad Nacional de Colombia Sede Bogotá D.Cspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticasspa
dc.relation.referencesAdams, M., Alther, W., Kessler, M., Kluge, M., & Hamburger, M. (2011). Malaria in the renaissance: Remedies from European herbals from the 16th and 17th century. Journal of Ethnopharmacology, 133(2), 278-288. https://doi.org/10.1016/j.jep.2010.10.060spa
dc.relation.referencesAffum, A. O., Shiloh, D. O., & Adomako, D. (2013). Monitoring of arsenic levels in some ready-to-use anti-malaria herbal products from drug sales outlets in the Madina area of Accra, Ghana. Food and Chemical Toxicology, 56, 131-135. https://doi.org/10.1016/j.fct.2013.01.049spa
dc.relation.referencesAgência Nacional de Vigilância Sanitária (Brazil) & Fundação Oswaldo Cruz. (2010). Farmacopeia brasileira. Agência Nacional de Vigilância Sanitária : Fundação Oswaldo Cruz. https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira/arquivos/8031json-file-1spa
dc.relation.referencesAguiar, A. C. C., Rocha, E. M. M. da, Souza, N. B. de, França, T. C. C., & Krettli, A. U. (2012). New approaches in antimalarial drug discovery and development: A review. Memorias Do Instituto Oswaldo Cruz, 107(7), 831-845. https://doi.org/10.1590/s0074-02762012000700001spa
dc.relation.referencesAhmad, S. S., Rahi, M., Ranjan, V., & Sharma, A. (2021). Mefloquine as a prophylaxis for malaria needs to be revisited. International Journal for Parasitology: Drugs and Drug Resistance, 17, 23-26. https://doi.org/10.1016/j.ijpddr.2021.06.003spa
dc.relation.referencesAndrade-Cetto, A., & Heinrich, M. (2005). Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology, 99(3), 325-348. https://doi.org/10.1016/j.jep.2005.04.019spa
dc.relation.referencesAndrade-Cetto, A., & Vázquez, R. C. (2010). Gluconeogenesis inhibition and phytochemical composition of two Cecropia species. Journal of Ethnopharmacology, 130(1), 93-97. https://doi.org/10.1016/j.jep.2010.04.016spa
dc.relation.referencesArboles ornamentales. (2021). Arboles ornamentales. https://www.arbolesornamentales.es/Cecropiaceae.htmspa
dc.relation.referencesArias Marciales, M. H., Rodríguez Novoa, Y. V., & Garavito Cárdenas, G. (2016). Adaptación y optimización de un método de lectura por fluorometría en el modelo farmacológico in vitro de cultivo de Plasmodium falciparum. Revista Colombiana de Ciencias Químico - Farmacéuticas, 45(1), 127-146. https://doi.org/10.15446/rcciquifa.v45n1.58024spa
dc.relation.referencesAyyad, S.-E. N., Basaif, S. A., Al-Saggaf, A. T., & Alarif, W. M. (2012). Vincamine and 14-epi-vincamine indole alkaloids from Ambelania occidentalis. Journal of Saudi Chemical Society, 16(4), 419-422. https://doi.org/10.1016/j.jscs.2011.02.008spa
dc.relation.referencesBaldas, J., Bick, I. R., Ibuka, T., Kapil, R. S., & Porter, Q. N. (1972). Mass spectrometry of bisbenzylisoquinoline alkaloids. 3. Alkaloids derived from coclaurine units joined head-to-tail. Journal of the Chemical Society. Perkin Transactions 1, 4, 599-601. https://doi.org/10.1039/p19720000599spa
dc.relation.referencesBannister, L., & Mitchell, G. (2003). The ins, outs and roundabouts of malaria. Trends in Parasitology, 19(5), 209-213. https://doi.org/10.1016/S1471-4922(03)00086-2spa
dc.relation.referencesBerregi, I., Santos, J. I., Campo, G. del, Miranda, J. I., & Aizpurua, J. M. (2003). Quantitation determination of chlorogenic acid in cider apple juices by 1H NMR spectrometry. Analytica Chimica Acta, 486(2), 269-274. https://doi.org/10.1016/S0003-2670(03)00496-3spa
dc.relation.referencesBijauliya, R. K., & Alok, S. (2017). A comprehensive review on standardization of herbal drugs. International journal of pharmaceutical sciences and research. https://ijpsr.com/bft-article/a-comprehensive-review-on-standardization-of-herbal-drugs/spa
dc.relation.referencesBotsaris, A. S. (2007). Plants used traditionally to treat malaria in Brazil: The archives of Flora Medicinal. Journal of Ethnobiology and Ethnomedicine, 3, 18. https://doi.org/10.1186/1746-4269-3-18spa
dc.relation.referencesBrandão, M. G. L., Zanetti, N. N. S., Oliveira, P., Grael, C. F. F., Santos, A. C. P., & Monte-Mór, R. L. M. (2008). Brazilian medicinal plants described by 19th century European naturalists and in the Official Pharmacopoeia. Journal of Ethnopharmacology, 120(2), 141-148. https://doi.org/10.1016/j.jep.2008.08.004spa
dc.relation.referencesBusse, W. (2000). The significance of quality for efficacy and safety of herbal medicinal products. Drug Information Journal, 34(1), 15-23. Scopus. https://doi.org/10.1177/009286150003400102spa
dc.relation.referencesCadena-González, A. L., Sørensen, M., & Theilade, I. (2013). Use and evaluation of native and introduced medicinal plant species in Campo Hermoso and Zetaquira, Boyacá, Colombia. Journal of Ethnobiology and Ethnomedicine, 9, 23. https://doi.org/10.1186/1746-4269-9-23spa
dc.relation.referencesCalvo, M. I. (2006). Anti-inflammatory and analgesic activity of the topical preparation of Verbena officinalis L. Journal of Ethnopharmacology, 107(3), 380-382. https://doi.org/10.1016/j.jep.2006.03.037spa
dc.relation.referencesCañigueral, S. (2002). La Fitoterapia: ¿una terapéutica para el tercer milenio? https://www.researchgate.net/publication/228863288_La_Fitoterapia_una_terapeutica_para_el_tercer_mileniospa
dc.relation.referencesCárdenas Cuadros, P. A. (2011). Evaluación de la actividad antimalárica de preparaciones tradicionales obtenidas de dos especies promisorias usadas por una comunidad en zona endémica y profundización en el estudio de su actividad farmacológica. https://repositorio.unal.edu.co/handle/unal/7721spa
dc.relation.referencesCasanova, E., García-Mina, J. M., & Calvo, M. I. (2008). Antioxidant and Antifungal Activity of Verbena officinalis L. Leaves. Plant Foods for Human Nutrition, 63(3), 93-97. https://doi.org/10.1007/s11130-008-0073-0spa
dc.relation.referencesCastro, L. S., Perazzo, F. F., & Maistro, E. L. (2009). Genotoxicity testing of Ambelania occidentalis (Apocynaceae) leaf extract in vivo. Genetics and Molecular Research: GMR, 8(2), 440-447. https://doi.org/10.4238/vol8-2gmr588spa
dc.relation.referencesCastro-Gamboa, I., & Castro, O. (2004). Iridoids from the aerial parts of Verbena littoralis (Verbenaceae). Phytochemistry, 65(16), 2369-2372. https://doi.org/10.1016/j.phytochem.2004.07.008spa
dc.relation.referencesCava, M. P., Kunitomo, J., & DaRocha, A. I. (1969). The alkaloids of Chondodendron toxicoferum. Phytochemistry, 8(12), 2341-2343. https://doi.org/10.1016/S0031-9422(00)88152-2spa
dc.relation.referencesCéline, V., Adriana, P., Eric, D., Joaquina, A., Yannick, E., Augusto, L. F., Rosario, R., Dionicia, G., Michel, S., Denis, C., & Geneviève, B. (2009). Medicinal plants from the Yanesha (Peru): Evaluation of the leishmanicidal and antimalarial activity of selected extracts. Journal of Ethnopharmacology, 123(3), 413-422. https://doi.org/10.1016/j.jep.2009.03.041spa
dc.relation.referencesChan, E. W. C., Wong, S. K., & Chan, H. T. (2016). Apocynaceae species with antiproliferative and/or antiplasmodial properties: A review of ten genera. Journal of Integrative Medicine, 14(4), 269-284. https://doi.org/10.1016/S2095-4964(16)60261-3spa
dc.relation.referencesChassaigne, J. A. (2001). Malaria y fármacos antimaláricos. Revista de la Sociedad Venezolana de Microbiología, 21(2), 85-88.spa
dc.relation.referencesConsolini, A. E., & Migliori, G. N. (2005). Cardiovascular effects of the South American medicinal plant Cecropia pachystachya (ambay) on rats. Journal of Ethnopharmacology, 96(3), 417-422. https://doi.org/10.1016/j.jep.2004.09.030spa
dc.relation.referencesConsolini, A. E., Ragone, M. I., Migliori, G. N., Conforti, P., & Volonté, M. G. (2006). Cardiotonic and sedative effects of Cecropia pachystachya Mart. (Ambay) on isolated rat hearts and conscious mice. Journal of Ethnopharmacology, 106(1), 90-96. https://doi.org/10.1016/j.jep.2005.12.006spa
dc.relation.referencesCorpoAmazonia. (2022, junio 10). Clima. https://www.corpoamazonia.gov.co/region/Jur_Clima.htmspa
dc.relation.referencesCosta, G. M., Schenkel, E. P., & Reginatto, F. H. (2011). Chemical and Pharmacological Aspects of the Genus Cecropia. Natural Product Communications, 6(6), 1934578X1100600637. https://doi.org/10.1177/1934578X1100600637spa
dc.relation.referencesDaga, M. A., Ayala, T. S., & Menolli, R. A. (2020). A review of the anti-inflammatory and antimicrobial activities of the components of the Cecropia genus. Asian Journal of Pharmaceutical and Clinical Research, 13-20. https://doi.org/10.22159/ajpcr.2020.v13i8.38031spa
dc.relation.referencesDantas, B. B., Faheina-Martins, G. V., Coulidiati, T. H., Bomfim, C. C. B., da Silva Dias, C., Barbosa-Filho, J. M., & Araújo, D. A. M. (2015). Effects of curine in HL-60 leukemic cells: Cell cycle arrest and apoptosis induction. Journal of Natural Medicines, 69(2), 218-223. https://doi.org/10.1007/s11418-014-0881-5spa
dc.relation.referencesDe Lima, R., Guex, C. G., da Silva, A. R. H., Lhamas, C. L., Dos Santos Moreira, K. L., Casoti, R., Dornelles, R. C., da Rocha, M. I. U. M., da Veiga, M. L., de Freitas Bauermann, L., & Manfron, M. P. (2018). Acute and subacute toxicity and chemical constituents of the hydroethanolic extract of Verbena litoralis Kunth. Journal of Ethnopharmacology, 224, 76-84. https://doi.org/10.1016/j.jep.2018.05.012spa
dc.relation.referencesDe Maria, C. A. B., & Moreira, R. F. A. (2004). Métodos para análisis de ácido clorogênico. Química Nova, 27(4), 586-592. https://doi.org/10.1590/S0100-40422004000400013spa
dc.relation.referencesDe Paula, R. C. (2014). Atividade antimalárica de aspidosperma subincanum mart. biomonitorada por testes in vitro contra Plasmodium falciparum, in vivo contra P. berghei e efeito da uleína no retículo endoplasmático de P. falciparum. Universidade Federal de Minas Gerais. https://www.researchgate.net/profile/Alaide_De_Oliveira3/publication/279911567_Aspidosperma_species_Apocynaceae_as_sources_of_antimalarials_from_the_in_vitro_antiplasmodial_activity_of_extracts_to_preclinical_toxicologica.spa
dc.relation.referencesDe Pilla Varotti, F., Botelho, A. C. C., Andrade, A. A., de Paula, R. C., Fagundes, E. M. S., Valverde, A., Mayer, L. M. U., Mendonça, J. S., de Souza, M. V. N., Boechat, N., & Krettli, A. U. (2008). Synthesis, antimalarial activity, and intracellular targets of MEFAS, a new hybrid compound derived from mefloquine and artesunate. Antimicrobial Agents and Chemotherapy, 52(11), 3868-3874. https://doi.org/10.1128/AAC.00510-08spa
dc.relation.referencesDeepak, M., & Handa, S. S. (1998). 3α,24-dihydroxy-urs-12-en-28-oic acid from Verbena officinalis fn1fn1RRL communication No. 2251. Phytochemistry, 49(1), 269-271. https://doi.org/10.1016/S0031-9422(97)01004-2spa
dc.relation.referencesDeharo, E., Gautret, P., Muñoz, V., & Sauvain, M. (2000). Técnicas de laboratorio para la selección de sustancias antimalaricas. En CYTED – IRD (p. 24-80). La Paz, Boliviaspa
dc.relation.referencesDe-La-Cruz Chacón, I., González-Esquinca, A. R., & Riley-Saldaña, C. A. (2012). Biosíntesis de alcaloides bencilisoquinolínicos. Universitas Scientiarum, 17(2), 189-202.spa
dc.relation.referencesDolabela, M. F., Póvoa, M. M., Brandão, G. C., Rocha, F. D., Soares, L. F., de Paula, R. C., & de Oliveira, A. B. (2015). Aspidosperma species as sources of anti-malarials: Uleine is the major anti-malarial indole alkaloid from Aspidosperma parvifolium (Apocynaceae). Malaria Journal, 13 Suppl 1, 498. https://doi.org/10.1186/s12936-015-0997-4spa
dc.relation.referencesDouglas, J. A., Follett, J. M., Parmenter, G. A., Sansom, C. E., Perry, N. B., & Littler, R. A. (2010). Seasonal variation of biomass and bioactive alkaloid content of goldenseal, Hydrastis canadensis. Fitoterapia, 81(7), 925-928. https://doi.org/10.1016/j.fitote.2010.06.006spa
dc.relation.referencesDutra, R. C., Campos, M. M., Santos, A. R. S., & Calixto, J. B. (2016). Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacological Research, 112, 4-29. https://doi.org/10.1016/j.phrs.2016.01.021spa
dc.relation.referencesEMA. (2018, septiembre 17). Markers used for quantitative and qualitative analysis of herbal medicinal products traditional [Text]. European Medicines Agency. https://www.ema.europa.eu/en/markers-used-quantitative-qualitative-analysis-herbal-medicinal-products-traditional-herbalspa
dc.relation.referencesEzenyi, I. C., & Salawu, O. A. (2016). Approaches, Challenges and Prospects of Antimalarial Drug Discovery from Plant Sources. Current Topics in Malaria. https://doi.org/10.5772/65658spa
dc.relation.referencesFuloria, N. K., & Fuloria, S. (2013). Structural Elucidation of Small Organic Molecules by 1D, 2D and Multi Dimensional-Solution NMR Spectroscopy. Journal of Analytical & Bioanalytical Techniques, s11. https://doi.org/10.4172/2155-9872.S11-001spa
dc.relation.referencesGalindo, A. S. (1983). Análisis fitoquímico preliminar: Metodología y su aplicación en la evaluación de 40 plantas de la familia compositae. Universidad Nacional de Colombia, Bogotá. https://agris.fao.org/agris-search/search.do?recordID=CO20000009717spa
dc.relation.referencesGaravito, G., Rincón, J., Arteaga, L., Hata, Y., Bourdy, G., Gimenez, A., Pinzón, R., & Deharo, E. (2006). Antimalarial activity of some Colombian medicinal plants. Journal of Ethnopharmacology, 107(3), 460-462. https://doi.org/10.1016/j.jep.2006.03.033spa
dc.relation.referencesGarcía, C. L. G. de, A, E. C., & C, N. R. (1995). Estudio fitoquímico preliminar y evaluación de la actividad antimicrobiana de algunas plantas superiores colombianas. Revista Colombiana de Ciencias Químico-Farmacéuticas, 23(1), Article 1. https://revistas.unal.edu.co/index.php/rccquifa/article/view/56492spa
dc.relation.referencesGarcia, G. R. M., Hennig, L., Shelukhina, I. V., Kudryavtsev, D. S., Bussmann, R. W., Tsetlin, V. I., & Giannis, A. (2015, octubre 23). Curare Alkaloids: Constituents of a Matis Dart Poison (world) [Review-article]. American Chemical Society and American Society of Pharmacognosy. https://doi.org/10.1021/acs.jnatprod.5b00457spa
dc.relation.referencesGarrido-Cardenas, J. A., González-Cerón, L., Manzano-Agugliaro, F., & Mesa-Valle, C. (2019). Plasmodium genomics: An approach for learning about and ending human malaria. Parasitology Research, 118(1), 1-27. https://doi.org/10.1007/s00436-018-6127-9spa
dc.relation.referencesGong, S., Xu, D., Zou, F., & Peng, R. (2017). (-)-Curine induces cell cycle arrest and cell death in hepatocellular carcinoma cells in a p53-independent way. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 89, 894-901. https://doi.org/10.1016/j.biopha.2017.01.148spa
dc.relation.referencesGonzález-Coloma, A., Reina, M., Sáenz, C., Lacret, R., Ruiz-Mesia, L., Arán, V. J., Sanz, J., & Martínez-Díaz, R. A. (2012). Antileishmanial, antitrypanosomal, and cytotoxic screening of ethnopharmacologically selected Peruvian plants. Parasitology Research, 110(4), 1381-1392. https://doi.org/10.1007/s00436-011-2638-3spa
dc.relation.referencesGoogle Maps. (2021). Google Maps. https://www.google.com/maps/place/4%C2%B008'17.5%22S+69%C2%B055'10.0%22W/@-4.0615861,-69.8977975,95200m/data=!3m1!1e3!4m5!3m4!1s0x0:0x0!8m2!3d-4.1381944!4d-69.9194444?hl=esspa
dc.relation.referencesGreenwood, B. (2010). Anti-malarial drugs and the prevention of malaria in the population of malaria endemic areas. Malaria Journal, 9 Suppl 3, S2. https://doi.org/10.1186/1475-2875-9-S3-S2spa
dc.relation.referencesGuha, K. P., Mukherjee, B., & Mukherjee, R. (1979). Bisbenzylisoquinoline Alkaloids—A Review. Journal of Natural Products, 42(1), 1-84. https://doi.org/10.1021/np50001a001spa
dc.relation.referencesGuidelines for the Treatment of Malaria (2nd ed.). (2010). World Health Organization. http://www.ncbi.nlm.nih.gov/books/NBK254223/spa
dc.relation.referencesGutiérrez, G. P. A., & Villegas, M. C. V. (2008). Efecto tóxico de Verbena officinallis (familia verbenaceae) en Sitophilus granarius (coleoptera: Curculionidae). Revista Lasallista de Investigación, 5(2), 74-82.spa
dc.relation.referencesHao, D.-C., Xiao, P.-G., Ma, H.-Y., Peng, Y., & He, C.-N. (2015). Mining chemodiversity from biodiversity: Pharmacophylogeny of medicinal plants of Ranunculaceae. Chinese Journal of Natural Medicines, 13(7), 507-520. https://doi.org/10.1016/S1875-5364(15)30045-5spa
dc.relation.referencesHata, Yoshie. (2005). Contribución a la estandarización de un extracto con base en Abuta grandifolia [Tesis]. Universidad Nacional de Colombia - Sede Bogotáspa
dc.relation.referencesHernández Carvajal. (2012). Análisis fitoquímico y de actividad antimalárica de dos especies del género Cecropia / Phytochemical analysis and antimalarial activity of two species of Cecropia genus. https://repositorio.unal.edu.co/handle/unal/10796spa
dc.relation.referencesHernández Carvajal, J. E., Luengas Caicedo, P. E., Otero Jiménez, V., & Garavito Cárdenas, G. (2014). Actividad antiplasmódica y hemolítica de extractos etanólicos y fracciones obtenidas de Cecropia membranacea Trécul. Y Cecropia metensis Cuatrec. (Sin. Cecropia peltata var. Candida Velásquez). Revista Cubana de Medicina Tropical, 66(1), 58-70.spa
dc.relation.referencesHernández, J. E. H., & Luengas, P. E. L. (2013). Estudio fitoquímico preliminar de Cecropia membranacea Trécul. y Cecropia metensis Cuatrec. Revista Cubana de Plantas Medicinales, 18(4), 586-595.spa
dc.relation.referencesHernández-Carvajal, J. E., Arias-Marciales, M. H., García, J. O., Hata-Uribe, Y. A., Garavito-Cárdenas, G., & Caicedo, P. E. L. (2022). Phytochemical and antiplasmodial evaluation of five Colombian plants with ethnopharmacological background of antimalarial use. Pharmaceutical Sciences. https://doi.org/10.34172/PS.2022.16spa
dc.relation.referencesIDEAM. (2022, junio 10). Amazonia Temperatura—REGIÓN AMAZONIA TEMPERATURA - IDEAM. Tiempo y Clima. http://www.ideam.gov.co/web/tiempo-y-clima/region-amazonia-temperaturaspa
dc.relation.referencesInbaneson, S. J., Sundaram, R., & Suganthi, P. (2012). In vitro antiplasmodial effect of ethanolic extracts of traditional medicinal plant Ocimum species against Plasmodium falciparum. Asian Pacific Journal of Tropical Medicine, 5(2), 103-106. https://doi.org/10.1016/S1995-7645(12)60004-2spa
dc.relation.referencesInstituto Nacional de Salud. (2018). Boletín Epidemiológico. https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspxspa
dc.relation.referencesInstituto Nacional de Salud. (2022, septiembre 18). Boletín Epidemiológico. Boletín Epidemiologíco. https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspxspa
dc.relation.referencesKanyinda, B., Vanhaelen-Fastré, R., Vanhaelen, M., & Ottinger, R. (1997). Two New Isochondodendrine-Type Alkaloids from the Roots of Anisocycla jollyana. Journal of Natural Products, 60(11), 1121-1124. https://doi.org/10.1021/np970257jspa
dc.relation.referencesKarunamoorthi, K., Sabesan, S., Jegajeevanram, K., & Vijayalakshmi, J. (2013). Role of Traditional Antimalarial Plants in the Battle Against the Global Malaria Burden. Vector-Borne and Zoonotic Diseases, 13(8), 521-544. https://doi.org/10.1089/vbz.2011.0946spa
dc.relation.referencesKatzung. (2004). Farmacología: Medicamentos antiprotozoales. (13.a ed.). Mcgraw Hill (ED), (p.1239-1243) New York, USAspa
dc.relation.referencesKaur, K., Jain, M., Kaur, T., & Jain, R. (2009). Antimalarials from nature. Bioorganic & Medicinal Chemistry, 17(9), 3229-3256. https://doi.org/10.1016/j.bmc.2009.02.050.spa
dc.relation.referencesKhan, I. A. (2006). Issues related to botanicals. Life Sciences, 78(18), 2033-2038. https://doi.org/10.1016/j.lfs.2005.12.019.spa
dc.relation.referencesKnudson-Ospina, A., Barreto-Zorza, Y. M., Castillo, C. F., Y. Mosquera, L., Apráez-Ippolito, G., Olaya-Másmela, L. A., Piamba, A. H., & Sanchez, R. (2020). Estrategias para la eliminación de malaria: Una perspectiva afro-colombiana. Revista de Salud Pública, 21, 9-16. https://doi.org/10.15446/rsap.v21n1.76210spa
dc.relation.referencesKomlaga, G., Agyare, C., Dickson, R. A., Mensah, M. L. K., Annan, K., Loiseau, P. M., & Champy, P. (2015). Medicinal plants and finished marketed herbal products used in the treatment of malaria in the Ashanti region, Ghana. Journal of Ethnopharmacology, 172, 333-346. https://doi.org/10.1016/j.jep.2015.06.041spa
dc.relation.referencesKumatia, E. K., Ayertey, F., Appiah-Opong, R., Bagyour, G. K., Asare, K. O., Mbatcho, V. C., & Dabo, J. (2021). Intervention of standardized ethanol leaf extract of Annickia polycarpa, (DC.) Setten and Maas ex I.M. Turner. (Annonaceae), in Plasmodium berghei infested mice produced anti-malaria action and normalized gross hematological indices. Journal of Ethnopharmacology, 267, 113449. https://doi.org/10.1016/j.jep.2020.113449spa
dc.relation.referencesKushwaha, S., Kushwaha, N., Maurya, N., & Rai, A. (2010). Role of Markers in the Standardization of Herbal Drugs: A Review. Archives of Applied Science Research, 2. https://www.researchgate.net/profile/Swaspa
dc.relation.referencesKvist, L. P., Christensen, S. B., Rasmussen, H. B., Mejia, K., & Gonzalez, A. (2006). Identification and evaluation of Peruvian plants used to treat malaria and leishmaniasis. Journal of Ethnopharmacology, 106(3), 390-402. https://doi.org/10.1016/j.jep.2006.01.020spa
dc.relation.referencesLi, S., Han, Q., Qiao, C., Song, J., Lung Cheng, C., & Xu, H. (2008). Chemical markers for the quality control of herbal medicines: An overview. Chinese Medicine, 3, 7. https://doi.org/10.1186/1749-8546-3-7spa
dc.relation.referencesLi, Y., Ishibashi, M., Chen, X., & Ohizumi, Y. (2003). Littorachalcone, a new enhancer of NGF-mediated neurite outgrowth, from Verbena littoralis. Chemical & Pharmaceutical Bulletin, 51(7), 872-874. https://doi.org/10.1248/cpb.51.872spa
dc.relation.referencesLi, Y., Ishibashi, M., Satake, M., Oshima, Y., & Ohizumi, Y. (2003). A new iridoid glycoside with nerve growth factor-potentiating activity, gelsemiol 6’-trans-caffeoyl-1-glucoside, from Verbena littoralis. Chemical & Pharmaceutical Bulletin, 51(9), 1103-1105. https://doi.org/10.1248/cpb.51.1103spa
dc.relation.referencesLiu, Y., & Wang, M.-W. (2008). Botanical drugs: Challenges and opportunities: Contribution to Linnaeus Memorial Symposium 2007. Life Sciences, 82(9), 445-449. https://doi.org/10.1016/j.lfs.2007.11.007spa
dc.relation.referencesLohombo-Ekomba, M.-L., Okusa, P. N., Penge, O., Kabongo, C., Choudhary, M. I., & Kasende, O. E. (2004). Antibacterial, antifungal, antiplasmodial, and cytotoxic activities of Albertisia villosa. Journal of Ethnopharmacology, 93(2-3), 331-335. https://doi.org/10.1016/j.jep.2004.04.006spa
dc.relation.referencesLuenga-Caicedo, P. E., Braga, F. C., Brandão, G. C., & Braga de Oliveira, A. (2007). Seasonal and intraspecific varation of flavonoids and proanthocyanidins in Cecropia glaziovi sneth. Leaves from native and cultivated specimens. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 62(9-10), 701-709. https://doi.org/10.1515/znc-2007-9-1013spa
dc.relation.referencesLv, J.-J., Xu, M., Wang, D., Zhu, H.-T., Yang, C.-R., Wang, Y.-F., Li, Y., & Zhang, Y.-J. (2013). Cytotoxic bisbenzylisoquinoline alkaloids from Stephania epigaea. Journal of Natural Products, 76(5), 926-932. https://doi.org/10.1021/np400084tspa
dc.relation.referencesLv, Y.-N., Yang, C.-Y., Shi, L.-C., Zhang, Z.-L., Xu, A.-S., Zhang, L.-X., Li, X.-L., & Li, H.-T. (2020). Identification of medicinal plants within the Apocynaceae family using ITS2 and psbA-trnH barcodes. Chinese Journal of Natural Medicines, 18(8), 594-605. https://doi.org/10.1016/S1875-5364(20)30071-6spa
dc.relation.referencesMacWilliam, I. C., & Wenn, R. V. (1972). Interpretation of colour tests for polyphenols and melanoidins. Journal of the Institute of Brewing, 78(4), 309-309. https://doi.org/10.1002/j.2050-0416.1972.tb03452.xspa
dc.relation.referencesMakler, M. T., Ries, J. M., Williams, J. A., Bancroft, J. E., Piper, R. C., Gibbins, B. L., & Hinrichs, D. J. (1993). Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. The American Journal of Tropical Medicine and Hygiene, 48(6), 739-741. https://doi.org/10.4269/ajtmh.1993.48.739spa
dc.relation.referencesMalca Garcia, G. R., Hennig, L., Shelukhina, I. V., Kudryavtsev, D. S., Bussmann, R. W., Tsetlin, V. I., & Giannis, A. (2015). Curare Alkaloids: Constituents of a Matis Dart Poison. Journal of Natural Products, 78(11), 2537-2544. https://doi.org/10.1021/acs.jnatprod.5b00457spa
dc.relation.referencesMall, M., Verma, R. K., Gupta, M. M., Shasany, A. K., Khanuja, S. P. S., & Shukla, A. K. (2019). Influence of seasonal and ontogenic parameters on the pattern of key terpenoid indole alkaloids biosynthesized in the leaves of Catharanthus roseus. South African Journal of Botany, 123, 98-104. https://doi.org/10.1016/j.sajb.2019.01.032spa
dc.relation.referencesMambu, L., Martin, M. T., Razafimahefa, D., Ramanitrahasimbola, D., Rasoanaivo, P., & Frappier, F. (2000). Spectral characterisation and antiplasmodial activity of bisbenzylisoquinolines from Isolona ghesquiereina. Planta Medica, 66(6), 537-540. https://doi.org/10.1055/s-2000-8610spa
dc.relation.referencesManzali de Sá, I., & Elisabetsky, E. (2012). Medical knowledge exchanges between Brazil and Portugal: An ethnopharmacological perspective. Journal of Ethnopharmacology, 142(3), 762-768. https://doi.org/10.1016/j.jep.2012.05.058spa
dc.relation.referencesMarsaioli, A. J., Rúveda, E. A., & Reis, F. de A. M. (1978). 13C NMR spectral analysis of some isoquinoline alkaloids. Phytochemistry, 17(9), 1655-1658. https://doi.org/10.1016/S0031-9422(00)94662-4spa
dc.relation.referencesMenachery, M. D. (1996). Chapter Three The alkaloids of south american menispermaceae. En S. W. Pelletier (Ed.), Alkaloids: Chemical and Biological Perspectives (Vol. 11, pp. 269-302). Pergamon. https://doi.org/10.1016/S0735-8210(96)80007-0spa
dc.relation.referencesMiller, L. H., Ackerman, H. C., Su, X., & Wellems, T. E. (2013). Malaria biology and disease pathogenesis: Insights for new treatments. Nature Medicine, 19(2), 156-167. https://doi.org/10.1038/nm.3073spa
dc.relation.referencesMinisterio de la protección Social, C. M. de la P. (2008). Vademécum Colombiano de Plantas Medicinales. Vademécum Colombiano de Plantas Medicinales, 241-241. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SA/vademecum-colombiano-plantas-medicinales.pdfspa
dc.relation.referencesMinisterio de la salud y protección social. (2018, junio 6). Decreto 1156 de 2018. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=87281spa
dc.relation.referencesMosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4spa
dc.relation.referencesMurambiwa, P., Masola, B., Govender, T., Mukaratirwa, S., & Musabayane, C. T. (2011). Anti-malarial drug formulations and novel delivery systems: A review. Acta Tropica, 118(2), 71-79. https://doi.org/10.1016/j.actatropica.2011.03.005spa
dc.relation.referencesMurebwayire, S., Frédérich, M., Hannaert, V., Jonville, M.-C., & Duez, P. (2008). Antiplasmodial and antitrypanosomal activity of Triclisia sacleuxii (Pierre) Diels. Phytomedicine, 15(9), 728-733. https://doi.org/10.1016/j.phymed.2007.10.005spa
dc.relation.referencesNcube, B., Nair, J. J., Rárová, L., Strnad, M., Finnie, J. F., & Van Staden, J. (2015). Seasonal pharmacological properties and alkaloid content in Cyrtanthus contractus N.E. Br. South African Journal of Botany, 97, 69-76. https://doi.org/10.1016/j.sajb.2014.12.005spa
dc.relation.referencesNewman, D. J., & Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70(3), 461-477. https://doi.org/10.1021/np068054vspa
dc.relation.referencesNguta, J. M., & Mbaria, J. M. (2013). Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya. Journal of Ethnopharmacology, 148(3), 988-992. https://doi.org/10.1016/j.jep.2013.05.053spa
dc.relation.referencesNkhoma, S., Molyneux, M., & Ward, S. (2007). In vitro antimalarial susceptibility profile and prcrt/pfmdr-1 genotypes of Plasmodium falciparum field isolates from Malawi. The American Journal of Tropical Medicine and Hygiene, 76(6), 1107-1112.spa
dc.relation.referencesNogueira, F., & Rosário, V. E. do. (2010). Methods for assessment of antimalarial activity in the different phases of the Plasmodium life cycle. Revista Pan-Amazônica de Saúde, 1(3), 109-124. https://doi.org/10.5123/S2176-62232010000300015spa
dc.relation.referencesOcampo, D. M., Valverde, C. L., Colmenares, A. J., & Isaza, J. H. (2014). Fenoles totales y actividad antioxidante en hojas de dos especies colombianas del género Meriania (melastomataceae). Revista Colombiana de Química, 43(2), 41-46. https://doi.org/10.15446/rev.colomb.quim.v43n2.53124spa
dc.relation.referencesOECD. (2002). OECD (2002), Test No. 423: Acute Oral toxicity—Acute Toxic Class Method, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris [Text]. https://www.oecd-ilibrary.org/environment/test-no-423-acute-oral-toxicity-acute-toxic-class-method_9789264071001spa
dc.relation.referencesO’Leary, N., Múlgura, M. E., & Morrone, O. (2007). Revisión taxonómica de las especies del género verbena (verbenaceae): serie pachystachyae1. Annals of the Missouri Botanical Garden, 94(3), 571-621. https://doi.org/10.3417/0026-6493(2007)94[571:RTDLED]2.0.CO;2spa
dc.relation.referencesOmole, R. A., Gathirwa, J., Akala, H., Malebo, H. M., Machocho, A. K., Hassanali, A., & Ndiege, I. O. (2014). Bisbenzylisoquinoline and hasubanane alkaloids from Stephania abyssinica (Dillon & A. Rich) (Menispermeceae). Phytochemistry, 103, 123-128. https://doi.org/10.1016/j.phytochem.2014.03.026spa
dc.relation.referencesOMS. (2021, octubre 6). World malaria report 2021. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021spa
dc.relation.referencesOMS. (2022, diciembre 22). Expert committee on specifications for pharmaceutical preparations. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/norms-and-standards-for-pharmaceuticals/expert-committee-on specifications-for-pharmaceutical-preparationsspa
dc.relation.referencesŌmura, S. (2015). From bacteria and plants to novel anti-parasite therapies. 5. http://www.nobelprizemedicine.org/wp-content/uploads/2013/10/press.pdfspa
dc.relation.referencesOPS. (2010). OPS/OMS Organización Panamericana de la Salud. https://www.paho.org/es/search/r?keys=tratamiento+para+malaria#gsc.tab=0&gsc.q=tratamiento%20para%20malariaspa
dc.relation.referencesOrtiz, R. del C. (2018). A taxonomic revision of Curarea Barneby & Krukoff (Menispermaceae). PhytoKeys, 100, 9-89. https://doi.org/10.3897/phytokeys.100.21828spa
dc.relation.referencesOsorio, E., Arango, G. J., García, E., Muñoz, K., Ruiz, G., Gutiérrez, D., Paco, M. A., & Giménez, A. (2005). Actividad antiplasmódica in vitro e inhibición de la formación de la β-Hematina de plantas colombianas de la familia Annonaceae. Acta Farmacéutica Bonaerense, 24, n.o 4. http://sedici.unlp.edu.ar/handle/10915/6773spa
dc.relation.referencesOsorio, E., Arango, G. J., Jiménez, N., Alzate, F., Ruiz, G., Gutiérrez, D., Paco, M. A., Giménez, A., & Robledo, S. (2007). Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae. Journal of Ethnopharmacology, 111(3), 630-635. https://doi.org/10.1016/j.jep.2007.01.015spa
dc.relation.referencesOtshudi, A. L., Apers, S., Pieters, L., Claeys, M., Pannecouque, C., De Clercq, E., Van Zeebroeck, A., Lauwers, S., Frédérich, M., & Foriers, A. (2005). Biologically active bisbenzylisoquinoline alkaloids from the root bark of Epinetrum villosum. Journal of Ethnopharmacology, 102(1), 89-94. https://doi.org/10.1016/j.jep.2005.05.021spa
dc.relation.referencesPadilla, J. C., Lizarazo, F. E., Murillo, O. L., Mendigaña, F. A., Pachón, E., & Vera, M. J. (2017). Epidemiología de las principales enfermedades transmitidas por vectores en Colombia, 1990-2016. Biomédica, 37, 27. https://doi.org/10.7705/biomedica.v37i0.3769spa
dc.relation.referencesPaganga, G., & Rice-Evans, C. A. (1997). The identification of flavonoids as glycosides in human plasma. FEBS Letters, 401(1), 78-82. https://doi.org/10.1016/s0014-5793(96)01442-1spa
dc.relation.referencesPaixao, A., Mancebo, B., Regalado, A. I., Chong, D., & Sánchez, L. M. (2017). Evaluación de la Toxicidad Aguda Oral del extracto etanólico de Tephrosia vogelii Hook (kalembe). Revista de Salud Animal, 39(2), 00-00.spa
dc.relation.referencesPathak, A. (2017). Q-Markers or Chemical Markers: A New Insight towards Quality Control of Herbal Medicines. Organic & Medicinal Chemistry International Journal, 3(2), 62-63spa
dc.relation.referencesPérez-Guerrero, C., Herrera, M. D., Ortiz, R., Alvarez de Sotomayor, M., & Fernández, M. A. (2001). A pharmacological study of Cecropia obtusifolia Bertol aqueous extract. Journal of Ethnopharmacology, 76(3), 279-284. https://doi.org/10.1016/s0378-8741(01)00253-7spa
dc.relation.referencesPeters, W., Bafort, J., & Ramkaran, A. E. (1970). The chemotherapy of rodent malaria. XI. Cyclically transmitted, chloroquine-resistant variants of the Keyberg 173 strain of Plasmodium berghei. Annals of Tropical Medicine and Parasitology, 64(1), 41-51.spa
dc.relation.referencesPhillips, M. A., Burrows, J. N., Manyando, C., van Huijsduijnen, R. H., Van Voorhis, W. C., & Wells, T. N. C. (2017). Malaria. Nature Reviews. Disease Primers, 3, 17050. https://doi.org/10.1038/nrdp.2017.50spa
dc.relation.referencesRocha, T. D., de Brum Vieira, P., Gnoatto, S. C. B., Tasca, T., & Gosmann, G. (2012). Anti-Trichomonas vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species. Parasitology Research, 110(6), 2551-2556. https://doi.org/10.1007/s00436-011-2798-1spa
dc.relation.referencesRodríguez Novoa, Y. V. (2016). Actividad antimalárica de una preparación tradicional indígena en combinación con fármacos de uso común en la enfermedad. https://repositorio.unal.edu.co/handle/unal/57962spa
dc.relation.referencesRodriguez Parra, Z. (2015). Evaluación comparativa de la actividad antimalárica de un remedio tradicional frente a un extracto primario; profundización del estudio de su actividad farmacológica. https://repositorio.unal.edu.co/handle/unal/56695spa
dc.relation.referencesRodríguez, Y. V., Arias, M. H., García, J. O., Deharo, E., & Garavito, G. (2018). Pharmacological activity of Curarea toxicofera in combination with classical antimalarial treatments. Journal of Ethnopharmacology, 222, 288-294. https://doi.org/10.1016/j.jep.2018.04.008spa
dc.relation.referencesRodriguez, Z. J., Rodríguez, Y. V., García, J. O., Arias, M. H., Deharo, E., & Garavito, G. (2020). Comparison of the antimalarial activity of a Colombian traditional Uitoto remedy with laboratory preparations. Journal of Vector Borne Diseases, 57(2), 170-175. https://doi.org/10.4103/0972-9062.310868spa
dc.relation.referencesRojas, L. C., Uribe, Y. H., Martínez, N. S., & Niño, D. R. (2009). Análisis Fitoquímico Preliminar De Hojas, Tallos Y Semillas De Cupatá (strych Nos Schultesiana Krukoff). Colombia Forestal, 12, 161-170. ISSN 0120-0739spa
dc.relation.referencesRoux, S., Sablé, E., & Porsolt, R. D. (2005). Primary observation (Irwin) test in rodents for assessing acute toxicity of a test agent and its effects on behavior and physiological function. Current Protocols in Pharmacology, Chapter 10, Unit 10.10. https://doi.org/10.1002/0471141755.ph1010s27spa
dc.relation.referencesRuiz, L., Ruiz, L., Maco, M., Cobos, M., Gutierrez-Choquevilca, A.-L., & Roumy, V. (2011). Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria. Journal of Ethnopharmacology, 133(2), 917-921. https://doi.org/10.1016/j.jep.2010.10.039spa
dc.relation.referencesSanz-Biset, J., Campos-de-la-Cruz, J., Epiquién-Rivera, M. A., & Cañigueral, S. (2009). A first survey on the medicinal plants of the Chazuta valley (Peruvian Amazon). Journal of Ethnopharmacology, 122(2), 333-362. https://doi.org/10.1016/j.jep.2008.12.009spa
dc.relation.referencesSchiff, P. L. (1985). Bisbenzylisoquinoline Alkaloids. En J. D. Phillipson, M. F. Roberts, & M. H. Zenk (Eds.), The Chemistry and Biology of Isoquinoline Alkaloids (pp. 126-141). Springer. https://doi.org/10.1007/978-3-642-70128-3_8spa
dc.relation.referencesSchiff, P. L. (1999). Chapter One—The Bisbenzylisoquinoline Alkaloids – A Tabular Review. En S. W. Pelletier (Ed.), Alkaloids: Chemical and Biological Perspectives (Vol. 14, pp. 1-284). Pergamon. https://doi.org/10.1016/S0735-8210(99)80004-1spa
dc.relation.referencesSharapin N, Pinzón RS, et al. (2000). Fundamentos de Tecnología de Productos Fitoterapéuticos, Santafé de Bogotá: Convenio Andrés Bello (CAB)—Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED).spa
dc.relation.referencesShu, J.-C., Liu, J.-Q., & Chou, G.-X. (2013). A new triterpenoid from Verbena officinalis L. Natural Product Research, 27(14), 1293-1297. https://doi.org/10.1080/14786419.2012.733391spa
dc.relation.referencesSouza, J. E. de, Nascimento, M. F. A. do, Borsodi, M. P. G., Almeida, A. P. de, Rossi-Bergmann, B., Oliveira, A. B. de, & Costa, S. S. (2018). Leaves from the Tree Poincianella pluviosa as a Renewable Source of Antiplasmodial Compounds against Chloroquine-Resistant Plasmodium falciparum. Journal of the Brazilian Chemical Society, 29, 1318-1327. https://doi.org/10.21577/0103-5053.20170228spa
dc.relation.referencesSrinivasan, V. S. (2006). Challenges and scientific issues in the standardization of botanicals and their preparations. United States Pharmacopeia’s dietary supplement verification program—A public health program. Life Sciences, 78(18), 2039-2043. https://doi.org/10.1016/j.lfs.2005.12.014spa
dc.relation.referencesSun, S.-W., Lee, S.-S., Wu, A.-C., & Chen, C.-K. (1998). Determination of bisbenzylisoquinoline alkaloids by high-performance liquid chromatography. Journal of Chromatography A, 799(1), 337-342. https://doi.org/10.1016/S0021-9673(97)01065-0spa
dc.relation.referencesTanae, M. M., Lima-Landman, M. T. R., De Lima, T. C. M., Souccar, C., & Lapa, A. J. (2007). Chemical standardization of the aqueous extract of Cecropia glaziovii Sneth endowed with antihypertensive, bronchodilator, antiacid secretion and antidepressant-like activities. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 14(5), 309-313. https://doi.org/10.1016/j.phymed.2007.03.002spa
dc.relation.referencesTasso de Souza, T. J., Manfron, M. P., Zanetti, G. D., Hoelzel, S. C. da S. M., & Pagliarin, V. P. (2005). Análise morfo-histológica y fitoquímica de Verbena litoralis Kunth. Acta Farmacéutica Bonaerense, 24, n.o 2. http://sedici.unlp.edu.ar/handle/10915/6733spa
dc.relation.referencesTavares, L. A., & Ferreira, A. G. (2006). Análises quali- e quantitativa de cafés comerciais via ressonância magnética nuclear. Química Nova, 29(5), 911-915. https://doi.org/10.1590/S0100-40422006000500005spa
dc.relation.referencesThornber, C. W. (1970). Alkaloids of the menispermaceae. Phytochemistry, 9(1), 157-187. https://doi.org/10.1016/S0031-9422(00)86628-5spa
dc.relation.referencesTorres-Rodríguez, M. L., García-Chávez, E., Soto-Peña, G. A., Aradillas-García, C., Cubillas-Tejeda, A. C., Torres-Rodríguez, M. L., García-Chávez, E., Soto-Peña, G. A., Aradillas-García, C., & Cubillas-Tejeda, A. C. (2016). Evaluación de la toxicidad aguda in vivo del extracto etanólico y acuoso de Calea urticifolia. Botanical Sciences, 94(1), 133-140. https://doi.org/10.17129/botsci.191spa
dc.relation.referencesTshibangu, J. N., Wright, A. D., & König, G. M. (2003). HPLC isolation of the anti-plasmodially active bisbenzylisoquinone alkaloids present in roots of Cissampelos mucronata. Phytochemical Analysis: PCA, 14(1), 13-22. https://doi.org/10.1002/pca.673spa
dc.relation.referencesUche, F. I., Abed, M. N., Abdullah, M. I., Drijfhout, F. P., McCullagh, J., Claridge, T. W. D., Richardson, A., & Li, W.-W. (2017). Isochondodendrine and 2′-norcocsuline: Additional alkaloids from Triclisia subcordata induce cytotoxicity and apoptosis in ovarian cancer cell lines. RSC Advances, 7(70), 44154-44161. https://doi.org/10.1039/C7RA08032Hspa
dc.relation.referencesUchôa, V. T., Paula, R. C. de, Krettli, L. G., Santana, A. E. G., & Krettli, A. U. (2010). Antimalarial activity of compounds and mixed fractions of Cecropia pachystachya. Drug Development Research, 71(1), 82-91. https://doi.org/10.1002/ddr.20351spa
dc.relation.referencesUzor, P. F. (2020). Alkaloids from Plants with Antimalarial Activity: A Review of Recent Studies. Evidence-Based Complementary and Alternative Medicine: ECAM, 2020, 8749083. https://doi.org/10.1155/2020/8749083spa
dc.relation.referencesValadeau, C., Castillo, J. A., Sauvain, M., Lores, A. F., & Bourdy, G. (2010). The rainbow hurts my skin: Medicinal concepts and plants uses among the Yanesha (Amuesha), an Amazonian Peruvian ethnic group. Journal of Ethnopharmacology, 127(1), 175-192. https://doi.org/10.1016/j.jep.2009.09.024spa
dc.relation.referencesVan Breemen, R. B., Fong, H. H. S., & Farnsworth, N. R. (2007). The role of quality assurance and standardization in the safety of botanical dietary supplements. Chemical Research in Toxicology, 20(4), 577-582. https://doi.org/10.1021/tx7000493spa
dc.relation.referencesVestena, A., Piton, Y., de Loretto Bordignon, S. A., Garcia, S., Arbo, M. D., Zuanazzi, J. A., & von Poser, G. (2019). Hepatoprotective activity of Verbena litoralis, Verbena montevidensis and their main iridoid, brasoside. Journal of Ethnopharmacology, 239, 111906. https://doi.org/10.1016/j.jep.2019.111906spa
dc.relation.referencesVispo, N. (2016, abril 30). Mecanismos de invasion del esporozoíto y merozoíto de Plasmodium. Bionatura. http://revistabionatura.com/plasmodium.htmlspa
dc.relation.referencesWagner, H., & Bladt, S. (1996). Plant Drug Analysis: A Thin Layer Chromatography Atlas. Springer Science & Business Media. New York, USAspa
dc.relation.referencesWeathers, P. J., Jordan, N., Lasin, P., & Towler, M. J. (2014). Simulated Digestion of Dried Leaves of Artemisia annua Consumed as a Treatment (pACT) for Malaria. Journal of ethnopharmacology, 151(2), 858-863. https://doi.org/10.1016/j.jep.2013.11.043spa
dc.relation.referencesWeber, C., & Opatz, T. (2019). Chapter One—Bisbenzylisoquinoline Alkaloids. En H.-J. Knölker (Ed.), The Alkaloids: Chemistry and Biology (Vol. 81, pp. 1-114). Academic Press. https://doi.org/10.1016/bs.alkal.2018.07.001spa
dc.relation.referencesWeniger, B., Robledo, S., Arango, G. J., Deharo, E., Aragón, R., Muñoz, V., Callapa, J., Lobstein, A., & Anton, R. (2001). Antiprotozoal activities of Colombian plants. Journal of Ethnopharmacology, 78(2-3), 193-200. https://doi.org/10.1016/s0378-8741(01)00346-4spa
dc.relation.referencesWhite, N. J., Pukrittayakamee, S., Hien, T. T., Faiz, M. A., Mokuolu, O. A., & Dondorp, A. M. (2014). Malaria. The Lancet, 383(9918), 723-735. https://doi.org/10.1016/S0140-6736(13)60024-0spa
dc.relation.referencesWHO (Ed.). (2011). Quality control methods for herbal materials (Updated edition of Quality control methods for medicinal plant materials, 1998). World Health Organization.spa
dc.relation.referencesWillcox, M., Bodeker, G., Rasoanaivo, P., & Addae-Kyereme, J. (2004). Traditional Medicinal Plants and Malaria. CRC Press.spa
dc.relation.referencesWinstanley, P. A. (2000). Chemotherapy for falciparum malaria: The armoury, the problems and the prospects. Parasitology Today (Personal Ed.), 16(4), 146-153. https://doi.org/10.1016/s0169-4758(99)01622-1spa
dc.relation.referencesWright, C. W. (2005). Traditional antimalarials and the development of novel antimalarial drugs. Journal of Ethnopharmacology, 100(1), 67-71. https://doi.org/10.1016/j.jep.2005.05.012spa
dc.relation.referencesXian-Kai, W., Tong-Fang, Z., Sheng, L., Shizuri, Y., & Yamamura, S. (1993). Head-to-tail bisbenzylisoquinoline alkaloids from Cyclea sutchuenensis. Phytochemistry, 33(5), 1253-1256. https://doi.org/10.1016/0031-9422(93)85060-5spa
dc.relation.referencesZhang, H., Wang, X., Guo, Y., Liu, X., Zhao, X., Teka, T., Lv, C., Han, L., Huang, Y., & Pan, G. (2021). Thirteen bisbenzylisoquinoline alkaloids in five Chinese medicinal plants: Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity studies. Journal of Ethnopharmacology, 268, 113566. https://doi.org/10.1016/j.jep.2020.113566spa
dc.relation.referencesZuiderveen, G. H., Burkhart, E. P., & Lambert, J. D. (2021). Benzylisoquinoline alkaloid content in goldenseal (Hydrastis canadensis L.) is influenced by phenological stage, reproductive status, and time-of-day. Phytochemistry Letters, 42, 61-67. https://doi.org/10.1016/j.phytol.2021.02.006spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.decsExtractos vegetalesspa
dc.subject.decsPlant Extractseng
dc.subject.decsAntimaláricosspa
dc.subject.decsAntimalarialseng
dc.subject.proposalCurarea toxicoferaspa
dc.subject.proposalAntimaláricospa
dc.subject.proposalPruebas de toxicidad agudaspa
dc.subject.proposalAlcaloides vegetales.spa
dc.titleContribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológicaspa
dc.title.translatedContribution to the standardization of a plant extract with ethnopharmacological antecedents of antimalarial activity, through phytochemical evaluation and biological activityeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleContribución a la estandarización de un extracto de plantas con antecedentes etnofarmacológicos de actividad antimalárica, por medio de evaluación fitoquímica y actividad biológicaspa
oaire.fundernameUniversidad Nacional de Colombia Sede Bogotáspa
oaire.fundernameColciencias convocatoria 711 de 2015spa
oaire.fundernameColciencias beca apoyo a Doctorados Nacionales 727 de 2015spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
93397208.2023.pdf
Tamaño:
11.88 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: